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This is a survey of the results related to the holomorphic extension of functions given on the
boundary of a bounded domain D ⊂ Cn, n > 1 to this domain. The subject is not new. Results
about the extension of the Hartogs–Bochner type are well known and have already become
classical. They are the subject of many monographs and surveys (see, for example, Aizenberg
and Yuzhakov, Khenkin, Rudin, and many others [1–8]).

Here we will discuss functions with the one-dimensional holomorphic extension property along
complex lines and curves and also boundary multidimensional variants of the Morera theorem.
We desire to show how integral representations can be applied to the study of analytic continua-
tion of functions, in particular to multidimensional boundary analogues of the Morera theorems.

On a complex plane C the results on functions with a one-dimensional holomorphic extension
property are trivial, and the boundary Morera theorem is absent. Therefore most of the results
of the paper are essentially multidimensional.

The so-called Morera property is weaker than the one-dimensional holomorphic extension
property. The former consists in the vanishing of integrals of a given function over the intersection
of the boundary of the domain with complex lines (complex planes).

1. The Bochner-Green integral representation

We consider an n-dimensional complex space Cn with the variables z = (z1, . . . , zn). If z and
w are points in Cn, then we write

〈z, w〉 = z1w1 + · · ·+ znwn, |z| =
√
〈z, z̄〉,

where z̄ = (z̄1, . . . , z̄n). The topology in Cn is given by the metric (z, w) 7→ |z − w|. If z ∈ Cn,
then

Re z = (Re z1, . . . ,Re zn) ∈ Rn, Im z = (Im z1, . . . , Im zn) ∈ Rn.
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We write Re zj = xj and Im zj = yj , i.e., zj = xj + iyj for j = 1, . . . , n. Thus Cn ' R2n.
Orientation of Cn is determined by the coordinate order (x1, . . . , xn, y1, . . . , yn). Accordingly,
the volume form dv is given by

dv = dx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn = dx ∧ dy =
( i
2

)n

dz ∧ dz̄ =
(
− i

2

)n

dz̄ ∧ dz.

As usual, a function f on an open set U ⊂ Cn belongs to the space Ck(U), i.e., f ∈ Ck(U), if
f is k times continuously differentiable in U as 0 6 k 6 ∞ and C0(U) = C(U). The space O(U)
consists of those functions f that are holomorphic on the open set U . A function f belongs to
the space A(U), if f is holomorphic in U and continuous on the closure U , i.e., f ∈ O(U)∩C(U).

A domain D in Cn has a boundary ∂D of class Ck (we write ∂D ∈ Ck), if

D = {z ∈ Cn : ρ(z) < 0},

where ρ is the real-valued function of class Ck in some neighborhood of the closure of D, and the
differential dρ 6= 0 on ∂D. If k = 1, then we say that D is a domain with a smooth boundary. We
will call the function ρ a defining function for the domain D. The orientation of the boundary
∂D is induced by the orientation of D.

A domain D with a piecewise-smooth boundary ∂D will be understood as a smooth polyhe-
dron, that is, a domain of the form

D = {z ∈ Cn : ρj(z) < 0, j = 1, . . . ,m},

where the real-valued functions ρj are class C1 in some neighborhood of the closure D,
and for every set of distinct indices j1, . . . , js we have dρj1 ∧ · · · ∧ dρjs 6= 0 on the set
{z ∈ Cn : ρj1(z) = · · · = ρjs(z) = 0}. It is well known that the Stokes’s formula holds for such
domains D and surfaces ∂D.

We denote a ball of radius ε > 0 with the center at the point z ∈ Cn by

B(z, ε) = {ζ ∈ Cn : |ζ − z| < ε},

and its boundary by S(z, ε), i.e., S(z, ε) = ∂B(z, ε).
Consider the exterior differential form (the Bochner–Martinelli kernel) U(ζ, z) of type

(n, n− 1) given by

U(ζ, z) =
(n− 1)!

(2πi)n

n∑
k=1

(−1)k−1 ζ̄k − z̄k
|ζ − z|2n

dζ̄[k] ∧ dζ, (1.1)

where dζ̄[k] = dζ̄1 ∧ · · · ∧ dζ̄k−1 ∧ dζ̄k+1 ∧ · · · ∧ dζ̄n, dζ = dζ1 ∧ . . . ∧ dζn. When n = 1, the form

U(ζ, z) reduces to the Cauchy kernel
1

2πi
· dζ

ζ − z
. It is clear that the form U(ζ, z) has the

coefficients that are harmonic in Cn \ {z}, and it is closed with respect to ζ, i.e., dζU(ζ, z) = 0.
Let g(ζ, z) be a fundamental solution to the Laplace equation:

g(ζ, z) =


− (n− 2)!

(2πi)n
· 1

|ζ − z|2n−2
, n > 1,

1

2πi
ln |ζ − z|2, n = 1.

(1.2)

Then

U(ζ, z) =

n∑
k=1

(−1)k−1 ∂g

∂ζk
dζ̄[k] ∧ dζ = (−1)n−1∂ζg ∧

n∑
k=1

dζ̄[k] ∧ dζ[k], (1.3)
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where the operator ∂ is given by

∂ =

n∑
k=1

dζk
∂

∂ζk
.

We will write the Laplace operator ∆ in the following form:

∆ =

n∑
k=1

∂2

∂ζk∂ζ̄k
=

1

4

n∑
k=1

(
∂2

∂x2k
+

∂2

∂y2k

)
=

1

4
∆R.

If ζk = xk + iyk, then

∂

∂ζk
=

1

2

(
∂

∂xk
− i

∂

∂yk

)
,

∂

∂ζ̄k
=

1

2

(
∂

∂xk
+ i

∂

∂yk

)
.

When f ∈ C1(U), we define the differential form µf via

µf =

n∑
k=1

(−1)n+k−1 ∂f

∂ζ̄k
dζ[k] ∧ dζ̄.

Theorem 1.1 (Green’s formula in a complex form). Let D be a bounded domain in Cn with a
piecewise-smooth boundary, and let f ∈ C2(D). Then∫

∂D

f(ζ)U(ζ, z)−
∫
∂D

g(ζ, z)µf (ζ) +

∫
D

g(ζ, z)∆f(ζ) dζ̄ ∧ dζ =

{
f(z), z ∈ D,

0, z /∈ D,
(1.4)

where the integral in (1.4) converges absolutely. 2

2. The Bochner-Martinelli integral representation
Let us formulate some consequences of the Bochner–Green formula (1.4) for various classes

of functions f .

Corollary 2.1 (Bochner [9]). Let D be a bounded domain in Cn with a piecewise-smooth bound-
ary, and let f be a harmonic function in D of class C1(D). Then∫

∂D

f(ζ)U(ζ, z)−
∫
∂D

g(ζ, z)µf (ζ) =

{
f(z), z ∈ D,

0, z /∈ D.
(2.1)

Corollary 2.2 (Koppelman [10]). Let D be a bounded domain in Cn with a piecewise-smooth
boundary, and let f be a function in C1(D). Then

∫
∂D

f(ζ)U(ζ, z)−
∫
D

∂̄f(ζ) ∧ U(ζ, z) =

f(z), z ∈ D,

0, z /∈ D,
(2.2)

where

∂̄ =

n∑
k=1

dζ̄k
∂

∂ζ̄k
,

and the integral in (2.2) converges absolutely.

– 31 –



Simona G.Myslivets On the Multidimensional Boundary Analogue of the Morera Theorem

Formula (2.2) is the Bochner–Martinelli formula for smooth functions.

Corollary 2.3 (Bochner [9], Martinelli [11]). If D is a bounded domain in Cn with a piecewise-
smooth boundary, and f is a holomorphic function in D of class C(D), then

∫
∂D

f(ζ)U(ζ, z) =

f(z), z ∈ D,

0, z /∈ D.
(2.3)

Formula (2.3) was obtained by Martinelli, and later independently by Bochner by different
methods. It is the first integral representation for holomorphic functions in Cn where the inte-
gration is carried out over the whole boundary of the domain. By now this formula has become
classical and found its place in many textbooks on multidimensional complex analysis (see, for
example, [7, 8]).

Formula (2.3) reduces to Cauchy’s formula when n = 1, but unlike to Cauchy’s formula, the
kernel in (2.3) is not holomorphic in z and ζ when n > 1. By splitting the kernel U(ζ, z) into
real and imaginary parts, it is easy to show that∫

∂D

f(ζ)U(ζ, z)

is the sum of the double-layer potential and the tangential derivative of a single-layer potential.
Consequently, the Bochner–Martinelli integral inherits some of the properties of the Cauchy

integral and some of the properties of the double-layer potential. It differs from the Cauchy
integral in not being a holomorphic function, and it differs from the double-layer potential in
having a somewhat worse boundary behavior. At the same time, it establishes a relation between
harmonic and holomorphic functions in Cn when n > 1.

Formula (2.2) implies the jump theorem for the Bochner–Martinelli integral.
Let D be a bounded domain in Cn with piecewise-smooth boundary, and let f be a function

in C1(D). We consider the Bochner–Martinelli integral

Mf(z) =

∫
∂D

f(ζ)U(ζ, z), z /∈ ∂D. (2.4)

We will write M+f(z) for z ∈ D and M−f(z) for z /∈ D. The function Mf(z) is a harmonic
function for z /∈ ∂D and Mf(z) = O(|z|1−2n) as |z| → ∞.

Corollary 2.4. Under these conditions the function M+f has a continuous extension on D, the
function M−f has a continuous extension on Cn \D and

M+f(z)−M−f(z) = f(z), z ∈ ∂D. (2.5)

Formula (2.5) is the simplest jump formula for the Bochner–Martinelli integral. There exist
many jump theorems for different classes of functions: Hölder functions [12], continuous functions
[13,14], integrable functions [15,16], distributions, hyperfunctions [17].

3. Functions with the Morera property
along complex and real planes

Let D be a bounded domain in Cn (n > 1) with a connected smooth boundary ∂D of class
C2.
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Definition 3.1. We say that a continuous function f on ∂D (f ∈ C(∂D)) satisfies the Morera
property (condition) along a complex plane l of dimension k, 1 6 k 6 n− 1, if∫

∂D∩l

f(ζ)β(ζ) = 0 (3.1)

for any differential form β of type (k, k − 1) with constant coefficients.

It is assumed that the plane l transversally intersects the boundary of the domain D. If l is
a complex line intersecting ∂D transversally, then the Morera property along l consists of the
equality ∫

∂D∩l

f(z + bt)dt =

∫
∂D∩l

f(z1 + b1t, . . . , zn + bnt)dt = 0

for the given parametrization ζ = z + bt (z, b ∈ Cn, t ∈ C) of the complex line l.
Clearly, the boundary values of functions F ∈ A(D) (i.e., functions holomorphic in D and

continuous in the closure of the domain D) satisfy this property. Moreover, the same is true for
continuous CR-functions f on ∂D. Recall that

Definition 3.2. A function f ∈ C(∂D) is called a CR-function on ∂D if∫
∂D

f(ζ) ∂̄α(ζ) = 0 (3.2)

for all exterior differential forms α of type (n, n− 2) with coefficients of class C∞ in the D.

Conditions (3.2) are called the tangential Cauchy–Riemann equations.
The Hartogs–Bochner theorem, which is now classical, tells us that any continuous function

f on ∂D is a CR-function if and only if it is holomorphically extended to D up to a certain
function F ∈ A(D) (the boundary of D is connected).

Globevnik and Stout [18] considered the following inverse problem: let a function f ∈ C(∂D)
satisfy the Morera property (3.1) along any complex k-plane l intersecting ∂D transversally. Is
it true that f is a CR-function on ∂D?

Obviously, the greater the dimension k of the complex plane, the weaker the Morera property
along complex k-planes. Therefore, if the Morera property holds along all complex lines, so
it does along all complex hyperplanes. The following theorem is the first sufficiently general
assertion on the solution of this problem.

Theorem 3.1 (Globevnik, Stout [18]). Let 1 6 k 6 n− 1, and let a function f ∈ C(∂D) satisfy
the Morera property (3.1) along any complex k-plane l intersecting ∂D transversally, then f is a
CR-function on ∂D (and, therefore, it is holomorphically continued to D by the Hartogs–Bochner
theorem).

A more precise analysis shows that Theorem 3.1 holds for real planes. By definition, the
CR-dimension of a real plane l in Cn is the dimension of the maximal complex plane belonging
to l. Denote by dimR l and dimCR l the real dimension of the plane l and the CR-dimension of
l, respectively. Then, obviously,

max(0,dimR l − n) 6 dimCR l 6
[
dimR l

2

]
.

A continuous function f on ∂D satisfies the Morera condition along a real k-dimensional
plane l of CR-dimension p that transversally intersects the boundary ∂D if∫

∂D∩l

fβ = 0

for all (k − p, p− 1)-differential forms β with constant coefficients.
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Theorem 3.2 (Govekar [19]). Let 2 6 k 6 2n− 1 and max(1, k − n) 6 p 6 [k/2]. A continuous
function f on ∂D is a CR-function if and only if f satisfies the Morera property along any
k-dimensional plane l of CR-dimension p that intersects ∂D transversally.

In particular, for real hypersurfaces, the previous theorem yields the following assertion

Theorem 3.3 (Govekar [19]). A function f ∈ (∂D) is a CR-function on ∂D if and only if∫
∂D∩l

fβ = 0

for all real hyperplanes l intersecting ∂D transversally and for all differential forms β of type
(n, n− 2) with constant coefficients.

For complex k-planes l, we have dimR l = 2k and p = k, therefore, Theorem 3.2 transforms
into Theorem 3.1.

4. Functions with the Morera property and with
the one-dimensional holomorphic extension property
along complex lines

Let D be a bounded domain in Cn (n > 1) with a connected smooth boundary ∂D of class
C2. The classical Hartogs theorem asserts that any function f is holomorphic in the domain D if
its restriction to any complex line parallel to one of the coordinate complex lines is holomorphic.

The following natural question arises: for which sets of complex one-dimensional cross sections
of the domain does the existence of holomorphic continuations along the cross sections imply the
existence of a holomorphic continuation to the whole domain?

Consider one-dimensional complex lines l of the form

l = {ζ ∈ Cn : ζj = zj + bjt, j = 1, . . . , n, t ∈ C} (4.1)

passing through a point z ∈ Cn in the direction of a vector b ∈ CPn−1 (the direction of b is
determined with an accuracy of up to multiplication by a complex number λ 6= 0).

By Sard’s theorem, for almost all z ∈ Cn and almost all b ∈ CPn−1, the intersection l ∩ ∂D
is a finite set of piecewise-smooth curves (except for the degenerate case where ∂D ∩ l = ∅).

Let us give the following definition.

Definition 4.1. The function f ∈ C(∂D) has the one-dimensional holomorphic extension prop-
erty along complex lines l of the form (4.1) if for any line l such that ∂D ∩ l 6= ∅, there exists a
function F having the following properties:

1. F ∈ C(D ∩ l),

2. F = f on the set ∂D ∩ l,

3. the function F is holomorphic at interior (with respect to the topology of l) points of the
set D ∩ l.

An analogous definition can be made for complex k-planes. Clearly, if a function f satisfies
the holomorphic extension property along all complex k-planes, then it satisfies this property
along complex lines. Therefore, in what follows, we restrict ourselves to consideration of this
case. This property is a stronger property than the Morera property.
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Theorem 4.1 (Stout [20]). If a function f ∈ C(∂D) has the one-dimensional holomorphic
extension property along complex lines of the form (4.1), then f is holomorphically extended
into D.

A narrower set of complex lines sufficient for the holomorphic continuation was considered
by M. A.Agranovsky and A. M. Semenov [21].

Consider an open set V ⊂ D and a set LV of complex lines intersecting this set.

Theorem 4.2 (Agranovsky, Semenov [21]). If a function f ∈ C(∂D) has the one-dimensional
holomorphic extension property along lines from the set LV for a certain open set V ⊂ D, then
the function f is holomorphically extended into D.

The strengthening of the previous results consists of assertions dealing with the boundary
analogs of the Morera theorem, since they are completely implied by them. We now formulate
the assertion belonging to J. Globevnik and E. L. Stout (a special case of Theorem 3.1).

Theorem 4.3 (Globevnik, Stout [18]). Let a function f ∈ C(∂D), and for almost all z ∈ Cn

and almost all b ∈ CPn−1, let∫
∂D∩l

f(z + bt) dt =

∫
∂D∩l

f(z1 + b1t, . . . , zn + bnt) dt = 0. (4.2)

Then the function f is holomorphically extended into D to a function F ∈ C(D). (If ∂D ∩ l = ∅,
then the integral in (4.2) is assumed to be equal to zero.)

We note that without the connectedness condition of the boundary of the domain Theorem 4.3
is obviously false.

The problem of finding sufficient sets of complex lines L = {l} for which condition (4.2) for
l ∈ L implies a holomorphic extension of the function f to D was posed by Globevnik, Stout [18].
For example, is a set LV of lines l intersecting a certain open set V ⊂ D such a sufficient set?

Theorem 4.4 (Kytmanov, Myslivets [22, 23]). Let k be a fixed nonnegative integer and let a
function f ∈ C(∂D). If, for almost all z ∈ Cn and almost all b ∈ CPn−1, the condition∫

∂D∩l

f(z1 + b1t, . . . , zn + bnt)t
k dt = 0 (4.3)

holds, then f is holomorphically extended to D.

For k = 0, we obtain Theorem 4.3.

Theorem 4.5 (Kytmanov, Myslivets [22, 23]). For a fixed k and a function f ∈ C(∂D), let
condition (4.3) hold for almost all lines l (of the form (4.1)) intersecting an open set V ⊂ D (or
an open set V ⊂ Cn \D), then the function f is holomorphically extended into D.

Corollary 4.1. Let A be an algebraic hypersurface in Cn. If condition (4.3) for a function
f holds for almost all complex lines l intersecting A, then the function f is holomorphically
extended into D.

5. Holomorphic extension along complex curves
Consider classes of complex curves lz,b of the following types:

Type 1: algebraic curves

lz,b =
{
ζ ∈ Cn : ζ1 = z1 + tk1 , ζj = zj + bjt

kj , j = 2, . . . , n, t ∈ C
}
,
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where the constants kj ∈ N are fixed, j = 1, . . . , n, and the vector b = (1, b2, . . . , bn) ∈ Cn;
Type 2: complex curves of the form

lz,b =
{
ζ ∈ Cn : ζ1 = z1 + t, ζj = zj + bjt

kjχj(t), j = 2, . . . , n, t ∈ C
}
,

where χj(t) are the entire holomorphic functions of the variable t, and, moreover these functions
do not vanish at any point, j = 2, . . . , n;
Type 3: complex curves of the form

lz,b =
{
ζ ∈ Cn : ζ1 = z1 + tk1 , ζj = zj + bjt

kjχj(t
k1), j = 2, . . . , n, t ∈ C

}
, (5.1)

where χj(τ) are the entire complex functions of the variable τ that do not vanish at any point,
j = 2, . . . , n.

The third class of curves also contains curves of the form

lz,b = {ζ ∈ Cn : ζ1 = z1 + φ1(t), ζj = zj + bjφj(t), j = 2, . . . , n, t ∈ C} ,

where φj(t) are the entire functions of the variable t having one zero of the first order at the
point t = 0. Indeed, in this case, we can introduce a different parametrization taking the first
function φ1 as the parameter t.

Definition 5.1. A function f ∈ C(∂D) has the one-dimensional holomorphic extension property
along complex curves of the form lz,b if for any curve lz,b such that ∂D ∩ lz,b 6= ∅, there exists a
function Fz,b(t) having the following properties:

1. Fz,b ∈ C(D ∩ lz,b),

2. Fz,b = f on the set ∂D ∩ lz,b,

3. the function Fz,b is holomorphic with respect to t in interior (in the topology of lz,b) points
of the set D ∩ lz,b.

Therefore, this definition is completely analogous to that of functions with the one-
dimensional holomorphic extension property along lines.

Theorem 5.1 (Kytmanov, Myslivets [24]). Let ∂D ∈ C2, and a function f ∈ C(∂D) has the one-
dimensional holomorphic extension property along complex curves lz,b, then f is holomorphically
extended into D.

This assertion generalizes Stout’s Theorem 4.1 (see Theorem 2.1) on functions with the one-
dimensional holomorphic extension property along complex lines.

Let us dwell on sufficient families of curves lz,b the holomorphic extension along which can
ensure the holomorphic extension to the domain D. The first such family comprises the curves
lz,b with the point z belonging to a certain open set V ⊂ Cn \D, and b being any vector.

6. Morera theorem in classic domains
In this section, we consider the boundary variant of the Morera theorem for classic domains.

The starting point of this theorem is the result of Nagel and Rudin [25], which says that if a
function f is continuous on the boundary of a ball in CN and the integral∫ 2π

0

f(ψ(eiφ, 0 . . . , 0)) eiφ dφ = 0

for all (holomorphic) automorphisms ψ of the ball, then the function f is holomorphically ex-
tended to the ball.
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6.1. Classic domains

We recall definitions and introduce notation needed for further discussion. By a classic domain
D ⊂ CN , we understand an irreducible bounded symmetric domain of several complex variables
of one of the following four types:

1. The domain DI is formed by matrices Z consisting of m rows and n columns (entries of
matrices are complex numbers) and satisfying the condition

I(m) − ZZ∗ > 0.

Here, I(m) is the identity matrix of order m, Z∗ = Z
′
is the matrix complex-conjugate to

the transposed matrix Z ′, and, as usual, the inequality H > 0 for an Hermitian matrix H
means that this matrix is positive definite.

2. The domain DII is formed by symmetric (square) matrices Z of order n satisfying the
condition

I(n) − ZZ > 0.

3. The domain DIII is formed by skew-symmetric matrices Z of order n satisfying the condi-
tion

I(n) + ZZ > 0.

4. The domain DIV is formed by n-dimensional vectors z = (z1, . . . , zn) satisfying the condi-
tion

|zz′|2 + 1− 2z̄z′ > 0, |zz′| < 1.

The complex dimension of these four types of domains is equal to mn,
n(n+ 1)

2
,
n(n− 1)

2
,

and n, respectively. These domains are complete circular convex domains. In our case, the
domain D means a domain of one of the types presented above.

6.2. Morera theorem in classic domains

We define the class H1(D) as a class of all functions f holomorphic in D such that

sup
0<r<1

∫
S

|f(rζ)|dµ < +∞,

here, rζ = (rζ1, . . . , rζN ), and dµ is the normalized Lebesgue measure on the manifold S, which
is a Haar measure, and, therefore, it is invariant with respect to rotations.

For any function f in D and any ζ ∈ S consider a cut-function fζ in 4 = {t ∈ C : |t| < 1}
of the following form: fζ(t) = f(tζ). This cut-function allows us to relate certain N -dimensional
properties of the function f to one-dimensional properties of fζ .

Fix a point λ0 ∈ S (λ0 = (λ01, . . . , λ
0
N )) and consider the following embedding of a disk 4 in

the domain D:

{ζ ∈ CN : ζj = tλ0j , j = 1, . . . , N, |t| < 1}. (6.1)

Under this embedding, the boundary T of the disk 4 moves to a circle lying on S. If ψ is an
arbitrary (holomorphic) automorphism of the domain D (i.e., a biholomorphic self-map of the
domain D), then the set of the form (6.1) passes to a certain analytic disk with the boundary
on S under the action of this automorphism.
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Theorem 6.1 (Kytmanov, Kosbergenov, Myslivets [26]). If a function f ∈ C(S) satisfies the
condition ∫

T

f(ψ(tλ0)) dt = 0 (6.2)

for all automorphisms ψ of the domain D, then the function f is holomorphically extended into
D to a function F of class C(D).

7. Multidimensional analogue of Morera theorem
for continuous functions

This section contains some results related to the holomorphic extension of continuous func-
tions given on the boundary of a bounded domain to this domain. We consider functions that
satisfy the Morera property (Definition 3.1). So let us consider a set of complex lines intersecting
the germ of a real-analytic manifold of real dimension (2n− 2) to be a sufficient set.

Let D ⊂ Cn (n > 1) be a bounded domain with a connected smooth boundary of the form

D = {z ∈ Cn : ρ(z) < 0},

where ρ(z) is smooth real-valued function in a neighbourhood of the set D such that dρ
∣∣
∂D

6= 0.
Consider complex lines lz,b of the form (4.1)

lz,b = {ζ ∈ Cn : ζj = zj + bjt, j = 1, . . . , n, t ∈ C},

passing through the point z ∈ Cn in the direction of the vector b = {b1, . . . , bn} ∈ CPn−1 (the
direction b is determined up to multiplication by a complex number λ 6= 0).

Let Γ be the germ of a real-analytic manifold of real dimension (2n− 2).

Theorem 7.1 (Kytmanov, Myslivets [27]). Let a domain D ⊂ Cn satisfy a conditions

n∑
j=1

∂ρ

∂ζj
bj 6= 0,

for the points z, lying in the neighbourhood of a manifold Γ such that ∂D∩Γ = ∅. Let a function
f ∈ C(∂D) satisfy the generalized Morera property, i.e.,∫

∂D∩lz,b

f(z1 + b1t, . . . , zn + bnt)t
kdt = 0 (7.1)

for all z ∈ Γ , b ∈ CPn−1 and for a fixed integral non-negative number k. Then the function f
has the holomorphically extension into the domain D.

For k = 0 condition (7.1) takes us to the boundary Morera property∫
∂D∩lz,b

f(z1 + b1t, . . . , zn + bnt) dt = 0. (7.2)

Corollary 7.1. Let a domain D satisfy the conditions of Theorem 7.1, and a function f ∈ C(∂D)
satisfy condition (7.2) for all z ∈ Γ and b ∈ CPn−1, then f is holomorphically extended into the
domain D.
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8. Functions with the one-dimensional holomorphic
extension property in a ball

Historically, the first statements about the functions with the one-dimensional holomorphic
extension property along the complex lines were obtained in a ball by M.L. Agranovskiy and
R.E. Valskiy [31]. In the proof of their assertion, they used only the Morera property along
complex lines intersecting the ball. So, in fact, they got a boundary Morera theorem. The ball
thus became a model example, to obtain a series of statements, which were then extended to the
case of domains of a more general form.

A number of papers dealt with classes of complex lines (or curves), sufficient for holomorphic
extension into a ball. Thus, in the monograph by W.Rudin [6, Th. 12.3.11] it is shown that if
a function f ∈ C(∂B) (B is a unit ball in Cn centered at the origin) has the one-dimensional
holomorphic extension property along all complex lines that are lying at a distance r from the
center of the ball for 0 < r < 1, then this is a CR-function on ∂B. The proof is based on the
description of U-invariant subspaces of functions in the ball. This statement was generalized to
strictly convex domains with a real-analytic boundary by M. L. Agranovsky [32]. Finer families
of complex lines sufficient for holomorphic continuation, were studied in [33, 34]. J. Globevnik
[35] shows that a two-dimensional compact manifold of complex lines is a sufficient family for
holomorphic extension into C2.

M. L. Agranovsky and A. M. Semenov in [21] prove the following result. Let R be a smooth
analytic disc in Cn, ie, R = φ(4), where 4 is an open unit disc in the complex plane C, and
φ : 4 → Cn is a holomorphic map of class C1(4). Denote the Shilov boundary of R by γ, i.e.,
we put

Ω =
⋃

u∈U(n)

u(γ),

where U(n) is the group of unitary transformations in Cn. The set Ω is a spherical layer

Ω =

{
ζ : min

z∈γ
|z| 6 |ζ| 6 max

z∈γ
|z|

}
.

Theorem 8.1 (Agranovsky, Semenov [21]). Assume the following conditions to be fulfilled:

1. 0 /∈ R ∪ γ;

2. γ is not contained in any complex line in Cn, passing through 0.

Let f ∈ C1(Ω) and for any u ∈ U(n) the restriction f on u(γ) admit a holomorphic exten-
sion to u(R), which is smooth on u(R). Then f is holomorphic into Ω (and therefore extends
holomorphically in the corresponding ball).

As already noted, E.Grinberg [36] was the first to formulate the boundary Morera theorem
for a ball (in the case of complex lines). Although one of the assertions by Nagel and Rudin [44]
can also be treated as a boundary Morera theorem.

We present one of the theorems, in which the class of complex lines is significantly narrowed.

Theorem 8.2 (Globevnik, Stout [18]). Consider a unit ball B ⊂ C2. Suppose that the given
number r, 0 < r < 1, is such that the expression r−1(1− r2)1/2 is not a root of any polynomial
with integer coefficients. Assume that the function f ∈ C(∂B) and satisfies the Morera property
along all complex lines lying at a distance r from the center of the ball, then f extends to B as
a function from A(B).

Example 8.1. Consider the example from [18], showing that the condition in Theorem 8.2

is essential. Let r =
(3
5

)1/2

. Then the function g(z, z̄) = z31 z̄
2
2 has the Morera property along
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any complex line lying at a distance r from the center of the ball, but obviously, g does not
extend holomorphically in B from the boundary ∂B.

Indeed, the calculations in Theorem 8.2, show that∫ π

−π

(eiαρ+ eiθt(r2 − ρ2)1/2e−iω)3(e−iα(r2 − ρ2)1/2e−iω − e−iθtρ)2eiθdθ =

= 2π(r2 − ρ2)1/2(eiα)1/2(e−iω)ρ3 ·
[(

3

0

)(
2

1

)
t(−1)1 +

(
3

1

)(
2

2

)
t3(−1)2

]
=

= 2π(r2 − ρ2)1/2e2iαe−iωρ3(−2t+ 3t3) = 0,

since −2t+ 3t3 = t

(
3
(
1− 3

5

)5
3
− 2

)
= 0.

Recently M. L. Agranovsky [37] and J. Globevnik [29] have shown that a family of complex
lines passing through two fixed points in D is sufficient for holomorphic extension for real-analytic
functions on the boundary of a ball. A family of complex lines passing through one point on the
boundary of a ball was proved to be sufficient for holomorphic extension by L. Barakko [38].

Theorem 8.3 (Baracco [38]). Let the point z0 ∈ ∂B, and the function f be of class Cω(∂B),
and suppose that f extends holomorphically from ∂B along each line passing through z0. Then
f extends holomorphically to B.

9. On a boundary analogue of Hartogs’ theorem in a ball
We emphasize here the papers which show that a family of complex lines passing through a

finite number of points arranged in some way is sufficient for holomorphic extension. However
this is only asserted for real-analytic or infinitely differentiable functions defined on the boundary
of a ball. So, Agranovsky and Globevnik showed that, in C2, for real-analytic functions defined
on the boundary of a ball just two points lying in the closure of the ball are enough.

9.1. Main results
Let B = {z ∈ Cn : |z| < 1} be a unit ball in Cn centered at the origin and let S = ∂B be the

boundary of the ball. We will further say that the function f ∈ C(S) has the one-dimensional
holomorphic extension property along the family LΓ, if it has the one-dimensional holomorphic
extension property along any complex line lz,b ∈ LΓ, where lz,b be the complex line of the
form (4.1).

We will also say that the set LΓ is sufficient for holomorphic extension, if the function f ∈
C(S) has the one-dimensional holomorphic extension property along all complex lines in the
family LΓ, and the function f holomorphically extends to B (i.e., f is a CR-function on S).
In [23, 39–41] it is shown that for a class of continuous functions given on the boundary of
a ball a family of complex lines passing through finite points in the ball will be a sufficient
family. Baracco was the first to prove this result, which was earlier explicitly conjectured by
Agranovsky [37]. Globevnik [40] suggested an alternative proof, even for the case when the
vertices lie outside the ball. Those results were obtained by completely different methods.

Theorem 9.1 (Kytmanov, Myslivets [41]). Suppose n = 2 and the function f(ζ) ∈ C(S) has
the one-dimensional holomorphic extension property along the family L{a,c,d}, and the points
a, c, d ∈ B do not lie on one complex line in C2, then f(ζ) extends holomorphically into B.

We denote by A a set of points ak ∈ B ⊂ Cn, k = 1, . . . , n + 1, lying outside the complex
hyperplane Cn.
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Theorem 9.2 (Kytmanov, Myslivets [41]). Let a function f(ζ) ∈ C(S) has the one-dimensional
holomorphic extension property along the family LA, then f(ζ) extends holomorphically into B.

9.2. The example
Now we give an example based on the Globevnik’s example which shows that for continuous

functions on the boundary S of the family LA, where A is a set of points ak ∈ B ⊂ Cn,
k = 1, . . . , n is not enough for holomorphic extension.

Consider a part of a complex hyperplane

Γ = {(z′, w) ∈ B : w = 0},

in the ball B = {(z′, w) ∈ Cn : |z′|2 + |w|2 < 1}, where z′ = (z1, . . . , zn−1), w ∈ C and

|z′|2 = |z1|2+ · · ·+ |zn−1|2. Then the function f =
wk+2

w̄
(k ∈ Z, k > 0) has the one-dimensional

property of holomorphic extension from ∂B along the complex line of the family LΓ , which is
smooth on ∂B, but does not extend holomorphically to B.

Consider complex lines intersecting Γ :

la′ = {(z′, w) ∈ Cn : z′ = a′ + b′t, w = ct, t ∈ C}. (9.1)

These lines pass through the point (a′, 0) ∈ Γ . When |a′| < 1 the point (a′, 0) ∈ B, while for
|a′| > 1 the point (a′, 0) /∈ B. Without loss of generality, we suppose that |b′|2 + |c|2 = 1. The
intersection la′ ∩ ∂B forms a circle

|t|2 + 〈a′, b̄′〉t̄+ 〈ā′, b′〉t = 1− |a′|2, or |t+ a′b̄′|2 = 1− |c|2|a′|2, (9.2)

where 〈a′, b′〉 = a1b1 + · · ·+ an−1bn−1.
Indeed, since for complex lines of the form (9.1) on ∂B

t̄ =
1− |a′|2 − 〈ā′, b′〉t

t+ 〈a′, b̄′〉
,

the function f on ∂B becomes

f =
(t+ 〈a′, b̄′〉)

1− |a′|2 − 〈ā′, b′〉t
· (ct)k+2.

The denominator of the fraction is equal to 0 at t0 =
1− |a′|2

〈ā′, b′〉
. Substituting this point into the

expression (9.2), we obtain

(1− |a′|2)2

|〈a′, b〉|2
+ 1− |a′|2 > 0, if |a′| < 1.

Therefore the point of the line la′ , corresponding to t0, lies outside the ball B. So the function
f holomorphically extends to la′ ∩ B. Consider the finite set A = {a1, . . . , an−1, 0} ∈ B, then
there exists a complex hyperplane containing A. We can suppose that this is the hyperplane Γ .

10. On the functions with one-dimensional holomorphic
extension property in circular domains

Recently, we obtained similar results for circular domains with the Nevanlinna property.
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The above definition and statement will be applied to bounded domains G with a boundary
of class C2, therefore (due to the principle of correspondence of boundaries) the function k(τ)
extends to ∆ as a function of class C1(∆) and k̃(τ) extends to C\∆ as a function of class C(C\∆).

Therefore, in whole, the function t̄ =
u(τ)

v(τ)
is a meromorphic function in C. There are various

example of domains with the Nevanlinna property. For example, if ∂G is a real-analytic, then
k(τ) is a rational function with no poles on the closure ∆.

In our further consideration we will need the domain G to possess the strengthened Nevanlinna
property, that is the function u1(τ) 6= 0 in C \∆ and k̃ has at infinity zero of no more than first

order. If G = ∆ then τ =
1

τ
on ∂∆. Therefore, the meromorphic function

1

τ
has a zero of the

first order at ∞.
For example, such domains include domains for which k(τ) is a rational function with no

poles on ∆ and no zeros in C \∆.
We will say that a domain D ⊂ Cn possess the strengthened Nevanlinna property in the point

z ∈ D if the section D ∩ lz,b possess the strengthened Nevanlinna property for any b ∈ CPn−1.

Theorem 10.1 (Kytmanov, Myslivets [42]). Let n = 2 and D be a bounded strictly convex
circular domain with twice smooth boundary and possess the strengthened Nevanlinna property
in the points a, c, d ∈ D and the function f(ζ) ∈ C(∂D) have the one-dimensional holomorphic
extension property along the family L{a,c,d}, and the points a, c, d do not lie on one complex line
in C2, then the function f(ζ) extends holomorphically into D.

We denote by A the set of points ak ∈ D ⊂ Cn, k = 1, . . . , n + 1, which do not lie on the
complex hyperplane in Cn.

Theorem 10.2 (Kytmanov, Myslivets [42]). Let D be a bounded strictly convex circular domain
with twice smooth boundary in Cn and possess the strengthened Nevanlinna property in the points
from the set A and the function f(ζ) ∈ C(∂D) have the one-dimensional holomorphic extension
property along the family LA, then the function f(ζ) extends holomorphically into D.

11. The functions with the boundary Morera properties
in domains with piecewise-smooth boundary

We also obtained an analog of Theorem 7.1 for domains with a piecewise-smooth boundary.
Let D be a bounded domain in Cn (n > 1) with a connected piecewise-smooth boundary ∂D.

Theorem 11.1 (Kytmanov, Myslivets [43]). Let D be a bounded domain in Cn (n > 1) with a
connected piecewise-smooth boundary and let k be a fixed nonnegative integer and let a function
f ∈ C(∂D). If for almost all z ∈ Cn and almost all b ∈ CPn−1 the condition∫

∂D∩lz,b

f(z1 + b1t, . . . , zn + bnt)t
k dt = 0, (11.1)

holds, then f is holomorphically extended into D.
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О многомерных граничных аналогах теоремы Морера
Симона Г.Мысливец

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. Мы обсуждаем функции со свойством одномерного голоморфного продолжения
вдоль прямых и кривых, а также граничные многомерные варианты теоремы Мореры. Мы хо-
тим показать, как интегральные представления могут быть применены к изучению аналитического
продолжения функций, в частности к многомерным граничным аналогам теорем Мореры.

Ключевые слова: свойство одномерного голоморфного продолжения, многомерные варианты
теоремы Морера.
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