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Abstract. Traditional and modern algorithms for solving the problem of planning the optimal route
of an unmanned aerial vehicle under the influence of low-altitude air defense systems is presented in
the paper. The principles of the methods, as well as, the tools used in them are described. Classical
approaches of reinforcement learning and its modification using artificial neural networks are considered.
The proposed algorithms are implemented and simulation with the use of these algorithms is carried
out. A comparative analysis of the results is performed and conclusions about the effectiveness of the
algorithms are presented.
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Modern unmanned aerial vehicles (UAVs) are multifunctional high-tech intelligent carriers
that are currently used in various fields. One of the ways of effective use of UAV’s is to apply of
navigation support for autonomous flight using elements of artificial intelligence [1]. At present,
many studies have been devoted to solving the problem of planning optimal UAV routes but most
of them only reflect ways to overcome passive natural and anthropogenic obstacles. However,
the appearance of radio suppression devices and modern air defense systems («active obstacles»)
significantly affects the trajectory of the flight of UAVs [2,3]. Therefore, these obstacles should
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also be taken into account when planning flight tasks. To solve this problem, some algorithms
for constructing the optimal UAV route in the conditions of «active obstacles» are considered
and analyzed.

1. The traditional UAV flight route planning algorithm

Let us consider a traditional algorithm for constructing a route. The algorithm is based on a
random generator of the UAV flight direction vector with an estimate of the shortest path using
a Euclidean metric. Then the distance between points is

d(z,y) = \/(xl —y) (@ =)’ + A (B — ) =

Mathematical modeling of the runtime environment and numerical calculations were per-
formed using the Python programming language.

At the first stage of simulation a tactical situational map of the UAV flight area is formed. It
is a unit matrix of size 100 X 100 with «active obstacless> highlighted. These units have identical
target detection and destruction radii. It is assumed that as soon as the UAV enters the affected
area it will be immediately destroyed and the simulation episode is finished.

At the second stage the UAV direction vector is determined. Suppose that in the area of the
flight the UAV can move in any direction. There is also a restriction on crossing the map border.
In this case, the UAV takes a step back and continues to move in accordance with the value
of the random direction vector generator. In total, 4 directions of discrete actions are recorded
which are equivalent to moving along the cardinal directions.

At the third stage a direction is generated with an estimate of the choice of the shortest path
according to expression (1). Here the UAV route in the specified area can be directly plotted.
Fig. 1 shows options for constructing a UAV route using the presented algorithm where yellow
and red indicate the detection and destruction zones of air defense.

Fig. 1. Variants of UAV flight routes under counteraction conditions. The routes are calculated
using the algorithm of a random direction vector generator with an estimate of the shortest
distance according to the Euclidean metric

The main advantages of this algorithm are simplicity of its implementation and the small
amount of calculations but the direction vector should be generated many times. The flight path
of UAV is often chaotic, and the number of steps per episode may be as great as 5000-10000.
This problem can be solved by using intelligent methods for constructing the optimal route such
as reinforcement learning and artificial neural networks algorithms.
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2. Intelligent reinforcement learning methods for construct-
ing the optimal UAV route

2.1. Statement of the reinforcement learning problem

Modern technologies and the growth of computing resources allow one to apply unusual
methods to solve navigation problems. It is now possible to take into account factors and
conditions that increase the accuracy and reliability of obtained results. One of these approaches
is reinforcement learning (RL). There is some environment with a set of states S,, as well as an
intelligent agent that can perform certain actions a,, in this environment. It is known that in
each state the agent will receive a certain reward r(S,a) for the completed action. The way an
agent chooses a direction vector is called a strategy or policy:

a=m(S), (2)

where 7(.5) is the function of selecting the optimal action that depends on the current state.
The aim of the RL is to obtain the maximum reward for the action performed. However,
to optimize the path selection one needs to introduce an additional parameter in the form of a
discount factor v in the current step. The factor takes values in the range from 0 to 1. Hence a
system of penalties is introduced for an agent that performs many actions to obtain a positive
reward. Now the search for the optimal policy can be represented by the following expression [4]:

x* = arginax 3 0rn, 7€ 051, ®
n>=0

where 7,, is the nearest discounted reward.
Thus, the task of the RL is to find the optimal strategy for maximizing the future total reward
for the minimum number of steps if it is possible.

2.2. The table Q-learning

Let us consider the classic reinforcement learning algorithm — table Q-learning. This ap-
proach is also to find the optimal agent policy but to evaluate the future state model the pa-
rameter (S, a) is introduced. This is the function for evaluating the total discounted reward
of a state and action pair. To evaluate a pair (state, action) one needs to know all the ideal
further actions. However to know what future actions will be ideal one needs to have precisely
calculated state and action values.

There is a contradiction as to how to define the values @ from future values Q'. Such relations
can be solved using the Bellman equation which states that the maximum future reward from an
action a is the current reward plus the maximum future reward in the next step from performing
the next action a [5]. Therefore, taking into account (3), the function can be represented in the
following form: L

Q(S,a) = E[r + ymax,Q (5 ,a )], (4)
where F is a mathematical expectation of the value of the current reward and the discounted
total reward.

The table Q-learning implies that function (S, a) is represented as a table. Columns and
rows of the table correspond to the number of environmental states S, and the number of actions
a, that agent can perform.
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2.3. Implementing table Q-learning to solve the problem of calculating
the optimal UAV route under influence of active obstacles

Numerical calculations of the optimal UAV route was carried out using OpenAl Gym—Python
library for developing intelligent agents with reinforcement learning.

Why are reinforcement learning algorithms tested in Gym environments? Let us remind that
RL does not make many assumptions about the environment; knowledge about it is collected in
the process of interaction. In addition, to compare the quality of different algorithms they should
be applied in the same standardized environments. Gym is an excellent testing tool because it
contains many flexible settings and easy-to-use environments [6].

The algorithm for constructing the optimal UAV route using a table Q-learning consists of
the following stages:

Stage 1. Create a simulated UAV flight area in the form of a situation map with the situation
plotted and divided into a number of computational areas represented as uniform cells [7] where
each corresponds to one move of the agent. The map size is 100x100. As in the traditional
approach an intelligent agent that performs the role of a UAV can freely move around the
entire area of the environment in four directions. Thus, the number of states of the simulated
environment S = 10000, and the number of UAV actions a = 4.

Stage 2. Defining hyperparameters of training. At this stage values are assigned to training
parameters that directly affect the simulation process itself. They are the learning rate « (takes
values in the range from 0 to 1), the discount rate of the reward + , the number of simulation
episodes and the maximum number of iterations in one episode. Parameter « is necessary for
the UAV to use the knowledge gained in previous episodes to choose more reliable actions. The
maximum number of steps per episode is required so that the agent does not get stuck in the
loop but the episode may end earlier. The hyperparameter values are shown in Tab. 1.

Table 1. Training Settings

Training coefficient Value
Learning rate, « 0.8
Discount rate, 0.99
Number of training episodes 1000000
Maximum number of steps per episode | 60000

Stage 3. Training @-function. For the convenience of observation variables that accumulate
data along the length of the trajectory and the total reward for episodes are initialized. Next,
Q- function is created in the form of the table (shown in Tab. 2) and it is filled with random
numbers.

Table 2. The table Q-function

action a, North South East West
state S,
So 0.010212828 | 0.010247146 | 0.012362903 | 0.010169895
S, 0.010286808 | 0.012487781 | 0.010350737 | 0.010269896
Sy 0.010315242 | 0.010452861 | 0.01045163 | 0.010368139
S9999 | 0.017854595 | 0.021050301 | 0.022042031 | 0.048342432
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During simulation a deterministic strategy is used, that is, the choice of actions is carried
out strictly according to the criteria of @Q-function. Therefore, it is important to assign values in
the table so that the agent can reach the goal later. The table can not be initialized with zeros.
Each new episode starts from the beginning. One step of training is as follows:

Step 1. Select an action da by strategy using the current Q-function.

Step 2. Action message d’ to simulation environment, obtaining a new state .S " that depends on
the selected step, the reward r and signal of the end of the episode.

Step 3. Calculate the new target value Qg for Q-function according to (4):

r if done

Qun = TS ) 5

If simulation episode is over then the target value is Qi = 7. Otherwise, the value Quim
will be updated on the bases of the discount rate v set in stage 2 (according to the Bellman
equation).

Step 4. Taking into account the learning rate « set at the stage of forming training parameters,
update scales of Q-function for pairs of states and actions Q(S,a) at the end of each episode.
Updating values of @Q-function can be represented by the following expression

Q(Sv (L) — (1 - Q)Q(Sv CL) + aQaim- (6)

The process of learning how to build an optimal UAV route using the table Q-learning algorithm
is represented by linear plots in Figs. 2 and 3.

The length of the UAV flight path by episode
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Fig. 2. The length of the UAV flight path by training episodes

The trajectory length history plot shows that the UAV performed many actions during the
first 20,000 episodes. But later, due to the update of scales of @Q-function it learned to reach the
goal in 200 steps.

Similar relationship is observed in the graph of total rewards by episode. The agent’s reward
in the early stages of the simulation is equal to 0 because it either did not reach the goal or it
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Total rewards by episodes

08

06

Reward

o4

02

0.0

- -

=3 [~} [=] (=] (=3 (=] (=] (=] (=] =] o (=] (=] (=] [=] (=] (=3 (=] (=] =

8 8 8 8 8 8 8 8 8 8 8 8 &8 8 8 8 8 g8 8 ¢t

2 8 2 § 2 & 2 § 8 g8 5 2 = § 5 & 25 3 5 8§

2 ¥y KR B R WM ¢ & & B B 8 R B 8 8B R H §
Episodes

Fig. 3. The total rewards by training episodes

could not complete the episode in the maximum number of steps. However, in some episodes it
still managed to get the maximum reward. After 20,000 episodes weights of Q-function reached
the optimal level. It results in the stable assignment of the maximum reward, that is, the
UAV began to reach the goal. Step 4. Start the test simulation. The optimal strategy on the
trained @-function is used. Three hundred episodes are generated to test the performance of the
algorithm. The probability of successful route construction is 88 % . A variant of the generated
UAV path is shown in Fig. 4, where the red zone is the radius of damage by the air defence
system (AD).

Fig. 4. An example of the UAV flight route in the conditions of counteraction calculated according
to the algorithm of the table Q-learning
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In comparison with the traditional algorithm for constructing a UAV route using a random
direction vector generator the table @-learning is more intelligent. The UAV motion vector is
obtained according to the policy, and random number generator is not used. However, with this
approach the agent may find trajectory that is not the most efficient trajectory, and because of
the deterministic strategy the agent follows it.

2.4. The e-greedy strategy of ()-learning for constructing the optimal
UAV route

How to prevent situations when agent that follows the optimal policy is trapped in a local
maximum and receive a guaranteed but low reward. Instead of immediately making a move
based on deterministic strategy, one can consider other areas of the map in search of the best
optimal route. However, excessive search may result in the lack of reward. Insufficient search of
the environment may result in the local maximum trap. Therefore, a balance between the use of
optimal policy and environmental search is needed.

The strategy for balancing between the use of optimal policy and environmental search in
the RL is called e— greedy strategy. Let consider some fixed parameter ¢ that takes values from
0 to 1. It is the probability that UAV will choose a random action, and 1 — ¢ is the probability
that it will be guided from the current optimal policy just like with the classic Q-learning. This
strategy can be represented as follows

randoma if P=c¢ / /
S_>{ argmax Q(S,a) if P=1—¢ “a =S (™)

During training process, parameter € should be changed. In the early stages, until weights of
@-function are not optimized enough, one needs to set high values of ¢ for the agent to explore
the environment. Towards the end of training when environment is sufficiently studied and one
should rely on the optimal strategy one needs to reduce parameter € to zero. Obviously, ¢ is
decreased linearly with the episode number.

Stages of building an optimal UAV route in conditions of active obstacles by ¢ - greedy policy
do not differ from the table Q-learning with the exception of selecting an action in accordance
with expression (7). Hyperparameters of training are similar to parameters of Q-learning. To
maintain the balance between two strategies parameter € = 0.9.

The learning process is also represented by graphs of the history of trajectory lengths and
total rewards for training episodes. They are shown in Figs. 5 and 6 below.

The plot of the UAV flight path lengths shows that when in the early episodes of the greedy
strategy the agent explores environment it enters the air defence zone and the allowed number
of steps per training iteration is exceeded. Later, when parameter ¢ is reduced linearly on the
bases of updated weights of @Q-function the agent begins to reach the goal in a fixed number of
steps. However, in comparison with the tabular @)-learning the intelligent agent studies the area
in detail (more precisely, function weights Q(S, a)), and there is the variety of the choice of path.

The plot of total rewards for e-greedy policy shows chaotic assignment of total rewards espe-
cially this trend is in evidence in the middle of training. This is because the agent has to choose
a random action to explore the area rather than to follow a strict selection policy.

Let us perform a quality check for updating the function weights Q(S, a) similar to checking
the table Q-training, and take into account the exploration strategy. The probability of successful
construction of UAV routes here is 92%. The increase in the probability of successful construction
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The length of the UAV flight path by episodes with a greedy strategy
[

10000

6000

Steps

2000

] o & o

Episodes

Fig. 5. The lengths of the UAV flight paths with the e-greedy strategy

Total rewards by episode with e-greedy strategy
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Fig. 6. The total awards by training episodes with the e-greedy strategy

is explained by a more detailed update of @-function at the expense of e-greedy strategy. Figure
7 shows the UAV path constructed using e-greedy approach of RL.

For more complex and real tasks @-function can not be represented as a table because the
size of the table would require huge amount of memory. Therefore, one needs to approximate
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Fig. 7. The generated UAV flight route under counteraction conditions using e-greedy @Q-learning
method

the function of evaluating pairs of states and actions.

3. Construction of the optimal UAV route in the conditions
of counteraction with the use of deep Q-learning

Deep @Q-learning algorithm (DQN) uses a neural network for approximation of Q-functions.
Now instead of updating the weights of function Q(S,a) the state of the environment S is
transmitted directly to the neural network, and the network will return the values of ) for each
possible action [8].

Training stages of DQN are similar to that of the @-learning algorithm. However, the ap-
proximation requires some modernization. One must introduce a parametric function @y which
predicts the quality of the pair Q(S,a) and it depends on the parameters of the approximator
w.

Approximation of @-function can be formulated as a supervised learning. Let Qu;m be the
target value based on expression (4). In DQN it is presented as follows

Qaim, :r+fym:~;meW(S/,a'). (8)

One needs to update settings W so that function Qw is to be close to the target values Qgim-
In supervised learning, one needs to formulate the loss function E which is calculated in DQN
as follows

E= (Qaim - QW(Sv a))z' (9)

Using the method of gradient descent, error is minimized by updating the weights of the

approximator: o5
W—W - TR (10)
where « is learning rate.
A neural network model is used to approximate the optimal Q-function. TensorFlow and
Keras libraries for machine learning were used to build the network architecture. Formally it is
a neural network based on TensorFlow with one Embedding layer that converts positive indices

to dense vectors of fixed size [9]. States S are transformed into a vector Q(.5) for various actions.
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The square of the norm of the difference between the target and predicted vector of Q-function
is used as a loss function as shown in (9). The stochastic gradient descent optimizer is used as an
optimizer for the neural network. DQN training is similar to the table Q-learning. To select the
direction vector the e-greedy approach is used. Since the neural network predicts vector Q(S
for all possible actions it is necessary to determine how to obtain the goal vector Quim.

Suppose that target vector Q(.9) is equal to basic values for all actions except for the action a;.
The task of the algorithm is to train the neural network on this target vector in such a way as
to change it’s weights so that only the value for a; is updated and they didn’t change for other
actions. This strategy is implemented by minimizing the error.

According to the algorithm, one minimization step requires one step of gradient descent
through the built in batch gradient descent function (batch-size) [9,10]. It implements the
ability to evaluate subsets of a fixed-size training sample [11]. In the considered algorithm, the
input is a subset of the training sample with a length of one element. The neural network training
developed by the algorithm is identical to the traditional approaches of the RL. However, for the
weights of the goal vector Q(S) to be updated with each training step o = 0.1 is assigned.

The training progress of the neural network is shown in Figs. 8 and 9.

The length of the UAV route by episode (DQN)
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Fig. 8. The length of the UAV flight paths by episodes in the process of training of the DQN
neural network

The plot shows an identical behaviour of the agent. It is the same as in the case of e-greedy
strategy. This is because the greedy policy was chosen to select the direction vector of the agent.

The graph differs from the one presented earlier. On the abscissa not the number of episodes
is shown but the reference points where the total rewards were averaged for every 100 training
episodes.

To evaluate the quality of the trained neural network model 300 verification episodes similar
to the classic RL approaches were generated. The probability of successfully calculated UAV
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Average total awards (DQN)
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Fig. 9. The total averaged rewards of the agent under the DQN policy of choosing direction
vector

routes is 97%. Fig. 10 shows an example of the optimal UAV route constructed using neural
network algorithm DQN.

Fig. 10. The optimal UAV path designed with deep Q-learning

4. Comparative characteristics of algorithms

The interactive cloud environment Google Colab was used for training and performing calcu-
lations. It has a GPU NVIDIA TESLA T4 with 16 GB of memory. The effectiveness of presented
algorithms was evaluated in terms of the following parameters [12]: training time, the average
length of the UAV flight route trajectory, the probability of successful route construction, and
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the minimum number of episodes before receiving the maximum reward. The simulation results

are presented in Tab. 3.

Table 3.
Min number Probability of
. Training time of episodes | Average path successful
Algorithm (hr:min:sec) to receive length, step | construction
Max award routes
Tradlt.lonal Less than 1 min. - 531 67
algorithm
Table Q-learning 6 min. 46 sec. 20000 200 88
e-greedy policy 16 min. 37 sec. 83000 205 92
DQN 22 hr. 14 min. 88000 250 97

The traditional algorithm requires the least training time. However, the probability of suc-
cessful route construction is much lower in comparison with OP algorithms. DQN requires more
time and considerable computing resources. For comparison, training without the use of a GPU
takes more than 2 days. However, the probability of successfully generated trajectories is close
to 100%.

Conclusion

The results of simulation prove that developed algorithms can be used to solve the problem of
constructing the optimal flight route of an unmanned aerial vehicle in the conditions of counter-
action. Each algorithm has its own advantages and disadvantages. Nevertheless, artificial neural
networks significantly outperform traditional algorithms in terms of the quality of obtained re-
sults. They can be used to solve more complex problems of the optimal route construction,

including the case of dynamically changing environment.
The work was partially supported by the Russian Science Foundation grant no. 22-21-00001.
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Amnnoranus. B crarbe npejicraBieHbl TPaAUIMOHHBIE U COBPEMEHHBIE aJITOPUTMbI K PEIIEHUIO 3a1a4n
IUTAHUPOBAHUS ONTUMAJBHOIO MAPIIPpyTa OECIMJIOTHOTO JIETATETLHOTO allapara B YCJIOBUSX BO3Iei-
CTBUS HA HEIO MAJIOBBICOTHBIX CUCTEM IPOTHBOBO3IYIIHONW 060poHbI. OnucaHbl MPUHIUAI PAbOTHI TIPeJI-
JIO?KEHHBIX CIIOCODOB, a TaKyKe HUCIOJIB3YIONIUECT B HUX HHCTPYMEHTHI. PaccMOTpEHBI KIacCuyuecKue mmojl-
XOZIbI OOYJIEHUsI C TMOAKPEIJIEHUEM U €r0 MOAMMUKAINS C UCIOJb30BAHUEM HCKYCCTBEHHBIX HEHPOHHBIX
cereii.

KuroueBrle cioBa: OeCIUIOTHBIN JIeTaTEIbHBIN allllapaT, NCKYyCCTBEHHbIe HEIPOHHBIE ceTH, NHPOPMa-
[IMOHHBIE TEXHOJIOTUH, NWHTEJLIEKTyaJbHbIE Ar€HThI, 00yUeHNEe C MOAKPEILIEHUEM.
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