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Abstract. Through heat transfer is considered: heat carrier, liquid medium 1 – ​wall of arbitrary n 
layers – ​liquid external medium 2, cooler. For heat flows, a system of (n + 1) nonlinear equations is 
considered. The method of excluding unknowns sequentially calculates all values of tw, i. The design 
scheme allows iterative calculations of wall temperature from one to three layers and, accordingly, five 
heat flows. The novelty of the solution is that the temperature of the first wall tw,1 and the last wall tw, 

n+1 are not set, but are unknown. They are calculated using an iterative scheme.
If you further increase the number of wall layers, the calculations become cumbersome. We are 
talking about the explicit expression of all tw, i through formulas based on the manual transformation of 
equations. Optimally bringing the problem to a closed and defined system (n + 1) of equations for (n + 
1) unknown wall temperatures tw, i. This system of equations is easily calculated in mass accessible 
packets, to which Matlab belongs. The advantage is a matrix solution of the entire system at once. In 
the case of a system of cylindrical and spherical walls, the problem is also solvable. New coefficients 
have been established for these systems of equations. Which allows you to save balance equations for 
heat flows.
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Аннотация. Рассмотрена сквозная теплопередача: теплоноситель, жидкостная среда 1 – ​стена 
из  произвольных n слоев, жидкостная внешняя среда 2, охладитель. Для тепловых потоков 
рассмотрена система (n+1) нелинейных уравнений. Методом исключения неизвестных 
последовательно вычислены все значения. Расчетная схема позволяет проводить итерационные 
вычисления температуры стенок от  одного до  трех слоев и,  соответственно, пяти тепловых 
потоков. Новизна решения в  том, что температура первой и  последней стенок не  заданы, 
а являются неизвестными. Их вычисляют по итерационной схеме.
При дальнейшем увеличении количества слоев стенок вычисления становятся громоздкими. Речь 
идет о явном выражении всех tw, i через формулы на основе ручного преобразования уравнений. 
Оптимально приведение задачи к  замкнутой и  определенной системе (n  +1) уравнений для 
(n+1) неизвестных значений температур стенок. Данная система уравнений легко вычисляется 
в массово доступных пакетах, к которому относится и Matlab. Преимущество имеет матричное 
решение всей системы сразу. В случае системы цилиндрических и сферических стенок задача 
также разрешима. Установлены новые коэффициенты для этих систем уравнений, которые 
позволяют сохранить балансовые уравнения для тепловых потоков.

Ключевые слова: многослойная стена, теплопередача, нелинейные граничные условия, 
итерационные вычисления, системы уравнений, тепловые потоки.
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Introduction

In heat engineering, radio engineering, electrical engineering, instrument engineering and other 
branches of engineering practice, modeling and calculation of heat transfer through multi-layer wall 
structures plays a very important role. In all construction structures, structures and apparatus, heat 
transfer occurs precisely through multilayer wall structures.

In solving such practical problems, the following condition often occurs: the temperature of the 
first internal liquid is known, the temperature of the external liquid is known. The first liquid – ​heat 
carrier, gives away heat. External liquid – ​heat receiver, receives heat. However, all the temperatures of 
all the hard material wall layers are unknown. That is, they are not set, but are known by the condition 
of the task. This point should be especially noted with respect to the temperature of the first wall tw,1 
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and the last layer of wall tw, n+1. That is, these two temperatures can be calculated during iterative 
calculations. Same as all internal layer temperatures. In all previously known classical cases, usually 
these two temperatures are set as known, predetermined.

The first, internal liquid and external liquid (or gas) are fluids. Their respective temperatures tf,1, 
tf,2 are set as known. Thus, the iterative task starts under the not precisely defined boundary conditions 
of the 1st, 2nd and 3rd genera. These boundary conditions are determined approximately. The heat 
exchange between these liquids and the contacting solid surface may be either forced or natural 
convection. This is the nonlinearity of the problem we solve.

You can only specify initial approximations for α1 and α2. Then, all values of tw, i  and αj, i  = 
1,2,3,…, n + 1; j = 1,2. In the case of convective heat of return, the mutual dependence is expressed 

by the coefficient , where Prf, j is the Prandtl number at either the first or second liquid 

temperature, Prw, l – ​Prandtl number at either the first or last wall temperature, k – ​is a fractional, 
non integer number. In the case of free convection, mutual dependence is expressed by means of the 
Grasthoff number. Which is included as a coefficient in the formula for the Nusselt number. (Grm)k, 

, k – ​fractional, not an integer. The nonlinearity of the problem follows 

from the fact that in the formula qj = αj(tf, j  – ​tw, j) heat transfer coefficient αj itself is a non-linear 
function of ∆tj = (tf, j – ​tw, j), αj = f(∆tj), j = 1,2, for the first liquid and for the second liquid. In the case 
of a wall of n layers on the side of the second external liquid tw, j = tw, n+1.

As our computational practice has shown, such a problem can be solved at given only temperatures 
of the first internal and external external liquid. For a wall of n-solid intermediate layers, this task is 
given to the system of qn+2 heat flows for n + 1 unknown values of solid wall temperatures tw, i, i = 
1,2,3,…, n + 1.

When equating the values of thermal flows qi = qi+1, i = 1,2,3,…, n + 1, the system of equations 
becomes closed, complete: n + 1 equations for n + 1 unknowns tw, i, i = 1,2,3,…, n + 1.

A closed system of equations can be solved by substitution methods, that is, the gradual 
elimination of unknowns. However, this path has the inconvenience that as the number of layers of 
the wall n increases many times, the transformations for the equations of the system become more 
complicated. To determine from them all the temperature values of the walls tw, i in the form of an 
explicit formula.

Adjusting to the final result becomes a very tedious task for manual transformation of equations. 
Explicit expressions in the form of formulas for tw, i would be interesting and useful in that each of 
them could be used as a criterion of convergence of the iterative process. Currently, there is a growth 
and diversity of computer computing programs and tools. These programs tend to greatly simplify the 
user interface.

It comes to the fact that soon at the level of game tasks, some computational algorithms and 
programs will be able to be compiled by secondary students in general education schools. Therefore, 
specific expressions for tw, i  in the form of formulas would be very useful precisely in terms of 
performing thermal calculations at the level of such simple user interfaces and simple computers.
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Without using powerful software tools such as matlab, matcad and others. They require sufficient 
powerful computers, a processor, and RAM. Among others, we are also trying to make computational 
capabilities available to a wide range of engineers and technicians. And on any simple computer. 
Among others, an accessible and easily operated Qbasic64 program can be recommended.

Heat transfer processes play a critical role in all technical and technological processes [1–12].
There are a large number of problems that are solved by accurate analytical and sex analytical 

methods [1–16]. However, at present, a new direction attracts increasing attention of researchers – ​
methods of iterative solutions of nonlinear boundary conditions in problems of heat transfer through 
one and multiple-layer walls [17–20].

In [17], the problem of heat transfer through an extended pipeline is solved. This is the task of heat 
transfer in the system: coolant-pipe – ​external medium under variable boundary conditions. When the 
internal medium (coolant) and the external medium (cooler) is service water.

Publication [18] shows a solution to the problem of cooling the liquid in a heated cylindrical vessel 
under variable boundary conditions, when the temperature of the heated liquid, the walls of the vessel 
and the heat flows change continuously over time. In these works, the wall of the pipe and the cylindrical 
vessel appear to be single layer. Therefore, unlike these works, we will consider solving similar 
problems through multi-layer walls. The thermophysical parameters of the walls (density, coefficient 
of thermal conductivity, heat capacity, etc.) can vary depending on the temperature, χi = χi(tj). In works 
[17–20], the heat transfer problem is solved taking into account the nonlinearity expressed through 
αj = f(∆tj). That is, the roots of nonlinear equations are calculated by iterative numerical methods. 
Values of tw, i serve as unknown values of calculated roots. Iteration is carried out based on refinement 
of their values.

Let’s start by solving the problem for a flat wall of one layer, n = 1 in Figure 1. The object is set in 
such a way that only the temperatures of the 1st internal liquid tf,1 and the temperature of the external 2 

Fig. 1. Heat transfer in a system: the heat carrier (environment 1) – ​a flat wall from n-layers – ​the external envi-
ronment‑2
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liquid tf,2 are known. Heat transfer proceeds from the heated medium 1 through the wall to the medium 
2. Thus tf,1 > tf,2. The problem is nonlinear if, at the beginning of the process, the temperatures of the 
first (inner) tw,1 and second (outer) walls tw,2 are unknown. They are then determined during iterative 
calculations on a computer.

Theoretical decision

Let’s consider a stationary heat transfer:

,	 (1)

,	 (2)

,	 (3)

where α1, α2 – ​coefficients of heat transfer from the 1 liquid to the wall surface 1 and from the wall 2 
surface to the external cooling medium 2, qi – ​density of heat flows (i = 1,2,3), W/m2, λ-coefficient of 

the wall thermal conductivity, , d – ​wall thickness, m.

Consider the system (1) – ​(2), q1 = q2. From here we find the expression for tw,1:

,	 (4)

where = λ/d.
Consider now system (2) – ​(3), q2 = q3. From here follows

.	 (5)

Let’s substitute (4) in (5) and after some transformations we get

.	 (6)

The system (1)-(3) can be solved in reverse order. From the joint system (2) – ​(3) we find tw,2:

.	 (7)

Consider system (1) – ​(2):

.	 (8)

Let’s substitute equation (7) in (8) and get

.	 (9)

Formulas (4), (6), (7) and (9) represent a solution to the problem. They express unknown wall 
surface temperature values as a function of the temperature of the first and second (external) liquids 
and even through recoil heat factors
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	 (10)

where k = 0, 1, 2, 3… is the iteration index.
When αi = f(∆ti) the system (10) is solved jointly in an iterative manner.
The initial values of ,  are given for practical reasons. Can be accepted when running 

from left to right

, 	 (11)

 –	

and when running from right to left.
When deciding on the computer, the limit of calculation accuracy (iteration) is taken 

.

Let us now consider heat transfer from the internal heated heat transfer liquid to the external heat 
receiving liquid through a wall of two layers with different thermos physical properties. In this case, 
n = 2 in Figure 2.

The equations for heat flux density in this case are:

,	 (12)

,	 (13)

,	 (14)

,	 (15)

λ1, λ2 – ​coefficients of heat conductivity of the first and second wall, , d1, d2-are thickness of the 
first and second wall, m.

By q3 = q4 solving the joint system (14) – ​(15), we express tw,3 as a function tw,2 and tf,2

,	 (16)

where . Next, consider the system (13) – ​(14), q2 = q3. We find from it tw,2 as a function 
tw,1 and tf,2

,	 (17)

where .
Now we solve the system (12) – ​(13), q1 = q2. From it can be expressed tw,1 first as a function tw,2, 

and then using (17) as a function tf,1 and tf,2.
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,	 (18)

where , .

Equations (16)  – ​(18) are the solution (12)  – ​(15) when we solve (we  banish, run) boundary 
conditions from right to left.

You can get solutions (run) on the contrary, on the left – ​to the right.
To do this, we decide (12) – ​(15) to solve in direct order: q1 = q2, q2 = q3, q3 = q4. Then, similarly 

(16) – ​(18), the values​ of tw,1, tw,2, tw,3 are successively expressed. The formula for tw,1 is (4). Next are tw,2 
and tw,3. Only in the case of a flat wall system do the racing formulas from left to right and from right to 
left have symmetrical, identical views. Since in this case, for a flat wall system, the heat flux densities 
qi = qi+1, i = 1,2,3,…, n + 1, W/m2 can be equalized. However, in the case of a system of cylindrical 
axial symmetrical walls (systems of coaxial pipes), it will be possible to equalize only total heat flows 
through various selected, fixed side surfaces Fi (m2) of these cylindrical layers, Qi = Qi+1, i = 1,2,3,…,  
n + 1, W. A similar pattern will be in the case of a system of spherical surfaces. Therefore, for these last 
two cases, the running formulas from left to right and from right to left will not be symmetrical (the 
same), as in the case of a flat wall system.

The formula for tw,2 takes the form

,	 (19)

where . Finally, the formula for tw,3 has the following form

.	 (20)

Thus, equations (4), (16) – ​(20) are the solution to the problem for a wall of two different layers, 
which can be solved in the form of the following iterative equations:

	 (21)

Hence, by induction it follows that the problem is easily generalized to a wall of arbitrary n layers 
with various thermo physical properties (i = 1,2,3,…, n)

.	 (22)

Based on formulae (4), (6), (9), (16) – ​(21), it can be seen that as the number of wall layers increases, 
the complexity of the computational formula for determining the temperatures of the first, last and 
intermediate walls increases significantly: tw, i, i = 1,2,3,…, n + 1.
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The computational scheme based on the iteration of the values of thermal  flows is not used 
in a complex way for multilayer walls when n > 3. For example, for a wall of three layers of different 
materials, the calculation formulas are:

,	 (23)

,	 (24)

,	 (25)

, 	 (26)

where

	

Equations (23)–(26) are also nonlinear because the values of tw,1, tw,2,···, tw, n+1 are arguments of the 
function of heat transfer coefficients α1 and α2. Therefore, for the final solution of the problem, iterative 
calculations cannot be avoided. Obviously, as the number of wall layers increases, it is significantly 
difficult to derive formulas similar to (23) – ​(26). Which define tw, i as explicit formulae.

The formulae (23) – ​(26) show that as a result of the analytical precise solution of the system 
of equations, all formulae for all temperatures of different walls can be found. A priori, only the 
temperatures of the internal and external liquids and the physical conditions of the state of these liquids 
are set. You can use them to define the function type for α1 and α2. The approximate iterative algorithm 
reflected in the systems (16) – ​(26) is easily programmed.

Based on formulae (4), (6), (9), (16) – ​(26), it can be seen that as the number of layers of walls 
(n > 3) increases, the complexity of manual conversion of the original system of equations for heat 
flows increases significantly. To obtain direct explicit formulas for determining the temperatures 
of the first, last, and intermediate walls: tw, i, i = 1,2,3,…, n + 1. When unknowns are sequentially 
excluded when substituting some equations into others. Since these equations have to be output 
analytically manually. The number of intermediate equations in the system (12) – ​(15) increases. 
Therefore, the resulting difficulty in manually converting equations is a limiting aspect of this 
method.

The system (21) – ​(26) can also be used for a transient process. Only in this case is it necessary 
that for each small time interval ∆τi the conditions of temperature constancy on all walls ti  @ const are 
met. To a certain extent, approximate. Which entails qi @ const. Also approximately. When moving to 
the next time period ∆τi+1 these values will change in the form of a step function. With a small fixed 
change step.

However, the most optimal, convenient and practical method turned out to be the method of 
bringing the above problem to a nonlinear expanded system of algebraic equations:
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	 (27)

The system (27) can be written as a matrix equation

.	 (28)

Calculation results in Matlab

According to the calculation equations (27), (28), calculations were made for a flat wall of two 
layers: calm water – ​reinforced concrete wall (first layer) – ​metal wall, skin (second layer) – ​air.

Heated water temperature tf,1 = 80.0 °С, outside air temperature tf,2 = 10.0 °С, first wall thickness 
d1 = 0.06 m, thermal conductivity λ1 = 1.55 W/(m·oC), second wall thickness, iron material skin layer 
d2 = 0.03 m, λ2 = 0.055 W/(m·oC), α1 = 350.0 W/(m2 ∙ °С), α2 = 6.6 W/(m2 ∙ °С).

Under these conditions, numerical iterative calculations show the following values: tw1 = 79.729 °С, 
tw2 = 76.060 °С, tw3 = 24.360 °С, q1 = q2 = q2 = q4 = 94.782 W/m2.

Consider convective heat transfer between a solid surface and a streamlined liquid. In this case, 

the Nusselt number includes the multiplier, the next coefficient [1–20] . The effect of 

changing the wall temperature tw is taken into account by changing the value of the Prandtl number 
Prw. As a function of temperature Prw = f(tw).

In the case of the first calculation, iterations for α1 we deliberately make an error and take 
tw1,0 = 60.0 °С. That is, a deliberate error, the deviation from the truth is δtw1,0 = 20.0 °С. Accordingly, 
the variation z1 will be 0.92 ≤ z1 ≤ 1.0. Accordingly, the variation of the Nusselt number Nu will be δNu 
≈ 8 %. The corresponding variation (change) δtw1 ≈ ±1.6 °С. It can be seen that in a small, finite number 
of iteration steps it is possible to achieve the required accuracy of the calculation scheme. If not exactly 
at first, the first values of α1 and tw,1 were not set correctly.

Heat transfer through multi-layer cylindrical walls

Let us now consider the heat transfer through the multi-layer cylindrical walls. In cross-section, 
this pattern will repeat Figure 1 and Figure 2. Slightly to the left of the point O (Fig. 1), the axis of 
symmetry of the long pipe OZ will pass. Up, parallel to axis t. In this case, it is possible to equate not 
the power flows (W), but the linear densities of the thermal energy flow, ,
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.	

When you move from one surface to another,

.	 (29)

The power flow W densities q (W/m2) will not be constant. When you switch from one surface to 
another cylindrical surface. The complete system of equations expressing the law (29) will have the 
form (27) and (28). The only difference is that the pi coefficients now have the form

.	

Follows from the theory of dimension that values α1 and α2 will be written with new coefficients 
, , W/m. Thus, the cylindrical problem is solved in the same way as a flat 

one-dimensional problem. For the heat flow system.

Heat transfer through multilayer spherical walls

Figure 2 shows a multi-layer spherical wall.

In this case, the task is slightly complicated. When moving from layer to layer, the following 

physical values cannot be equated with each other: raft of energy flow j, , power flow density, , 

linear power density, W/m. However, we found a solution. It is possible to equate the total power W that 
flows through these closed spherical surfaces

,	 (30)

where , W.

Fig. 2. Multilayer spherical wall
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Based on (30), you can obtain the following system of equations for a wall from many spherical 
layers

	(31)

Thus, problem (30) based on the system of equations (31) led to task (27), (28). We proved that in this 

way it is solvable. In the case of a system of spherical walls , , 

 – ​diameter of the i-th wall of the spherical layer, m, δi – ​thickness of the layer, m, , 
 – ​new coefficients in the system (31).

Conclusions

1. By the method of excluding unknowns from the system (27), it is possible to sequentially obtain 
defining equations for all values of tw, i. Thus, analytical formulas are obtained that allow iterative 
calculations of wall temperature from one to three layers and, respectively, five heat flows. In this case, 
only the temperature values of the internal (heat transmitting) and external (heat receiving) liquids are 
initially set.

2. With a further increase in the number of layers of walls (n > 3), the establishment of explicit 
formulas for tw, i becomes bulky and difficult to implement with a manual transformation of the system 
of equations. Formulas (21) – ​(26).

3. The practice of computing has shown that the most convenient is to bring the problem to a 
closed and defined system of (n + 1) – ​equations for (n + 1) – ​unknown values of the temperatures tw, 

i of the walls. Expanded system of equations (27), (28). This system of equations is easily calculated in 
the mass-accessible packets to which Matlab belongs.

4. It has been proved that in the case of a system of cylindrical and spherical walls, the problem is 
also solvable. A similar system of equations is obtained, as in the flat case. With new coefficients that 
allow you to save balance equations for heat flows.
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