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Abstract. Through heat transfer is considered: heat carrier, liquid medium 1 — wall of arbitrary n
layers — liquid external medium 2, cooler. For heat flows, a system of (n + 1) nonlinear equations is
considered. The method of excluding unknowns sequentially calculates all values of t,, ;. The design
scheme allows iterative calculations of wall temperature from one to three layers and, accordingly, five
heat flows. The novelty of the solution is that the temperature of the first wall t,,; and the last wall t,,
21 are not set, but are unknown. They are calculated using an iterative scheme.

If you further increase the number of wall layers, the calculations become cumbersome. We are
talking about the explicit expression of all t,, ; through formulas based on the manual transformation of
equations. Optimally bringing the problem to a closed and defined system (n + 1) of equations for (n +
1) unknown wall temperatures t,, ;. This system of equations is easily calculated in mass accessible
packets, to which Matlab belongs. The advantage is a matrix solution of the entire system at once. In
the case of a system of cylindrical and spherical walls, the problem is also solvable. New coefficients
have been established for these systems of equations. Which allows you to save balance equations for
heat flows.

Keywords: wall many layers, heat transfer, nonlinear boundary conditions, iterative calculations,
systems of equations, heat flows.

Citation: Zhakatayev, T., Kakimova, K., Taukenova, L., Serikov, T. Simulation and calculation of heat transfer in multilayer wall
structures based on iterative models. J. Sib. Fed. Univ. Eng. & Technol., 2022, 15(5), 622—-633. DOI: 10.17516/1999-494X-0410

© Siberian Federal University. All rights reserved
This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License (CC BY-NC 4.0).
*  Corresponding author E-mail address: Toksanzh@yandex.kz

— 622 —



Journal of Siberian Federal University. Engineering & Technologies 2022 15(5): 622—633

MOI[CJIHpOBaHI/Ie H pacdeT Tenjionepeaaqyu
B MHOTI'OCJIOMHBIX CTEHOBBIX KOHCTPYKIHUAX

Ha OCHOBE UTCPALIMOHHBIX MojaeJie

T. A. Kakaraes?, K. Kakumosa®,

JI. TaykenoBa?, T. CepuxoB®

*Vuusepcumem Typan-Acmana

Kazaxcman, Hyp-Cynman

’Kapazanounckuil 20Cy0apcmeenHblll MexHU4eckutl YHUueepCumem
Kaszaxcman, Kapaeanoa

*Kazaxcxuti acpomexnuyeckuii ynusepcumem um. C. Cetighyniuna
Kazaxcman, Hyp-Cynman

AHHoTanus. PaccMoTpeHa CKkBO3Has TeIUlonepeaaya: TeMJIOHOCUTENb, dKUJKOCTHAS cpeaa | — cTeHa
13 IPOU3BOJIBHBIX N CJOEB, KUAKOCTHAsI BHELIHAS cpefa 2, oxjaaauTenb. sl TEMIOBBIX MOTOKOB
paccMoTpena cucrtema (n+l) HeNMHEHHBIX ypaBHEHMH. METOIOM MCKIIOYEHHUS! HEW3BECTHBIX
MIOCJIEI0BATENbHO BHIYUCICHBI Bce 3HaYeHUsI. PacueTHas cxema o3BOJISIeT IPOBOAUTh UTEPALIMOHHBIE
BBIYMCIICHUS! TEMIEPaTypbl CTEHOK OT OJHOTO A0 TPEX CJIOEB U, COOTBETCTBEHHO, MATU TEILIOBBIX
noTokoB. HoBU3Ha pelieHust B TOM, 4TO TeMIepaTypa NMEpBOH U MOCIEIHEH CTEHOK He 3aJlaHBbl,
a SIBJISIOTCSA HEU3BECTHBIMU. VX BBIYMCIIAIOT 10 UTEPALIUOHHON CXEME.

[Ipu nanpHeNIEM y BeTHYEHU Y KOTMYECTBA CJI0€B CTEHOK BHIYMCIICHUS CTAHOBATCA IPOMO3IKUMU. Peub
UJET O IBHOM BBIPaXKEHHHU BCEX ty, ; 4epe3 (popMyIibl Ha OCHOBE PYUHOI0 IPe0Opa30BaHUs yPAaBHEHUN.
OnTuManpHO NpHUBEICHUE 3aJa4ll K 3aMKHYTOH M olpejeleHHONW cucteme (n +1) ypaBHEeHUH miis
(n+1) HEeM3BECTHBIX 3HAYECHUH TeMIeparyp cTeHOK. JlaHHas cucTeMa ypaBHEHHI JIETKO BBIYUCIISETCS
B MacCOBO JIOCTYIIHBIX ITaKeTaX, K KOTOpoMy oTHocuTcst 1 Matlab. [IpenmyiecTBo umeer MaTpuyHoe
peleHne Bceld cucTeMbl cpasy. B ciryuae cucteMbl HUIMHIPUYECKUX U c(PepUUECKIX CTEHOK 3ajjaua
TaK)Ke pa3peliuMa. YCTaHOBJICHBI HOBbIe KOA(QQUIUEHTHI JUIsl TUX CUCTEM YPaBHEHHI, KOTOpbIE
I03BOJISIIOT COXPAHUTH OaJIaHCOBBIE YPABHEHHU S [l TETJIOBBIX TIOTOKOB.

KuroueBble cjoBa: MHOTOCIOMHAS CT€Ha, TEeIIonepeaada, HEJIMHEHHBIC TpaHUYHBIC YCJIIOBUA,
HUTEPANTNOHHBIC BHIYHUCICHU A, CUCTEMBI ypaBHeHHﬁ, TCIIJIOBBIC IIOTOKH.

Iuruposanue: XKakartaes, T.A. MozxenupoBaHue u pacyeT TEIUIONEPENaud B MHOTOCIOWHBIX CTEHOBBIX KOHCTPYKIHSX
Ha OcHOBe uTepannoHubix moaeneii / T. A. Kaxkaraes, K. Kakumona, JI. Taykenosa, T. Cepukos // XKypu.Cub. dexnep. yH-ra.
Texnuka u texHonoruu, 2022, 15(5). C. 622—633. DOI: 10.17516/1999-494X-0410.

Introduction

In heat engineering, radio engineering, electrical engineering, instrument engineering and other
branches of engineering practice, modeling and calculation of heat transfer through multi-layer wall
structures plays a very important role. In all construction structures, structures and apparatus, heat
transfer occurs precisely through multilayer wall structures.

In solving such practical problems, the following condition often occurs: the temperature of the
first internal liquid is known, the temperature of the external liquid is known. The first liquid — heat
carrier, gives away heat. External liquid — heat receiver, receives heat. However, all the temperatures of
all the hard material wall layers are unknown. That is, they are not set, but are known by the condition

of the task. This point should be especially noted with respect to the temperature of the first wall 7,
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and the last layer of wall ¢, ,.. That is, these two temperatures can be calculated during iterative
calculations. Same as all internal layer temperatures. In all previously known classical cases, usually
these two temperatures are set as known, predetermined.

The first, internal liquid and external liquid (or gas) are fluids. Their respective temperatures ¢/,
1> are set as known. Thus, the iterative task starts under the not precisely defined boundary conditions
of the 1st, 2nd and 3rd genera. These boundary conditions are determined approximately. The heat
exchange between these liquids and the contacting solid surface may be either forced or natural
convection. This is the nonlinearity of the problem we solve.

You can only specify initial approximations for o, and a,. Then, all values of ¢, ; and a;, i =

1,2,3,..., n+ 1; j = 1,2. In the case of convective heat of return, the mutual dependence is expressed

k

Pry ;

by the coefficient <#> , where Pry ; is the Prandtl number at either the first or second liquid
rw,l »

temperature, Pr,, ; — Prandtl number at either the first or last wall temperature, k — is a fractional,

non integer number. In the case of free convection, mutual dependence is expressed by means of the

Grasthoff number. Which is included as a coefficient in the formula for the Nusselt number. (G7,,),
3

Gt = 9P :—Z (tf,j — tw,j), k — fractional, not an integer. The nonlinearity of the problem follows
m

from the fact that in the formula g; = a,(t;; — ¢, ;) heat transfer coefficient ¢; itself is a non-linear
function of At; = (t;; — t.. ), a; = f(At), j = 1,2, for the first liquid and for the second liquid. In the case
of a wall of n layers on the side of the second external liquid #,, ; = £, ,+1.

As our computational practice has shown, such a problem can be solved at given only temperatures
of the first internal and external external liquid. For a wall of n-solid intermediate layers, this task is
given to the system of ¢, heat flows for n + 1 unknown values of solid wall temperatures ¢, ;, i =
1,2,3,...,n+ 1.

When equating the values of thermal flows ¢; = ¢;+1, i = 1,2,3,..., n + 1, the system of equations
becomes closed, complete: n + 1 equations for n + 1 unknowns ¢,, ;, i = 1,2,3,..., n + 1.

A closed system of equations can be solved by substitution methods, that is, the gradual
elimination of unknowns. However, this path has the inconvenience that as the number of layers of
the wall n increases many times, the transformations for the equations of the system become more
complicated. To determine from them all the temperature values of the walls ¢, ; in the form of an
explicit formula.

Adjusting to the final result becomes a very tedious task for manual transformation of equations.
Explicit expressions in the form of formulas for 7, ; would be interesting and useful in that each of
them could be used as a criterion of convergence of the iterative process. Currently, there is a growth
and diversity of computer computing programs and tools. These programs tend to greatly simplify the
user interface.

It comes to the fact that soon at the level of game tasks, some computational algorithms and
programs will be able to be compiled by secondary students in general education schools. Therefore,
specific expressions for ¢, ; in the form of formulas would be very useful precisely in terms of

performing thermal calculations at the level of such simple user interfaces and simple computers.
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Without using powerful software tools such as matlab, matcad and others. They require sufficient
powerful computers, a processor, and RAM. Among others, we are also trying to make computational
capabilities available to a wide range of engineers and technicians. And on any simple computer.
Among others, an accessible and easily operated Qbasic64 program can be recommended.

Heat transfer processes play a critical role in all technical and technological processes [1-12].

There are a large number of problems that are solved by accurate analytical and sex analytical
methods [1-16]. However, at present, a new direction attracts increasing attention of researchers —
methods of iterative solutions of nonlinear boundary conditions in problems of heat transfer through
one and multiple-layer walls [17-20].

In [17], the problem of heat transfer through an extended pipeline is solved. This is the task of heat
transfer in the system: coolant-pipe — external medium under variable boundary conditions. When the
internal medium (coolant) and the external medium (cooler) is service water.

Publication [18] shows a solution to the problem of cooling the liquid in a heated cylindrical vessel
under variable boundary conditions, when the temperature of the heated liquid, the walls of the vessel
and the heat flows change continuously over time. In these works, the wall of the pipe and the cylindrical
vessel appear to be single layer. Therefore, unlike these works, we will consider solving similar
problems through multi-layer walls. The thermophysical parameters of the walls (density, coefficient
of thermal conductivity, heat capacity, etc.) can vary depending on the temperature, y; = (). In works

[17-20], the heat transfer problem is solved taking into account the nonlinearity expressed through
a; = f(At). That is, the roots of nonlinear equations are calculated by iterative numerical methods.
Values of ¢, ; serve as unknown values of calculated roots. Iteration is carried out based on refinement
of their values.

Let’s start by solving the problem for a flat wall of one layer, n =1 in Figure 1. The object is set in

such a way that only the temperatures of the st internal liquid #;, and the temperature of the external 2
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Fig. 1. Heat transfer in a system: the heat carrier (environment 1) — a flat wall from n-layers — the external envi-
ronment-2
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liquid ¢, are known. Heat transfer proceeds from the heated medium 1 through the wall to the medium
2. Thus t;; > t;,. The problem is nonlinear if, at the beginning of the process, the temperatures of the
first (inner) ¢,,; and second (outer) walls #,,, are unknown. They are then determined during iterative

calculations on a computer.

Theoretical decision

Let’s consider a stationary heat transfer:

a1 =y (tr1 — twa), (1)
G2 = 2+ (tw1 = b)) @
qz =y (tw,z - tf,z)a 3)

where a;, o, — coefficients of heat transfer from the 1 liquid to the wall surface 1 and from the wall 2

surface to the external cooling medium 2, ¢; — density of heat flows (i = 1,2,3), W/m?, A-coefficient of
the wall thermal conductivity, l‘)c’ d — wall thickness, m.
—

Consider the system (1) — (2), g1 = q». From here we find the expression for #,,;:

_aitfa | ptwe

ty = 22+ B2, @)
where = A/d.
Consider now system (2) — (3), ¢ = ¢3. From here follows
Ptw1 — Plwz = Aty 2 — Aatf . ®)
Let’s substitute (4) in (5) and after some transformations we get
tws = paity, n aztro(ptag) . ©
paz+pait+aia; paztpaitaiar
The system (1)-(3) can be solved in reverse order. From the joint system (2) — (3) we find ¢,
_ Dbiwaitasty,
twe == o (7)
Consider system (1) — (2):
a1 (tr1 = twa) = p(twa = twz)- (®)
Let’s substitute equation (7) in (8) and get
_agtpa(ptaz) pastfo
b= . ©
paz+paitaia; paz+tpataaz

Formulas (4), (6), (7) and (9) represent a solution to the problem. They express unknown wall
surface temperature values as a function of the temperature of the first and second (external) liquids

and even through recoil heat factors
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(k+1) = 0, [tf l,tleal(t(k)) az(t(k))],
o ]

where k =0, 1, 2, 3... is the iteration index.

(10)

When a; = f(At;) the system (10) is solved jointly in an iterative manner.
0 (O

The initial values of ¢, 7, Ly, 41 are given for practical reasons. Can be accepted when running

from left to right

0) _ trattse
twi="75" (11)

£ _ Erattre
W 2= 2 -
and when running from right to left.

When deciding on the computer, the limit of calculation accuracy (iteration) is taken

(k+1) _ (k) <1-10-2

E= tW,l

Let us now consider heat transfer from the internal heated heat transfer liquid to the external heat
receiving liquid through a wall of two layers with different thermos physical properties. In this case,
n =2 in Figure 2.

The equations for heat flux density in this case are:

q, =aq- (1:f,1 - tw,1)a (12)
s = 2—1 (tws — tw.). (13)
4z = 2—2 (twz — tws) (14)
4y = a3 (tws — tr2), (15)

w
A1, A2 — coefficients of heat conductivity of the first and second wall, — d,, dy-are thickness of the
m .
first and second wall, m.

By ¢3 = g4 solving the joint system (14) — (15), we express #,,3 as a function #,,, and #;,

_ D2twatazts,
tw,3 -
aztp;

(16)

where p, = A,/d,. Next, consider the system (13) — (14), ¢, = 3. We find from it ¢,,, as a function

tw,l and lfﬁz

_ Ditw1t(D2a2/22)t 5,
tw,Z - pz )
P1+P2—( 2/22)

a7

where z, = a, + p,.
Now we solve the system (12) — (13), g; = g,. From it can be expressed ¢,,; first as a function ¢,,,,

and then using (17) as a function #;; and #;,.
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asty1+((p1p2a2)/(2223)ts 2
— , 18
b1 -(P2/%5) (%)

2
_ _ b2
where Z1 = a1+ P1, Z3 = P1 +p2 _Z

Equations (16) — (18) are the solution (12) — (15) when we solve (we banish, run) boundary
conditions from right to left.

You can get solutions (run) on the contrary, on the left — to the right.

To do this, we decide (12) — (15) to solve in direct order: ¢ = g3, ¢2 = ¢3, q3 = q4. Then, similarly
(16) — (18), the values of ¢,,1, t,,2, #,.3 are successively expressed. The formula for #,,; is (4). Next are ¢,,,
and ¢,,3. Only in the case of a flat wall system do the racing formulas from left to right and from right to
left have symmetrical, identical views. Since in this case, for a flat wall system, the heat flux densities
qi=qin1,1=123,...,n+ 1, W/m? can be equalized. However, in the case of a system of cylindrical
axial symmetrical walls (systems of coaxial pipes), it will be possible to equalize only total heat flows
through various selected, fixed side surfaces F; (m?) of these cylindrical layers, Q; = Oy, i = 1,2,3,...,
n+ 1, W. A similar pattern will be in the case of a system of spherical surfaces. Therefore, for these last
two cases, the running formulas from left to right and from right to left will not be symmetrical (the
same), as in the case of a flat wall system.

The formula for #,,, takes the form

tyo = (a1p1ff,1/21)+792fw,3’ (19)

Zy

2
where z, = p; + D, — ZZJ—l. Finally, the formula for #, 5 has the following form
1

(@1p1patya/2124)+ a0ty
t = - . 20
w,3 22— (p2/2s) (20)

Thus, equations (4), (16) — (20) are the solution to the problem for a wall of two different layers,

which can be solved in the form of the following iterative equations:

tor = 03 [trutra @ (t92) @ (653), 650,653 |,
b 2 = P [tf,l, tf,z,al(tv(v’fi),az (tv(v";)tv(v"itv(v"; , Q@1

t&,’fgl) = @s [tf,p tr2 X1 (t,g,kl)): @z (t;_?)' t‘fvl‘fi, tézk% :

Hence, by induction it follows that the problem is easily generalized to a wall of arbitrary n layers

with various thermo physical properties (i = 1,2,3,..., n)

£le+D) £

wi = Pj [tf.l'tf,b“l(t&zk,i)r “2( w,n+1)'t(k) ot s

w,1’ *w,2’ *w,3’ w,n+1]' (22)

Based on formulae (4), (6), (9), (16) — (21), it can be seen that as the number of wall layers increases,
the complexity of the computational formula for determining the temperatures of the first, last and

intermediate walls increases significantly: ¢,, , i = 1,2,3,...,n+ 1.

— 628 —



Journal of Siberian Federal University. Engineering & Technologies 2022 15(5): 622—633

The computational scheme based on the iteration of the values of thermal qi(k) flows is not used
in a complex way for multilayer walls when n > 3. For example, for a wall of three layers of different
materials, the calculation formulas are:

_ alpa ‘R P1p2p3a2tf,z

21 1t 21222324Y1V2Y3’

23)

ap1it pap3ast
tw,2: 11f,1+ 2D3Q2Lf 2 24)

2
Z2122V1Y2 222324Y1Y2V3

a1p1P2tf, pP3Qztyo

t = — + =R 25
wa Z1Z273Y1Y2Y3 Z3Z4Y3 2 ( )
a1P1D2P3tf1 3‘12tf2 as
t = — + ‘R, +—t 26
Wik 21Z223Z4Y1Y2V3 232%y3 g Z4 f.2 ( )
where
z —P1 +ay,2Z; =P+ D2 Z3 =p2 + D3 Z4 =p3tay,
P'_d— i=1,2,3, )’1—1——,)/3—1—;
p? 2
Pi D2
=1-—2 __ p=14+-—"P_ R, =14+-"P2_
V2 Y1Y32223 L 212, V1Y2 2 1172
Ry=1+-—2—
ZV1Y2

Equations (23)—(26) are also nonlinear because the values of ¢,,1, ,,2,*", ¢, +1 are arguments of the
function of heat transfer coefficients a; and a,. Therefore, for the final solution of the problem, iterative
calculations cannot be avoided. Obviously, as the number of wall layers increases, it is significantly
difficult to derive formulas similar to (23) — (26). Which define ¢, ; as explicit formulae.

The formulae (23) — (26) show that as a result of the analytical precise solution of the system
of equations, all formulae for all temperatures of different walls can be found. A priori, only the
temperatures of the internal and external liquids and the physical conditions of the state of these liquids
are set. You can use them to define the function type for o, and o,. The approximate iterative algorithm
reflected in the systems (16) — (26) is easily programmed.

Based on formulae (4), (6), (9), (16) — (26), it can be seen that as the number of layers of walls
(n > 3) increases, the complexity of manual conversion of the original system of equations for heat
flows increases significantly. To obtain direct explicit formulas for determining the temperatures
of the first, last, and intermediate walls: ¢,, ;,, i = 1,2,3,..., n + 1. When unknowns are sequentially
excluded when substituting some equations into others. Since these equations have to be output
analytically manually. The number of intermediate equations in the system (12) — (15) increases.
Therefore, the resulting difficulty in manually converting equations is a limiting aspect of this
method.

The system (21) — (26) can also be used for a transient process. Only in this case is it necessary
that for each small time interval Az; the conditions of temperature constancy on all walls #; = const are
met. To a certain extent, approximate. Which entails ¢; = const. Also approximately. When moving to
the next time period Az;,; these values will change in the form of a step function. With a small fixed
change step.

However, the most optimal, convenient and practical method turned out to be the method of

bringing the above problem to a nonlinear expanded system of algebraic equations:
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(@ +p) twi—Pitwz + 0:tys+ - +0 typp1 =0aytry,
P1twi - (Pr+p2) twat P2-twzt0-tyat - +0-tyn =0,
0-tw1+t p2-twa - (p2+p3) ' twaz tP3-twat  FO0-tyny =0, (27)
0-tyit - +Pp-1-twn-1— .(pn—l +Pn) " twn +Pntwne1 =0,

0- twi + e +0- twn-1 - Pn twn + (052 + pn) “twn+r = Q2 tf,z .

The system (27) can be written as a matrix equation

(al + pl)' —P1, 0, -, 0 tW’1 ag . tf,l

p1,— (1 +p2), P2,0, -+, 0 tw,2 0

0, p2, —(p2 +P3), P3,0,+,0 | & t"""3 — 0 ) (28)
0505 Pn-1, _(pn—l + pn)' pn) tW:n 0

0 Ty 01 O; —Pn> (az + pn) tW,TH‘l a - tf,z

Calculation results in Matlab

According to the calculation equations (27), (28), calculations were made for a flat wall of two
layers: calm water — reinforced concrete wall (first layer) — metal wall, skin (second layer) — air.

Heated water temperature #;; = 80.0 °C, outside air temperature #;, = 10.0 °C, first wall thickness
dy = 0.06 m, thermal conductivity 4; = 1.55 W/(m-°C), second wall thickness, iron material skin layer
d,=0.03 m, A, = 0.055 W/(m-°C), a; = 350.0 W/(m? - °C), o, = 6.6 W/(m? - °C).

Under these conditions, numerical iterative calculations show the following values: ¢,,; = 79.729 °C,
twa = 76.060 °C, 1,5 = 24.360 °C, q| = ¢2 = g2 = q4 = 94.782 Wim>.

Consider convective heat transfer between a solid surface and a streamlined liquid. In this case,

0.25
the Nusselt number includes the multiplier, the next coefficient [1-20] z; = (ﬁ) . The effect of
changing the wall temperature ¢, is taken into account by changing the value of the Prandtl number
Pr,. As a function of temperature Pr,, = f{t,,).

In the case of the first calculation, iterations for a; we deliberately make an error and take
tw10 = 600.0 °C. That is, a deliberate error, the deviation from the truth is dt,, o = 20.0 °C. Accordingly,
the variation z; will be 0.92 <z; < 1.0. Accordingly, the variation of the Nusselt number Nu will be dNu
~ 8 %. The corresponding variation (change) d¢,,; =~=+1.6 °C. It can be seen that in a small, finite number
of iteration steps it is possible to achieve the required accuracy of the calculation scheme. If not exactly

at first, the first values of o, and ¢,,; were not set correctly.

Heat transfer through multi-layer cylindrical walls

Let us now consider the heat transfer through the multi-layer cylindrical walls. In cross-section,
this pattern will repeat Figure 1 and Figure 2. Slightly to the left of the point O (Fig. 1), the axis of
symmetry of the long pipe OZ will pass. Up, parallel to axis t. In this case, it is possible to equate not

the power flows (W), but the linear densities of the thermal energy flow, q; = g,
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__2mAiAt;
Qi = g

i1
In ri

i

When you move from one surface to another,

91 = 2= """ =qn = Qn+1- (29)

The power flow W densities q (W/m?) will not be constant. When you switch from one surface to
another cylindrical surface. The complete system of equations expressing the law (29) will have the

form (27) and (28). The only difference is that the p; coefficients now have the form

2w
i = T,
ln;—t_
Follows from the theory of dimension that values a; and a, will be written with new coefficients
ay = ndyay, a; = Td, 1@y, W/m. Thus, the cylindrical problem is solved in the same way as a flat

one-dimensional problem. For the heat flow system.

Heat transfer through multilayer spherical walls

Figure 2 shows a multi-layer spherical wall.

Fig. 2. Multilayer spherical wall

In this case, the task is slightly complicated. When moving from layer to layer, the following
. . . W
physical values cannot be equated with each other: raft of energy flow j, =, power flow density, —=,
m m

linear power density, W/m. However, we found a solution. It is possible to equate the total power W that

flows through these closed spherical surfaces

Q1 =0Qz="=0; == Qn+1> (30)

didiyq
5 At;, W.

where Q; = mA;
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Based on (30), you can obtain the following system of equations for a wall from many spherical
layers
(af +ptw1 —Pitwz + 0tz + -+ 0ty = aitey,
Pitwi — (01 + DDtwz + Potws + 0 tya+ -+ 0ty =0,
0 tw,1 + Patwz — (P2 + P3)tw,s + Pstwa + 0 tys + =+ 0ty 41 =0, G
Pn-1twn-1— (pn—l + pn)tw,n + pntw,n+1 =0,
—DPntwn + (a; + pn)tw,n+1 = a’;tf,z -

Thus, problem (30) based on the system of equations (31) led to task (27), (28). We proved that in this

way it is solvable. In the case of a system of spherical walls p; = mA; di‘;’:”, 6 = (d”lz_di), d; = 2r;,

d; = 2r; — diameter of the i-th wall of the spherical layer, m, §; — thickness of the layer, m, a; = a; * Fy,

a; = ay * F,y 1 —new coefficients in the system (31).

Conclusions

1. By the method of excluding unknowns from the system (27), it is possible to sequentially obtain
defining equations for all values of ¢, ;. Thus, analytical formulas are obtained that allow iterative
calculations of wall temperature from one to three layers and, respectively, five heat flows. In this case,
only the temperature values of the internal (heat transmitting) and external (heat receiving) liquids are
initially set.

2. With a further increase in the number of layers of walls (n > 3), the establishment of explicit
formulas for ¢,, ; becomes bulky and difficult to implement with a manual transformation of the system
of equations. Formulas (21) — (26).

3. The practice of computing has shown that the most convenient is to bring the problem to a
closed and defined system of (n + 1) — equations for (n + 1) — unknown values of the temperatures z,,,
; of the walls. Expanded system of equations (27), (28). This system of equations is easily calculated in
the mass-accessible packets to which Matlab belongs.

4. It has been proved that in the case of a system of cylindrical and spherical walls, the problem is
also solvable. A similar system of equations is obtained, as in the flat case. With new coefficients that

allow you to save balance equations for heat flows.
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