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Abstract. It is proved that any irreducible carpet of type G2 over a field F' of characteristic 0, at least
one additive subgroup of which is an R-module, where F' is an algebraic extension of the field R, up to
conjugation by a diagonal element defines a Chevalley group of type (G2 over an intermediate subfield
between R and F.
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1. Introduction

Let @ be a reduced indecomposable root system, ®(F') be a Chevalley group of type ® over
the field F' generated by the root subgroups

2 (F) = {z,(t) |t e F}, €.

We call a carpet of type ® of rank | over F a collection of additive subgroups 24 = {2, | r € ¥}
of the field F' with the condition

Cijrs WA C Ay i, 7, 8,0r +js €@, 0,5 >0, (1)

where 2. = {a’ | a € 2.}, and constants C;; s are equal to +1, £2 or 3. Inclusions (1) come
from the Chevalley commutator formula

[l‘s(u),l‘r(t)] = H xir-i—js(cij,rs(_t)iuj)v T, s, ir + js € ®. (2)

i,7>0

Every carpet 2 defines a carpet subgroup ®(2() generated by the subgroups z,.(2,.), »r € ®. A
carpet 2 is called closed if its carpet subgroup ®(2() has no new root elements, i.e., if

B(A) N, (F) = z,(2A,).
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The definition of a carpet used here was given by V. M. Levchuk [1] (see also [2, question 7.28]),
and in [3] he described irreducible carpets of rank greater than 1 over field F, at least one additive
subgroup of which is an R-module, where F' is an algebraic extension of the field R, under the
assumption that the characteristic of the field F is different from 0 and 2 for types By, Cj, Fy,
and for the type Gz is different from 0, 2 and 3. It turned out that, up to conjugation by a
diagonal element, all additive subgroups of the carpet coincide with one intermediate subfield
between R and F. We call such carpets constant. A similar problem for carpets of type Gs
over a field of characteristic 2 and 3 was considered by S. K. Franchuk and she established that
non-constant carpets appear in characteristic 3 [4]. We have proved that in the remaining case
of characteristic 0 for the type G5 only constant carpets are possible.

Theorem 1. Let A = {A,. | r € ®} be an irreducible carpet of type G over a field F of
characteristic 0, with at least one additive subgroup A, which is an R-module, where F is an
algebraic extension of the field R. Then, up to conjugation by a diagonal element, all additive
subgroups A, coincide with some intermediate subfield P between the fields R and F'.

2. Preliminary results

The group ®(F) increasing to the extended Chevalley group $(F ) by all diagonal elements
h(x), where x is a F-character integral root lattice Z®, that is, a homomorphism of the additive
group Z® into the multiplicative group F* of the field F' [5, Sec. 7.1]. Any F-character x is
uniquely defined by the values at the fundamental roots, so for any r € ® and t € F'

h()z- (R0 ™ = 2 (x(r)t). ®3)
The next lemma states that the equality (3) fits naturally with the definition of carpet.

Lemma 1 ([6], Lemma 1). Conjugating the carpet subgroup ®(21) with the diagonal element
h(x), we obtain the carpet subgroup

h(X)PA)h(x) ™" = ),

defined by the carpet
A ={A, | red}, where A, = x(r)2,.
It is natural to call the carpet 21’ from Lemma 1 conjugate to the original carpet 2, and we
can talk about conjugate carpets without relating them to carpet subgroups. Therefore, such

statements are permissible. "Up to conjugation by a diagonal element, the carpet 2l coincides
with the carpet 2A’."

For a root system of type Az (see Fig. 1), there is one kind of commutator formula

[0 (t), 26(u)] = Zatp(Htu).

Therefore, the carpet conditions have only one form 2,2, C Ay p.
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b a+b

—a—b =b
Fig. 1

For a root system of type G2 (see Fig. 2), there are four kinds of commutator formulas

[2a(t), 26(u)] = Tarts(EFt0)T20-15(EU) T3040 (£ 1) 30420 (£70), (4)
[2a(t), Tats(w)] = T2045(E280) 23046 (£ 1) 230425 (£3t0?), (5)
[0 (t), 22015(w)] = Z3a16(£3tu), (6)

[2(t), 3046 (u)] = T3at2n(Etu). (7)

So that, in this case, the carpet conditions look more impressive than for other types of root
systems, and the formulas (4), (5), (6), (7) provide, respectively, the following forms

AoAp C A, A2Ap C Aoy, Ay C Aggpp, AT C Asgpop,

22[(1,2[(1,+b g 9’[2(1-&-1)7 Smima-&-b g 9’[3(L+b7 32[(19[54.{; g 2[3(1,4-2?)’
3Q[a912a+b g Ql3a+b,

ApAza+p € Azat20-

3a + 2b
A

b a-l—b 2a+b 3(l+b

—2a—0b —a—>b

Y/

—3a —2b
Fig. 2

The proof of the following lemma is elementary, so we omit it.
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Lemma 2. Let F be an algebraic extension of the field R and A is a subring of the field F which
is an R-module. Then A is the field between R and F'.

Lemma 3. Let A = {A, | r € @} be an irreducible carpet of type Az over a field F, {a,b} is the
fundamental system for ® and let 1 € A_,NA_y and the additive subgroup A,4p is an R-module,

where F' is an algebraic extension of the field R. Then all A, coincide with some fized subfield
of the field F.

Proof. By [3, Lemma 3] all 2, coincide with some fixed subring of the field ', and by Lemma 2
this subring is a field. The lemma is proved. O

3. Proof of Theorem 1

Up to conjugation, diagonal elements can be assumed to be 1 € _, NA_;. Then, by virtue
of the carpet conditions, from the commutator formula (4) we obtain 1 € 2, for all » € ®~.
Without loss of generality, we can assume that 2,45 or As,49p is an R-module. Since the field
R has characteristic 0, then for any non-zero integer n we use the equality n2l, = 21, without
mentioning in case when the additive subgroup 2, is an R-module.

Let A4, be an R-module. Due to the carpet conditions 22A_, ;R4 € A, and
2o Aogip C Agyp we get the inclusions Aog+p C A, and Aogyy € Agqp respectively. Hence,
due to the carpet condition 2,20+, C Aog4p it follows that Ao,4p is a ring, and by virtue of
Lemma 2 it is a field. In particular, 1 € 5,15. Therefore, due to the carpet conditions from the
commutator formula (4), replacing the pair of roots (a,b) with the pairs (2a 4+ b, —3a — b) and
(2a+b, —3a— 2b) we obtain 1 € ,. for all r € ®. Let Ag,1p = P. From the six carpet conditions
of type 22,2, 1+p C Aoq+p we obtain the equalities 2, = P for all short roots of r. By Lemma 3,
all additive subgroups 2, indexed by long roots r coincide with some fixed field Q). Now, from
the carpet conditions A,y C Agyp and A, Asq 1y C Ase4p we obtain the inclusions Q C P and
P C @ respectively. Thus, in this case we have established that all additive subgroups of the
carpet coincide with the field P.

Let Asq425 be an R-module. By Lemma 3, all additive subgroups 2, indexed by long roots
r coincide with some fixed field P. In particular, 1 € 2A3,49,. Therefore, due to the carpet
conditions from the commutator formula (4), when the pair of roots (a,b) is replaced by the
pairs (—2a — b, 3a + 2b) and (—a — b, 3a + 2b) we get 1 € A, for all r € ®. Further, just as in the
previous case, we obtain that all additive subgroups of the carpet coincide with the field P.

The theorem is proved.
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HenpuBoaumbie KOBPbI a A ANTUBHBIX NOArpyIIn tumna Go
HaJ noJjieM xapakTepuctukm 0

AxoB H. Hy>xkxun

EmuzaBera H. TposiHckas
Cubupckuii delepalibHbIl YHUBEPCUTET
Kpacnospck, Poccuiickas @eneparus

Awnnoranus. lokazano, yro Jyio6oil HenpuBoauMbIii KoBep Tuna Go Haj noseM F' xapakrepucruxu 0,
xoTsl 6BI O/THA aJIUTUBHAS IOATPYIIIa KOTOPOro siBjsiercss R-moxynem, riue F' — anrebpandeckoe paciim-
penre mosist R, ¢ TOYHOCTBIO [0 CONPSIKEHUsI TUArOHAJIBLHBIM JIEMEHTOM ompegessier rpynmy [lleBase
Tuna G2 HaJ NPOMEXKYTOYHBIM Moj(osieM Mexay R u F.

Kuarouesrie cioBa: rpynmna lllesasnse, KoBep a JUTUBHBIX IIOAIPYIII, KOBPOBasl IOAIPYIIIA.
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