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Abstract. The spectrum of one-dimensional eigenoscillations of two-phase composites with a periodic
structure is studied. Their phases are isotropic elastic or viscoelastic materials, and the period consists
of 2M alternating plane layers of the first and second phases. Equations whose roots form the spectrum
are derived and their asymptotic behaviour is investigated. In particular, it is established that all finite
limits of sequences of the spectrum points depend on the volume fractions of the phases and do not
depend on the number M and distances between the layers boundaries inside the period.
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Studying the spectra of eigenoscillations of composite materials is one of the most relevant
problems in heterogeneous media mechanics. Information on their structure and an accurate
description of the spectra points make it possible to find such important dynamic characteristics
of composites as eigenfrequencies and damping coefficients.

Modern composites often have a periodic geometry with a small period € > 0. In this
case, the mathematical study of their spectra of eigenoscillations can be reduced to the spectral
analysis of boundary value problems for homogeneous systems of differential equations with e-
periodic coefficients. In the numerical search for the discrete part of the spectrum, one has to
choose fairly good initial approximations of the eigenvalues of the corresponding boundary value
problem. However, the direct searching of such approximations turns out to be an extremely
difficult problem, especially in the case of complex eigenvalues with nonzero real and imaginary
parts. In this situation, it is natural to find finite limits of sequences of eigenvalues as ¢ — 0 and
propose to use them as the initial approximations.

The asymptotic behaviour of the spectra of various boundary value problems arising in the
study of e-periodic heterogeneous media was investigated in [1-8]. In particular, the spectrum
S. of one-dimensional eigenoscillations of two-phase layered composites was studied in [6] and [7]
under the assumption that the period formed by one elastic and one viscoelastic layer. Simultane-
ously, it was considered the spectrum S of one-dimensional eigenoscillations of the corresponding
homogenized material constructed as € — 0. The main result of the above two papers consisted
in proving that the spectrum S. converges in the sense of Hausdorff to the union of the spectrum
S and some finite set V' consisting of real negative points. This convergence means the fulfillment
of the following two conditions [2]: 1) for any s € S UV there exists a sequence s, € S, such
that s, +sase —0;2)if s, € Sc and s > s<ooase —0thense SUV.

*v.v.shumilova@mail.ru  https://orcid.org/0000-0003-3830-7924
(© Siberian Federal University. All rights reserved

— 35—



Vladlena V. Shumilova Spectrum of One-dimensional Eigenoscillations. . .

In the present work, we consider layered composites consisting of two isotropic solid (elastic
or viscoelastic) materials. We suppose that the layers are parallel to the plane Oxzszs and
the composites have e-periodic structure with the period formed by 2M alternating layers of
the first and second phases. Using a matrix approach, we derive transcendental equations for
finding points of the spectrum of eigenoscillations along the Oz axis and then find that finite
limits of sequences of the spectrum points as € — 0 are the roots of rational equations and are
independent of the number M and distances between the layers boundaries inside the period.
Finally, to clarify the meaning of the limits, we also describe the spectrum of eigenoscillations
along the Ox; axis for the corresponding homogenized materials.

1. Mathematical description of two-phase layered
composites

Consider a cube Q = (0, L)? occupied by a two-phase composite with a periodic microstruc-
ture. Let its period be an elementary stripe Y. = (0,¢) x (0, L)? consisting of 2M alternating
layers of the first and second phases. Assume additionally that the layers are parallel to the
plane Ozax3 (see Fig. 1) and the cube Q) contains a whole number N of periods. Note that by
our construction, e = L/N and 2M N is the total number of layers in €.

X3

X
Fig. 1. The set Y. N (0,¢)3 for M =2

In order to clarify the geometric position of the phases inside 2, we denote

N-1M-1

= U U et ham).e(n+ hamr))

n=0 m=0

O0=ho<h  <hy<---<hoy=1

and assume that the set Q.. = I,. x (0,L)? is occupied by the s-th phase of the composite,
s = 1,2. The total volume fraction of the s-th phase inside €2 is denoted by ds, s = 1,2. This
means that

Q| Ne M= M-1
=75 =1 > (hamir = hom) = > (hami1 — ham),
m=0 m=0
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.|  Ne M—1 M—1
dy = 3 I (hom42 — ham41) = Z (ham+2 — hom+1)-
m=0 m=0

The constitutive relations between the stress and small strain tensor components have the
form

. s ous
o = agjl)chekh(us) + bz(j’)chekh (315) -
1<7;7j7k7h<3, S:1727

where u®(z,t) is the displacement vector, o€ is the stress tensor, e(u®) is the small strain tensor,
ern(u®) = ef, (u®) = (0us,/O0xp, + Ouj,/Oxy)/2, the symbol * denotes the convolution operation
with respect to ¢, a(®) and b(®) are the tensors of elasticity and viscosity coefficients, respectively,
and d®)(t) are the tensors of the regular parts of relaxation kernels. Note that in (1) and
everywhere below the summation convention over repeated subscripts is employed.

Both tensors a(*) and a(® are positive definite and their components are given by

z]kh =\ (5 O0kn + ,U (5zk5jh +6indjk), s=1,2,

where A(®) u ®) are the Lamé parameters in €., and di; is the Kronecker symbol.
In what follows, we assume that if b*) # 0, then the tensor b(®) is positive definite and

bz(';l)ch = ¢6550kn + 0" (Six5jn + Sinbj),

where ¢(*) and 7(*) are the viscosity coefficients [9], and if d*)(¢) # 0, then
, 1 1
A5 () = <G1s(t) - 3Gs(t)> 0ij0kn + 5 Gs () (0ikdjn + dindjk),

where G15(t) and G4(t) are the regular parts of the bulk and shear relaxation kernels [10] and
satisfy the following conditions:

()

N N,
G1s(t) = koGt Z Pen Z%<K‘”

n=1

where ks € RT U {0}, o) € R+, 4 € RY, %.(5) + 7](-8) for i # j, Ky = 2u®) for ky = 0,
and K, = min{2u®), (A\®) + 2u)/3)/k,} for k, > 0. Moreover, for the sake of definiteness,
we will assume that if V() # 0 and d®)(t) # 0 then 7(1) # 7,(122) forall ny = 1,...,N; and
Ng = ].,...,NQ.

Note that the case b(®) = 0, d(®) (t) = 0 corresponds to the elastic s-th phase while the case
b(*) #£ 0, d®) () = 0 corresponds to the viscoelastic Kelvin-Voigt s-th phase.

The mathematical model describing oscillations of the layered composite in 2 is written in
the form

32 o5,

8t2 = z, + filz,t), 2€Qs, t>0, s=1,2,
[w]ls. =0, [of]ls. =0, Se= 00NN, (2)
W (z,)|oa =0, u(z,0) = %(m,O) -0,

where ps = const > 0 is the density in Q4. f(x,t) is the external force vector, and [-]|s, means
the jump in the enclosed quantity across the boundary S..
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2. Spectrum of one-dimensional eigenoscillations

From now on, we assume that the layered composite occupies an unbounded strip 0 < x7 < L
and consider one-dimensional oscillations propagating along the normal to the layers, i.e., along
the Ox; axis. In this case u®(z,t) = (uj(x1,%),0,0) and f(x,t) = (fi(x1,t),0,0). Therefore,
it follows from (2) that such oscillations are described by the following initial-boundary value

problem:
ps% = % + fi(z1,t), 1 €L, t>0, s=1,2
[uille(ntnm) =05 [0T]le(ntnnm) =0,
c c c dug
ui(0,t) = ui(L,t) =0, t>0; wuj(x1,0)= W(arl,O) =0, z; €(0,L),
n=0,....N—1, m=0,....2M -1, n+m#0
with
el g 0ul, OPui 2 S et , 0
oS —asaxl +b58x16t R (ks+ 3> Zvn e Tntx 02, x1 € I,

1

3
Il

as = agsl)n =2 42,0 p, = bgi)n = ¢ 4 2p(),

where we set b, = 0 for b(*) = 0, R, = 0 for d*)(t) = 0, and R, = 1 for d® (t) # 0.

To define the spectrum of eigenoscillations of the composite along the Oz, axis, we apply
the Laplace transform in time to the last problem with f;(z1,¢) = 0. As a result, we obtain the
boundary value problem

Mpgus, = A Puiy I =1,2 3
PsUpy = Ash de y L1 € lse, §=1,2, ( )
1

[Wirlle(ntnn) =0, [T\ ]lentn,) =0, uixn(0) = uix(L) =0, (4)
n=0,...,.N—1, m=0,....,.2M -1, n4+m #0,

where uj, (z1) is the Laplace image of u5(z1,t), A is the Laplace transform parameter, and

2\ & dug
AS,\as+bS)\Rs(ks+> — . 05, = A , X1 € L.

Below we will consider A as a spectral parameter. Then, by the spectrum of one-dimensional
eigenoscillations of the composite along the Ox; axis we mean the set of eigenvalues of the
spectral problem (3), (4), i.e, the set S¢ of all complex values of A = A(¢), for which this problem
has nontrivial solutions ug, (x1).

Our aim now is to find the elements of S.. For this purpose, we firstly derive relations
connecting u$,((n + 1)e — 0) and of, ((n + 1)e — 0) with u5,(ne + 0) and of, (ne 4+ 0) for all

n=0,...,N — 1. In other words, we seek a square matrix Py such that
uZA((n+l)€—0) b u‘(i{\(ne—kO) N
us =P us n=20,... -1
A 1\ Ve — An A 1\ ) ) )
2 dxl ((n + )8 0) DY dacl (ns + 0)
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Note that in view of the periodicity in 1, the matrix P§, does not depend on n, i.e., P5, = P5;

therefore, it suffices to find it for n = 0. To do this, we write general solutions of equations (3)
in the interval (0,¢):

ui\(xl) = C/(\ln)leti‘xl + C;%BLBBMM, xr1 € (5h2m,€h2m+1), m = 0, . ,M — 1,
u’ix(xl) = Cg\i)le_Bw‘ml + C;i)leBmzl, T € (€h2m+1,5h2m+2), m=0,... ,M -1,
where
[ ps
Bs = - = 1, 2.
A As/\ 3

It is easy to check that

exp(eBixham) duf,
= —— 2 T | Bhus, (eh - h
2B\ 1)\’[1,1)\(6 om + O) dz, (5 om + 0) ,

exp(—eBirham)

2 c dus
c® = — g <Bl,\u1/\(sh2m +0) 4 —12

(eham + 0)> )

L1

d
duiy

Boxhom
o® _ exp(eBaxhom+1) . (eham41 +0)> )

am 232)\ <B2>\ui)\(5h2m+1 + 0) -

—eBoyhom, dus§
05\2 = exp( 2Aft2m 1) Boyufy(ehom+1 +0) + o (ehom+41 +0) ).
285 dxy

Thus

eXp(Bl,\(—xl + Ehgm))

dug
s (o) = SRERCDL (Busia(etan +0) = G2 (eh +0)) +

exp(Bl,\(xl — Eth))

du§
B m —1A (chg,, + 0
5B, ( 1,\u1/\(€h2 + 0) + dz, (5 om + ))

for 1 € (ehom,cham+1) and

eXp(BQ)\(_.Tl +€h2m+1)) £

du
Boxus5 (ham — — R (chy,
2Box ( 22uix (Eh2m+1 + 0) dz, (ehs +1+0))+

ui(21) =

exp(BgA(xl —€h2m+1)) =

du
2By, (BQAui/\(shzmH +0)+ dacll/\ (eham+1 + 0)>

for 21 € (gham+1,Eham+2). This yields

uf)\(shgm+1 — O) Ui)\(é‘hgm + 0)
A T ey gy | =P A(
N, Ehzmi Nd

Ui\(fh2m+2 —0) I ufy (€€h2m+1 +0)

u = du ; (6)
Ap =1 (ehamz = 0) AT\ Agy T (a1 +0)

where the matrices Pj¢ and P25 have the following elements:

sinh(e Bsxdsm,)

(Pam)11 = (Pi)22 = cosh(eBsadsm), (Piy,)i12 = o
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(P32)21 = MW ps Aoy sinh(eBondm), s =1,2,
dlm :h2m+1 _h2m7 d2m :h2m+2_h2m+17 m:0)17._.,M_ 1.

Since by condition (4)

ufy(ehamy1 — 0) = ui(eham1 +0)

and s s
Au I 12 (chomi1 — 0) = A2>\ i A (ehgms1 +0),
combining (5) and (6) gives
ufy (eham+2 — 0) . ugy (eham +0)
du§ =P du§ ,
Az dxlf\ (ehamt2 — 0) S W P (Eh2m+0)
PS, =PX .PE m=01,.. M-I,
where
1 < pLA
& - 141X
(P)\m)ll =3 ;(1 ( ) R)\) COSh<€(Bl,\d1m ( ) Bg)\dgm)> R p2A2/\,
1¢ (-1
(Pim)22 = 5 > (1 R ) COSh(€(31Ad1m + (_1)SB2>\d2m))a
s=0
1
1 1 (—1)* \ .
P Yo = — h(e(Bixdim + (—1)° Baxdonm) ),
i 2A szz:o (\/P1A1,\ * \/P2A2A> o (6( i+ (=1)Baads )>
1
A . s
(PXm)21 = 5 > (\/ prAn + (=1)°y P2A2/\> Slnh(E(BL\dm + (=1)’ B2/\d2m))-
s=1
Using the matrix relations (7) for m = M —1,...,1,0 we obtain
u(ﬁi)\(ae -0) e pe L pe ug/\(s—&-o)
u = oo . M
A 1A A(M—-1) Al A0 A i )
2 (e—0) I (+0)

which means that the matrix P§ mentioned above is the product of M matrices:
P§:P§(M—1)'---'P§1'P§0-

It can easily be checked that

2
E P)\l ij1 P)\O Jij

ji=1
for M = 2 and

2 2 2
(Pi)ij = Z Z Z P)\(M 1) M~ 1(P)\(M 2))]M M2 (P)bzl)jzjl (Pfo)ju'

Jm—1=1 Jj2=1j1=1
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for M > 3.
Since the strip 0 < x7 < L contains exactly N periods and
du§ duf
wix(ne —0) = ufy(ne +0), A1 T2 (ne +0) = A T0 (ne = 0) = o, (ne)
X1 X1
foralln=1,...,N — 1, we arrive at the matrix equality

(o)) =m0 (524G

which, due to the boundary conditions (4), can be written in the form

(o5r00) = " (oaat)

This implies that A belongs to the spectrum S, if A is the root of the equation
(PO =0. (10)
Taking into account that
det Py, =det Py, =det P =1, m=0,...,M -1, s=1,2
and using the same arguments as in [6-8], we can prove that equation (10) is split into N equations

(P§)12 =0, (11)

k
(P§)11+(P§)22:2cos%, k=1,...,N—1. (12)

Note that in the simplest case when the period 0 < z; < € consists of only two layers, i.e.,
when M = 1, equations (11) and (12) can be written explicitly as follows [6-8]:

1 , .
3 ((1 +Ry) smh(e(Bl,\dl + B2>\d2)> +(1-Ry) smh(z—:(Budl - Bg)\dg)» —0,
1
(1 + Ry + ) cosh(s(Bp\dl + BQAdZ))Jr
Ry

1 7k
+ (1 — Ry — RJ cosh(s(Budl - BZAdQ)) =dcos =, k=1...N-1

In all other cases (N > 2) the explicit form of equations (11) and (12) is very cumbersome
and is not given here.

3. Asymptotic behavior of the spectrum as ¢ — 0

In the previous section we have proved that the search of the spectrum S, reduces to solving
the transcendental equations (11) and (12). These equations cannot be solved analytically even
in the case M = N =1 [6-8]|. For this reason, our next aim is to study the asymptotic behaviour
of the roots of equations (11) and (12) as ¢ — 0 and thereby find the initial approximations for
numerical solving of these equations. To do this, we use the series expansions

e2"(Bixdim £ Boxdom)*"

(2n)! ’ (13)

COSh(E(Bl)\dlm + B2Ad2m)) = Z

n=0
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. > 2t (Byadim £ Baoxdom )2t
sinh (e(Biadin % Baadam) ) = 3 ( ”(;n+ 1)? 2m) 7T (14)
n=0 ’
k Tke <= (—1)"e? [k
COSW —COST = 7;07(271) L . (15)

It follows from (13) and (14) that the elements of the matrices P5,, can be represented as

(P5) =1 + S 5 (Bl,\d + B3\d3,, + 2R\ BixBaxdimdan,) + < Q,\W (16)
e e 2 42 2 2 2
(Pim)22 =1+ 5 Bi\di,, + Bozds,, + R*ABuBmdmde QAW (17)

(P%, )12 = 3 (31,\d1m BQ,\d2m>
Am Y
A

V1A Vp2Aax

(P5m)21 = €A (Bl,\dm\/ p1A1x + Baxdam/ ,02142,\) + 7@,\7,@7 (19)

where we have used the notation

Q)\rrw (18)

1

> €2n 4 . .
&%:Z( Z @n)! (Bixdim + (—1)° Baadam)*",
s=0 n=2
2e . ( 1) 5 s 2n
Am = Z I+ Z (2n) (Bl)\dlm (—=1)* Baadam)™",
s=0 n=2
1 [ee)
1 _
= (Biadim + (—1)° Baadom)*" 2,
=3 (s Vi) 2 g B+ (1 B
1 00 2n—2
Z){fn = Z ( p1A1>\ + ( pQAQ)\) Z Bl)\dlm ( 1)5B2,\d2m)2n+1'

s=0
Substituting (16)-(19) into (8) or (9) and setting ¢ = 1, j = 2, it can be easily shown that

M—
€ Bixdim | Baxdam ) 2
=S +&2D5,,
h2 = A= (\/PlAL\ Vp2Aay A

where lim._,o D], < oo for every finite value of A. Therefore, after dividing by ¢, equation (11)

takes the form
| M1

Bixdim B dom,
Z(l/\l 2/\2>+D)\_0
A Vpidin - Vp2Aan
Let us pass to the limit in the last equation as ¢ — 0, assuming that the sequence of roots
A(e) is bounded and A(e) — 0y < co. Since

MZ_:l(BL\dm L BQ,\d2m> _ Buds L Baxdy :)\<d1+dg>
S=\VpAin Vp2Aay VoA Vp2Aas Ay Ann )

it follows that the limit point g is a root of the equation

Argdy + Azpdy =0,
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which can be rewritten as

2 9y N (s)
b1260 4 a1z = Zde3—s <ks + 3> Z ) (20)

s=1 n= 10+

where bjs = bids + bod; and ay2 = ayds + azdy. Obviously, if both phases are elastic, then
equation (20) loses its meaning. In this case, there are no finite limits of sequences of roots for
equation (11) as ¢ — 0.

Further, substituting (16)—(19) into (8) or (9) and setting i = j = 1 and then i = j = 2, we
get

—~

o M—
5
P = t5 Z (BiAd3,, + Bizds,, + 2Rx\BixBaadimdan,) +

M-2 M-1

Birdin  Baxdan )
+€2 (BlAdlmW/plAlk+B2)\d2mﬂ/,02A2)\) < 1A01 + 2AU2 >+54P2A,

m=0 n=m+1 Vp1Aix Vp2Aay

E

5 2
(PA ? Z <B%)\d%m + Bg)\dgm + R)\B1AB2Adlmd2m) —+
m=0

M—-2 M-1 B
Bixdim Boyday,
+e2 E E <\/ZAIL\ A2 ) (Bl)\dln\/ p1A1x + Baxdany/ P2A2,\) +&*P5,,

b Vp2Aax

where lim._,o P5, < oo and lim._,o P5, < oo for every finite value of A\. Therefore,

M-1 M-2 M-1
(PS)11 + (P5)e2 = 2 +€° B, (Z d,, +2 Z Z dlmdl”) +
m=0

m=0 n=m+1

M-—1 M-2 M-1
+e2B2, <Z a2, +2 Z Z dzmd2n> +
m=0 m=0 n=m+1
M-2 M-1
—|—€2B1>\Bz)\ (R)\ + ) (Z d1imdom + Z Z dlmdzn + d1nd2m)> + 54P48)\ =
m=0 n=m+1

1
—24e (Bi\d% + Bjyd; + (R/\ + R,\> BlABz,\dld2) +e'Ph, Ph =P\ + P,

where we have used the relation

M-1 M-1 M—-1 M-2 M-1
(Z dlm) (Z d2m> = Z dldem + Z Z (dlmdQn + dlndZm)~
m=0 m=0 m=0 m=0 n=m+1

Substituting (15) together with the above series expansion for (P5)11 + (P5 )22 into equation
(12) and then dividing by €2, we obtain

Tk 2
B%Ad% + B%/\dg + (R)\ + R) BixBaoydids + ( I ) +

) e g2n—4 /L 2n
15 J— f— —_
P4A—2;W(L> =0, k=1,...,N — 1.
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For a fixed k, we pass to the limit in this equation as ¢ — 0, assuming that the sequence of its
roots Ai(g) is bounded and Ai(g) — Ay < co. As a result, we see that the limit point Ay is a
root of the equation

1 E\?
B3,d? + B2,d3 + <R>\ + R) BiaBaydydy + <7r> =0, k=1,...,.N—1,
A
which can be rewritten as

2
2 Pld% P2d% wk
—_— = = 1 oo N_ 1.
A (Au + o + dqdo AQA +A1>\ + T 0, k et

The last equation, in turn, is equivalent to the rational equation

2 9\ e
bioA? + | arp — Y Rads_s (k + 3) S a2

s=1 n=1 )\‘f'%(z)

2 Ne o (s)
2 n
+C’kH<as+bS)\Rs <ks+3)§ ”()> =0, k=1,...,N—1,

s=1 n= 1>‘+

(21)

where Cy, = m2k?/(poL?), po = p1d1 + padz. In particular, if dV(t) = d® (t) = 0 then equation
(21) becomes
blgAg + ((112 + bleC’k))\z -+ (CleQ -+ agbl)C’k)\ -+ alaQC’k = O (22)

It is important to emphasize that the coefficients of equations (20) and (21), and, therefore,
all finite limits of sequences A(e) € S. depend on the volume fractions d; and dy of the phases,
but are independent of the number M and the locations x1 = ehy, 1 = chs, ..., 1 = ehapr1
of the layers boundaries inside the period Y.

We end this section by concluding that the spectrum S, converges in the sense of Hausdorff
to the union of roots of equations (20) and (21). Indeed, we just proved that the second condition
of this convergence is satisfied. On the other hand, it follows from Rouche’s theorem that for
any root of equation (20) there exists a sequence of roots of equations (11) which converges to it
as € — 0. Similarly, for any root of equation (21) with a fixed k there exists a sequence of roots
of the k-th equations (12) which converges to it as ¢ — 0. This means that the first condition of
the above-mentioned convergence is also satisfied.

4. Homogenized problem and its spectrum

In order to clarify the meaning of the roots of equations (20) and (21), we consider the
corresponding homogenized problem constructed as € — 0, which describes one-dimensional
oscillations of a homogeneous solid material along the Oz, axis. It is known from [11] that this
problem has the form

62u1 - 80‘1

Po o2 _87+f1<3317 ), $1€(0,L), t >0,

’LL1(0,t)=U1(L7t):0, t > 0; ’LL1(1'1,0):

ouy (23)

pr

o 8’[1,1 8U1 nt 8’U,1
=g g <an ) o

— 44 —
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where &1, ..., €n, are the roots of the equation
N (s)
b125—a12fZR ds— s<k + >Z S), (24)
s=1 =

and the coefficients ¢,, are defined by

2 N (o)
2 Vg,
o = dap ( SCRICENCED BEY N (D <5>> ~
s=1 = Tn

If b + b3 £ 0, then

a1b3d; + azb?d b1b

N3 = Ry N1 + RayNa + 1, 0412%, ﬁ1=%7
12 12

while p1, ..., pn, is the solution of the linear system
N3 N3
Pn bady Dn by
R 7+ =0, R ——— ] =0,

(S ) o m (S i)

an: b2 b1a2 b2a/1)7 nszla"'aNS, 321,2
12

If ¥ + 52 =0, then

Ny = RiNy + RoNy, ap = “;“2, By =0,
12

while p1, ..., pn, is the solution of the linear system

Al p ady Ak p a1
R ()] Tt gy | =0 e Yo m | =0

n=1 gn Tna n=1 gn Tna ai2

ng=1,...,Ns;, s=1,2.

Applying the Laplace transform to problem (23) with f;(z1,¢) = 0, we obtain

N
2 d2u1,\
Nupy = (g + BiA— an oz e (0, L),
PoA“ULA (1 B1 ;A-an e 1€(0,L) (25)
uu(O) = Ul)\(L) =0.

By definition, the spectrum S of one-dimensional eigenoscillations of the homogenized
material along the Ozp axis is the set of eigenvalues of the spectral problem (25), i.e.,
S={AeC: ur(x1) £0}. It is known (see, for example, [7, §]) that the set S has the fol-
lowing structure:

N3+2
S= U Mtz Aw€R, X\ <0, i=1,...,N3,

n=1

Ak €C, Reljr, <0, j=N3+1,N3+2,
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where A1x, ..., A(n,42)k are the roots of the equations

N3
A B1OR A+ a1 O ZCkZ )\-(|J-n§ . (26)
n=1 n

We claim that equations (21) and (26) are equivalent one another. Indeed, in the case of two
elastic phases, (26) becomes the quadratic equation

A2+ a1Cr =0,

which is the same equation as (21) with by = by = b12 =0 and Ry = Ry = 0.
Further, if 5 4+ 53 #£ 0 and d)(t) = d®(t) = 0, then N3 = 1 and equation (26) can be
reduced to the cubic equation

N+ (& + BiCR)N + (o + B1é1)CeA + (a1&n — q1)C = 0. (27)
Substituting
&1 = %7 p1= dl(bla%z_ b2a1)7
q1 = dap1(az — a1 + (ba — b1)&1) = dbl;iz(albz — azby)?,

and the above expressions for ay and f; into (27), after straightforward calculations we arrive
exactly at equation (22).

In the case when at least one of the tensors d™)(t) and d®(t) is nonzero, the equivalence of
the rational equations (21) and (26) is proved by applying Vieta’s formulas for coefficients and
roots of the algebraic equations corresponding to them (see for details [8]).

It can be easily seen that the roots of equations (20) and (24) differ from each other only in
the sign. Since the roots &, ..., &, of (24) are positive real numbers (when both phases are
not elastic), the roots of (20) are negative real numbers [6-8|. Therefore, taking into account the
results of the previous section, we conclude that S — SUYV in the sense of Hausdorff, where we
denote V = {=¢&1,...,—¢n, }. In particular, V is an empty set when both phases are elastic.

This work was supported by the Ministry of Science and Higher Education within the frame-
work of the Russian State Assignment under contract no. AAAA-A20-120011690138-6.
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CnekTp oJHOMEPHBIX COOCTBEHHBIX KoJieOaHmMil ABYyXda3HbIX
CJIONCTBIX KOMIIO3UTOB

Baaanena B. Illymnaosa
Nummuckuit MacruryT npobiem mexannku PAH
Mocksa, Poccuniickas @enepariust

Amnnoranus. Vl3y4en crekTp 0HOMEPHBIX COOCTBEHHBIX KOJebaHM ABYyX(da3HbIX KOMIIO3UTOB C II€pPHU-
OAMYECKOi CcTpyKTypoit. Ux dazamu SBISIOTCA U30TPOMHBIE YIIPYTHE WA BI3KOYIPYTHE MaTEPHUAJIBI, &
repuo, cocrouT u3 2M depenyomuxcs IJIOCKUX CJIO€B IepBOil u BTOpoit dha3. BriBenens! ypasuneHns,
KODHHU KOTOPBIX 00pa3yioT CIIEKTP, U UCCJIEIOBAHO UX aCUMIITOTHYECKOe IoBejeHne. B yacTHOCTH, yCTa-
HOBJIEHO, YTO BCE€ KOHEYHBIE IIPEIEIIbI MIOCIETOBATEILHOCTEN TOUEK CIIEKTPA 3aBUCAT OT OOBEMHBIX J0JIEiH
da3 u He 3aBuCAT oT uncaa M U pacCTOAHUIT MeXK/Iy T'PAHUIIAMU CJIOEB BHYTPHU IIEPUO/IA.

KuaroueBbie cjioBa: CeKTp, COOCTBEHHBIE KOJIEOAHMUS, CJIOUCTBIN KOMITO3UT.

— 47 —



