EDN: YVTNQS УДК 511.5

A Note on the Diophantine Equation $(4^q - 1)^u + (2^{q+1})^v = w^2$

Djamel Himane*

Faculty of Mathematics University of USTHB Alger, Algeria

Rachid Boumahdi[†]

National High School of Mathematics Alger, Algeria

Received 03.11.2022, received in revised form 01.12.2022, accepted 20.02.2023

Abstract. Let a, b and c be positive integers such that $a^2 + b^2 = c^2$ with gcd(a, b, c) = 1, a even. Terai's conjecture claims that the Diophantine equation $x^2 + b^y = c^z$ has only the positive integer solution (x, y, z) = (a, 2, 2). In this short note, we prove that the equation of the title, has only the positive integer solution $(u, v, w) = (2, 2, 4^q + 1)$, where q is a positive integer.

Keywords: Terai's conjecture, Pythagorean triple.

Citation: D. Himane, R. Boumahdi, A Note on the Diophantine Equation $(4^q - 1)^u + (2^{q+1})^v = w^2$, J. Sib. Fed. Univ. Math. Phys., 2023, 16(2), 275–278. EDN: YVTNQS.

1. Introduction and preliminaries

In 1956, Sierpinski [2] studied the equation

$$3^u + 4^v = 5^w$$

and proved that it only possesses (u, v, w) = (2, 2, 2) as a solution in integers. In turn, Jésmanowicz [1] showed that the only positive solution in integers of any of the following equations

$$5^{u} + 12^{v} = 13^{w}$$
, $7^{u} + 24^{v} = 25^{w}$, $9^{u} + 40^{v} = 41^{w}$, $11^{u} + 60^{v} = 61^{w}$

is (u, v, w) = (2, 2, 2), and posed the following Conjecture 1.1 (see [3]).

Recall that when positive integers a, b, c satisfy $a^2 + b^2 = c^2$ we say that (a, b, c) is a Pythagorean triple, and if in addition gcd(a, b, c) = 1 it is said a primitive Pythagorean triple.

Historically, Euclid of Alexandria (323–300 BC) was the first mathematician who proved that (a, b, c) is a primitive Pythagorean triple with a odd, if and only if, there exists a pair of numbers $(\alpha, \beta) \in \mathbb{N}^{*2}$ with $\alpha > \beta$, α and β are coprime and of different parity, such that

$$a = \alpha^2 - \beta^2$$
, $b = 2\alpha\beta$ and $c = \alpha^2 + \beta^2$.

 $^{^*{\}rm dhimane@usthb.dz}$

[†]r boumehdi@esi.dz

[©] Siberian Federal University. All rights reserved

Conjecture 1.1. If (a, b, c) is Pythagorean triple, then the equation

$$a^u + b^v = c^w$$

has the only solution (u, v, w) = (2, 2, 2).

In 2013, Z. Xinwen and Z. Wenpeng [6] showed that, for any positive integers n and m the exponential Diophantine equation

$$((2^{2m} - 1)n)^{x} + (2^{m+1}n)^{y} = ((2^{2m} + 1)n)^{z}$$

has only the positive integer solution (x, y, z) = (2, 2, 2).

Recently, Hai Yang and Ruiqin Fu [7] by combining Baker's method with an elementary approach, have proven that if $\alpha\beta \equiv 2 \pmod{4}$ and $\alpha > 17.8\beta$, then the Conjecture 1.1 is true, this is for $(a, b, c) = (2\alpha\beta, \alpha^2 - \beta^2, \alpha^2 + \beta^2)$.

Thirty years before, Terai had conjectured [4]

Conjecture 1.2. Let α, β be positive integers such that $\alpha > \beta$, $gcd(\alpha, \beta) = 1$ and $\alpha \not\equiv \beta \pmod{2}$, then the equation

$$x^{2} + (\alpha^{2} - \beta^{2})^{m} = (\alpha^{2} + \beta^{2})^{n}$$

has the only positive solution in integers $(x, m, n) = (2\alpha\beta, 2, 2)$.

In 2020, M. Le and G. Soydan [5] studied Conjecture 1.2 in the case $\alpha = 2^r s$ and $\beta = 1$, where r, s are positive integers satisfying $2 \nmid s, r \geq 2$ and $s < 2^{r-1}$.

First Terai conjecture is "Let a, b, c be relatively prime positive integers such that $a^p + b^q = c^r$ for fixed integers $p, q, r \ge 2$. Terai conjectured that The equation $a^x + b^y = c^z$ in positive integers has only the solution (x, y, z) = (p, q, r) except for some specific cases".

There are many results and studies related to this conjecture we can cite among them: Nobuhiro Terai [12,13] and Takafumi Miyazaki [8–11].

In this short note we prove

Theorem 1.3. Let q be a positive integer. Then the Diophantine equation

$$(4^{q}-1)^{u} + (2^{q+1})^{v} = w^{2}$$

has only the positive integer solution $(u, v, w) = (2, 2, 4^q + 1)$.

2. Proof of the main result

Proof. Suppose that there are positive integers u, v and w such that

$$(4^{q} - 1)^{u} + (2^{q+1})^{v} = w^{2}$$
(1)

then w is odd and

$$w^2 \equiv 1 \pmod{4}$$
.

Reducing equation (1) modulo 4, we get

$$(4^q - 1)^u \equiv 1 \pmod{4},$$

or equivalently

$$(-1)^u \equiv 1 \pmod{4}.$$

This implies u = 2t for some positive integer t.

Thus,

$$2^{(q+1)v} = (2^{q+1})^v = w^2 - ((4^q - 1)^t)^2 = (w + (4^q - 1)^t)(w - (4^q - 1)^t)$$

Hence,

$$w + (4^q - 1)^t = 2^s$$

and

$$w - (4^q - 1)^t = 2^r,$$

with s > r and s + r = (q + 1)v. Solving for w and $(4^q - 1)^t$, we get

$$w = 2^{r-1} (2^{s-r} + 1)$$
 and $(4^q - 1)^t = 2^{r-1} (2^{s-r} - 1)$.

Since the left side of both previous equalities is odd, r must be equal to 1. Let x = s - r. Then the equation

$$(4^{q}-1)^{t}=2^{r-1}(2^{s-r}-1)$$

becomes

$$(4^q - 1)^t = 2^x - 1.$$

The reduction modulo 3 gives

$$0 \equiv (-1)^x - 1 \pmod{3},$$

and so x is even, say x = 2k for some positive integer k. Thus,

$$(4^q - 1)^t = (2^k)^2 - 1$$

by the Mihailescu's Theorem t=0 or t=1. Consequently, t=1, and so x=2q. This gives us the unique solution $(u,v,w)=(2,2,4^q+1)$.

If we maintain the same conditions as before we believe in the validity of the following:

Conjecture 2.1. If $a^2 + b^2 = c^2$ with (a, b, c) = 1, then the Diophantine equation

$$a^u + b^v = w^2.$$

has only the positive integer solutions (u, v, w) = (2, 2, c).

References

- [1] L.Jésmanowicz, Several remarks on Pythagorean numbers, Wiadom. Mat., 1(1955/56), 196–202.
- [2] W.Sierpinski, On the equation $3^x + 4^y = 5^z$, Wiadom. Mat., 1(1955/56), 194–195.
- [3] W.Sierpinski, Elementary Theory of Numbers, PWN-Polish Scientific Publishers, Warszawa, 1988.
- [4] N.Terai, The Diophantine equation $x^2 + q^m = p^n$, Acta Arith., **63**(1993), no. 4, 351–358.

- [5] M.Le, G.Soydan, A note on Terai's conjecture concerning primitive Pythagorean triples, *Hacettepe Journal of Mathematics and Statistics*, **50**(2021), no. 4, 911–917.
- [6] Z.Xinwen, Z.Wenpeng, The Exponential Diophantine Equation $((2^{2m} 1)n)^x + (2^{m+1}n)^y = ((2^{2m} + 1)n)^z$, Bulletin Mathématique de La Société Des Sciences Mathé matiques de Roumanie, **57**(2014), no. 3(105), 337–44.
- [7] H.Yang, R.Fu, A Further Note on Jésmanowicz' Conjecture Concerning Primitive Pythagorean Triples, *Mediterr. J. Math.*, **19**(2022), Article number: 57.
- [8] T.Miyazaki, Generalizations of classical results on Jésmanowicz' conjecture concerning Pythagorean triples, AIP Conference Proceedings 1264, 2010, 41–51.
- [9] T.Miyazaki, Terai's conjecture on exponential Diophantine equations, *Int. J. Number Theory*, **7**(2011), no. 4, 981–999. DOI: 10.1142/S1793042111004496
- [10] T.Miyazaki, Exceptional cases of Terai's conjecture on Diophantine equations, AIP Conference Proceedings 1385, 2011, 87–96.
- [11] T.Miyazaki, Exceptional cases of Terai's conjecture on Diophantine equations, Arch. Math., 95(2010), 519–527. DOI: 10.1007/s00013-010-0201-6
- [12] N.Terai, Yo.Shinsho, On the exponential Diophantine equation $(3m^2 + 1)^x + (qm^2 1)^y = (rm)^z$, SUT J. Math., **56**(2020), no. 2, 147–158.
- [13] N.Terai, Yo.Shinsho, On the exponential Diophantine equation $(4m^2 + 1)^x + (45m^2 1)^y = (7m)^z$, International Journal of Algebra, 15(2021), no. 4, 233–241

Заметка о диофантовом уравнении $(4^q - 1)^u + (2^{q+1})^v = w^2$

Джамель Химане

Факультет математики Университет УСТХБ Алжир, Алжир

Рашид Бумахди

Национальная средняя школа математики Алжир, Алжир

Аннотация. Пусть a,b и c — натуральные числа такие, что $a^2+b^2=c^2$ с $\gcd(a,b,c)=1$, a четным. Гипотеза Тераи утверждает, что диофантово уравнение $x^2+b^y=c^z$ имеет только натуральное решение (x,y,z)=(a,2,2). В этой короткой заметке мы доказываем, что уравнение заголовка имеет только положительное целочисленное решение $(u,v,w)=(2,2,4^q+1)$, где q положительное целое число.

Ключевые слова: гипотеза Тераи, тройка Пифагора.