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Abstract. Spectral problems for stationary unidirectional convective flows in vertical heat exchangers
at various boundary temperature conditions are considered. The constant temperature gradient on the
vertical walls is used as a spectral parameter. The heat exchanger cross-section can be of an arbitrary
shape. The general properties of the spectral problem solutions are established. Solutions are obtained
in an analytical form for rectangular and a circular cross sections. The critical values of temperature
gradient at which convective flow arises are found. The corresponding vertical velocity profiles are
constructed. The properties of solutions of a new transcendental equation for the spectral values are
studied.
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1. Problem formulation

The system of equations for convective motion in the Oberbeck–Boussinesq approximation
has the form [1]

ut + (u · ▽)u+
1

ρ
▽ p = ν∆u+ gβθe, (1.1)

divu = 0, (1.2)

θt + u · ▽θ = χ∆θ. (1.3)

Here u=(u1(x, y, z, t), u2(x, y, z, t), u3(x, y, z, t)) is the velocity vector, p(x, y, z, t) is the mod-
ified pressure, θ(x, y, z, t) is temperature; ρ, ν, g, β, χ are density, kinematic viscosity, gravity
acceleration, the coefficients of thermal expansion and thermal diffusivity of the medium, respec-
tively. e = (0, 0,−1) is unit vector. Thus the gravity acceleration is directed in the opposite
direction to the z axis.
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System (1.1)–(1.3) admits operator ∂z −A(∂θ + ρgβz∂p) with the constant A. This operator
has invariants x, y, t, u1, u2, u3, p+ρgβz2/2, θ+Az. Then invariant solutions of rank three should
be sought in the form [1]

u = (u(x, y, t), v(x, y, t), w(x, y, t)),

p = −ρgβAz
2

2
+ q(x, y, t), (1.4)

θ = −Az + T (x, y, t).

Substitution of (1.4) into (1.1)–(1.3) results in the system that contains only the invariants

ut + uux + vuy +
1

ρ
qx =ν(uxx + uyy),

vt + uvx + vvy +
1

ρ
qy =ν(vxx + vyy),

ux + vy =0;

(1.5)

wt + uwx + vwy =ν(wxx + wyy) + ρgβT,

Tt + uTx + vTy =Aw + χ(Txx + Tyy).
(1.6)

Equations (1.5) are Navier–Stokes system for plane motion of purely viscous fluid. The exact
solutions for the system were found [2, 3]. Therefore, our attention is focussed on system (1.6)
(so far without considering the problems with interfaces).

Suppose that u = v = 0, q = q(t), then (1.6) is converted into the system of linear parabolic
equations. Its stationary solution satisfies the following equations

ν∆w + ρgβT = 0, (1.7)

χ∆T +Aw = 0,

where ∆ = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator. Equations (1.7) are satisfied in a certain
region Ω on the plane x, y with boundary Γ. Here we consider two boundary conditions on Γ,
namely, the boundary condition of the first kind

w = 0, T = 0 (1.8)

and the boundary condition of the third kind

w = 0, k
∂T

∂n
+ bT = 0, (1.9)

where k > 0 is the constant thermal conductivity coefficient of fluid, b > 0 is the constant heat
transfer coefficient.

Boundary value problems (1.7), (1.8) or (1.7), (1.9) are spectral problems. Here the temper-
ature gradient A is the spectral parameter. For all A the trivial solution satisfies these problems.
The question arises: at what values of A there is a nontrivial solution of spectral problems (1.7),
(1.8) or (1.7), (1.9)? We are also interested in the minimum value of spectral parameter A.

2. Some general properties of spectral problems

We note that for both problems A ̸= 0, otherwise w ≡ 0 and T ≡ 0. Let us consider spectral
problem (1.7), (1.8). The following lemma holds
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Lemma 1. The eigenfunctions of spectral problem (1.7), (1.8) are real functions, and the eigen-
values are always positive. The eigenfunctions corresponding to different eigenvalues are orthog-
onal functions in the sense of space L2(Ω).

Proof. Let us show that the parameter A can take only real values. Let w(x, y) = w1(x, y)+
+iw2(x, y), T (x, y) = T1(x, y) + iT2(x, y). We multiply the first equation of system (1.7) by
w(x, y) and the second equation by T (x, y) (here the bar denotes the complex conjugate), inte-
grate them over Ω and combine the results. Then we obtain∫

Ω

(Tw + Tw)dxdy =
ν

ρgβ

∫
Ω

|▽w|2 dxdy + χ

A

∫
Ω

|▽T |2 dxdy (2.1)

Relation (2.1) was obtained with the use of the vector analysis formula adivb = div(ab) −
▽a · b, a,b ∈ C1(Ω), the Gauss–Ostrogradsky theorem and the fact that A ̸= 0. It is clear that
Tw + Tw is a real function. It follows from (2.1) that A ∈ R1. Further, if w0(x, y), T0(x, y) are
eigenfunctions corresponding to the eigenvalue A0 ∈ R1 then separating the real and imaginary
parts in (1.7), (1.8), we obtain that they are eigenfunctions of the same spectral problem. In
other words, one can assume that w = w, T = T .

Similar reasoning results in the following relation

ν

ρgβ

∫
Ω

|▽w|2 dxdy − χ

A

∫
Ω

|▽T |2 dxdy = 0.

Then we have

A = ρgβχν−1

∫
Ω

|▽T |2 dxdy∫
Ω

|▽w|2 dxdy
> 0. (2.2)

Let us turn to the proof of the orthogonality of eigenfunctions. Let us reduce system (1.7) to
one equation for w(x, y)

∆∆w = λw, (x, y) ∈ Ω (2.3)

with boundary conditions of the first kind (1.8). It means that w = 0, ∆w = 0, (x, y) ∈ Γ. The
following notation was introduced

λ =
ρgβ

νχ
A. (2.4)

Let us assume that λ1 ̸= λ2 (A1 ̸= A2) are eigenvalues and w1(x, y), w2(x, y) corresponding
eigenfunctions. Then ∆∆w1,2 = λ1,2w1,2, (x, y) ∈ Ω and w1,2 = 0, ∆w1,2 = 0 on the bound-
ary Γ. We have w2∆∆w1−w1∆∆w2 = div(w2▽∆w1−w1▽∆w2)+▽w1 ·▽∆w2−▽w2 ·▽∆w1.
Then we have∫

Ω

(w2∆∆w1 − w1∆∆w2)dxdy =

=

∫
Ω

[▽w1 ·∆(▽w2)−▽w2 ·∆(▽w1)]dxdy = (λ1 − λ2)

∫
Ω

w1w2dxdy (2.5)

because w1,2 = 0 on Γ and ▽(∆u) = ∆(▽u) for any u ∈ C2(Ω). Let us write the expression in
square brackets under the integral in the form

∂w1

∂x
∆

(
∂w2

∂x

)
− ∂w2

∂x
∆

(
∂w1

∂x

)
+
∂w1

∂y
∆

(
∂w2

∂y

)
−

− ∂w2

∂y
∆

(
∂w1

∂y

)
+
∂w1

∂z
∆

(
∂w2

∂z

)
− ∂w2

∂z
∆

(
∂w1

∂z

)
. (2.6)
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Using the vector analysis formula∫
Ω

(ϕ∆ψ − ψ∆ϕ)dΩ =

∫
Γ

(
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
dΓ,

where n is the outer normal to the boundary Γ, for the first two terms in (2.6) we have

∫
Ω

[
∂w1

∂x
∆

(
∂w2

∂x

)
− ∂w2

∂x
∆

(
∂w1

∂x

)]
dxdy =

=

∫
Γ

[
∂w1

∂x

∂

∂n

(
∂w2

∂x

)
− ∂w2

∂x

∂

∂n

(
∂w1

∂x

)]
dΓ. (2.7)

Let us show that the integral over Γ in (2.7) is equal to zero if w1,2(x, y) = 0 on Γ. Let (x0, y0)
be an arbitrary point on the line Γ. Let us choose the local rectangular coordinate system ξ, η
with the origin at the point (x0, y0), directing the η axis along the normal n [4]. In the vicinity
of the origin ξ = 0, η = 0 (point (x0, y0)) the line Γ is defined by the equation η = f(ξ) ∈ C2

and f(0) = 0, f ′(0) = 0. The latter is because f(ξ) is tangent to Γ at the point (0, 0). Then we
have

∂

∂x
=

∂

∂ξ
+ f ′(ξ)

∂

∂η
,

∂

∂n
=

∂

∂η
.

Therefore, the integrand on the right-hand side of (2.7) takes the form

(
∂w1

∂ξ
+ f ′(ξ)

∂w1

∂η

)(
∂2w2

∂η∂ξ
+ f ′(ξ)

∂2w2

∂η2

)
−
(
∂w2

∂ξ
+ f ′(ξ)

∂w2

∂η

)(
∂2w1

∂η∂ξ
+ f ′(ξ)

∂2w1

∂η2

)
=

=
∂w1

∂ξ

∂2w2

∂η∂ξ
− ∂w2

∂ξ

∂2w1

∂η∂ξ
≡ I(x0, y0) (2.8)

at the point ξ = 0, η = 0 or x0, y0. Since near the point (x0, y0) ∈ Γ we have w1,2(ξ, f(ξ)) = 0
then ∂w1,2/∂ξ = 0 at this point and I(x0, y0) ≡ 0. One can prove in a similar way that integrals
over Ω of the remaining two terms in (2.6) are equal to zero. Then it follows from (2.5) that
eigenfunctions w1 and w2 are orthogonal functions in the sense of L2(Ω). Orthogonality of
T1(x, y), T2(x, y) is beyond doubt. Lemma 1 is proved.

Remark 1. To prove the orthogonality the boundary condition w|Γ = 0 (or T |Γ = 0) is only
needed.

Lemma 2. The eigenfunctions of spectral problem (1.7), (1.9) are real, and eigenvalues are al-
ways positive. The eigenfunctions corresponding to different eigenvalues are orthogonal functions
in the sense of the space L2(Ω).

Proof is similar to the proof of Lemma 1. Here, instead of (2.2) we obtain the following
formula for the spectral parameter

A = ρgβχν−1 ·

∫
Ω

|▽T |2 dxdy + bk−1
∫
Γ

T 2dxdy∫
Ω

|▽w|2 dxdy
> 0. (2.9)

So eigenvalues are positive functionals of w and T defined by expressions (2.2), (2.9): A =

A(w, T ). One needs to find minimum values of A, that is, one needs to find A0 = min
w ̸=0,T ̸=0

A(w, T ).

In the following paragraphs, this problem is solved for two practically important cross sections,
when Ω is a rectangle or a circle.
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3. The solution of spectral problem in the case of a rectan-
gular cross-section

Let us consider a rectangular domain Ω with boundary Γ:

Ω = {0 < x < l1, 0 < y < l2}, (3.1)

Γ = {x = 0} ∪ {x = l1} ∪ {y = 0} ∪ {y = l2}.

Let us solve system (1.7) in the region Ω with boundary condition (1.8). Expressing w from
the second equation in (1.7) and substituting it into the first equation in (1.7), we obtain

∆2T =
Aρgβ

νχ
T = λT. (3.2)

Let us use the separation of variables. We seek a solution of equation (3.2) in the form
T (x, y) = P (x)F (y). Substituting the form into (3.2), we obtain

P ′′(x) = µ1P (x),

F (4)(y) + 2µ1F
′′(y) = (λ− µ2

1)F (y).
(3.3)

The original boundary conditions of the problem are reduced to

P (0) = P (l1) = 0, F (0) = F (l2) = 0. (3.4)

Solving system (3.3) with the boundary conditions (3.4), we find

Pn(x) = sin
πn

l1
x, Fm(y) = sin

πm

l2
y; n,m = 1, 2, . . . (3.5)

Hence, taking into account the orthonormalization, we obtain the following solutions

Tnm =Anm sin
πn

l1
x sin

πm

l2
y, wnm = Bnm sin

πn

l1
x sin

πm

l2
y,

Anm =
2√
l1l2

, Bnm =
2A

χ
√
l1l2

((
πn

l1

)2

+

(
πm

l2

)2
)−1

.

(3.6)

In this case, the eigenvalue is λnm = π
√
n2/l21 +m2/l22. Then the smallest eigenvalue is

λ11 = πl−1
1

√
1 + l2, where l = l1/l2. From here we determine the minimum value of the spectral

parameter A0 = πνχ(ρgβl1)
−1

√
1 + l2.

Fig. 1 shows the vertical velocity profile w11 as a function of dimensionless coordinates (ξ, η),
where ξ = x/l1, η = y/l2. The fluid flow rate is not equal to zero, so fluid moves in one direction.

If boundary conditions (1.8) are replaced by conditions (1.9) and b = 0 (that is, the wall is
thermally insulated), we have the following problem

ν∆w + ρgβT = 0,

χ∆T +Aw = 0, (x, y) ∈ Ω; (3.7)

w = 0,
∂T

∂n
= 0, (x, y) ∈ Γ.
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Fig. 1. The velocity profile w11 for problem (1.7), (1.8)

Solving this problem, one can obtain the eigenfunctions

Tnm = Anm cos
πn

l1
x cos

πm

l2
y, wnm = Bnm cos

πn

l1
x cos

πm

l2
y,

Anm =
2√
l1l2

, Bnm =
2A

χ
√
l1l2

((
πn

l1

)2

+

(
πm

l2

)2
)−1

.

(3.8)

The eigenvalues of the problem are λnm = π
√
n2/l21 +m2/l22. The smallest eigenvalue is

attained at n = m = 1. The minimum value of spectral parameter is A0 = πνχ(ρgβl1)
−1

√
1 + l2.

Note that the minimum value of spectral parameters of both problems coincide.
Fig. 2 shows the vertical velocity profile w11 as a function of dimensionless coordinates (ξ, η),

where ξ = x/l1, η = y/l2. In this case fluid moves in different directions since the flow rate is
equal to zero.

4. The solution of spectral problem in the case of a circular
cross-section

Let us consider domain Ω in the form of a circle with boundary Γ

Ω = {x2 + y2 < a2}, (4.1)

Γ = {x2 + y2 = a2}.

Using the change of variables x = r cosϕ, y = r sinϕ, 0 6 ϕ 6 2π, 0 6 r 6 a, domain Ω and
boundary Γ take the form

Ω = {r, ϕ |r < a, ϕ ∈ [0, 2π]},

Γ = {r, ϕ |r = a, ϕ ∈ [0, 2π]}.
(4.2)
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Fig. 2. The velocity profile w11 for problem (1.7), (1.9)

Problem (1.7) in domain Ω with boundary condition (1.8) have the form

ν

(
wrr +

1

r
wr +

1

r2
wϕϕ

)
+ ρgβT = 0,

χ

(
Trr +

1

r
Tr +

1

r2
Tϕϕ

)
+Aw = 0, (r, ϕ) ∈ Ω;

w = 0, T = 0, (r, ϕ) ∈ Γ.

(4.3)

To solve problem (4.3) approach used to solve the problem for a rectangular cross-section
is followed. Expressing w from the second equation in (4.3) and substituting it into the first
equation in (4.3), we obtain

∆2T = λT ; λ =
Aρgβ

νχ
. (4.4)

Let us use the separation of variables. The solution of equation (4.4) is sought in the form
T (r, ϕ) = P (r)F (ϕ). Substituting this solution into (4.4), we obtain

F ′′ + d2F = 0, (4.5)

r4P (4) + 2r3P ′′′ − r2(1 + 2d2)P ′′ + r(1 + 2d2)P ′ − (λr4 − d2(d2 − 4))P = 0.

Because F must be a single-valued function (F (0) = F (2π)) coefficient d must be an integer,
that is, d = n. The solution of the first equation in (4.5) is Fn(ϕ) = D1 cosnϕ+D2 sinnϕ. The
solution of the second equation in (4.5) is Pn(r) = A1Jn(kr)+A2Yn(kr)+A3In(kr)+A4Kn(kr),
where k = (λ)

1
4 [5]. Thus, the solution of problem (4.4) has the form Tn(r, ϕ) = (A1Jn(kr)+

+A2Yn(kr) +A3In(kr) +A4Kn(kr))(D1 cosnϕ+D2 sinnϕ).
Let us find the unknown constants Ai, i = 1, 4. The natural requirement is |T (0, ϕ)| < ∞.

Functions Yn, Kn are not bounded at the point 0 so we obtain A2 = A4 = 0. Further, the
boundary condition T = 0 on Γ of the original problem is written as

A1Jn(ka) +A3In(ka) = 0. (4.6)
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The boundary condition w = 0 on Γ results in the relation ∆T = 0, r = a. The last expression
can be represented as P ′′F + r−1P ′F + r−2PF ′′ = 0. Because F = D1 cosnϕ + D2 sinnϕ we
have the following condition

P ′′ +
1

r
P ′ − n2

r2
P = 0, r = a.

Substituting P (r) into the previous relation, we arrive at the equality

A1(J
′′
n(kr) +

1

r
J ′
n(kr)−

n2

r2
Jn(kr)) +A3(I

′′
n(kr) +

1

r
I ′n(kr)−

n2

r2
In(kr)) = 0, r = a.

Using recurrent formulas for the Bessel functions, the last condition is reduced to the following
equality

−A1Jn(ka) +A3In(ka) = 0. (4.7)

To find two unknown constants A1 и A3 one should solve the system of two homogeneous
equations (4.6) and (4.7) so A3 = 0 and Jn(ka) = 0. Then k = ξ

(i)
n /a, where ξ(i)n − is the i-th

zero of the Bessel function of order n. In our notation we obtain k4 = λ = ρgβA
(i)
n ν−1χ−1. It

means that A(i)
n = νχ

(
ξ
(i)
n

)4 (
ρgβa4

)−1.

The spectral parameter takes the minimum value at the minimum value of ξ(i)n . It is achieved
at i = 1, n = 1. This follows from the property of zeros of the Bessel functions ξ(1)n < < ξ

(1)
n+1 <

ξ
(2)
n < ξ

(2)
n+1 < . . . [6]. Therefore A0 = νχ

(
ξ
(1)
1

)4 (
ρgβa4

)−1
, ξ

(1)
1 = 3.83171.

Finally, the solutions of problem (4.3) are

Tni = BniJn

(
ξ
(i)
n r

a

){
cosnϕ

sinnϕ

}
, (4.8)

wni = Dni
χ

A

(
a

ξ
(i)
n

)2

Jn

(
ξ
(i)
n r

a

){
cosnϕ

sinnϕ

}
.

Fig. 3 shows the profile of vertical velocity w11. Fluid flow rate is equal to zero so it moves
in different directions .

Normalization of functions (4.8) gives the constants

Bni =
2

a2
[
Jn+1(ξ

(i)
n )
]2 , Dni =

2A(ξ
(i)
n )2

χa4
[
Jn+1(ξ

(i)
n )
]2 . (4.9)

In our case, it is necessary to take n, i = 1.
Let us consider system (4.3) in region (4.2) with boundary conditions (1.9) with b = 0

ν

(
wrr +

1

r
wr +

1

r2
wϕϕ

)
+ ρgβT = 0,

χ

(
Trr +

1

r
Tr +

1

r2
Tϕϕ

)
+Aw = 0, r ∈ [0, a], ϕ ∈ [0, 2π]; (4.10)

w = 0,
∂T

∂r
= 0, r = a, ϕ ∈ [0, 2π]

Solving this problem in the same manner as for problem (4.3), we obtain that the eigenfunction

Tn has the form Tn(r, ϕ) = (C1Jn(kr) + C3In(kr))

{
cosnϕ

sinnϕ

}
. The conditions for finding
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Fig. 3. The profile of velocity w11 for problem (4.3)

unknown constants C1, C3 are

−C1Jn(ka) + C3In(ka) = 0 , (4.11)

C1J
′
n(ka) + C3I

′
n(ka) = 0 .

The solvability condition for system (4.11) is

Jn(ka)I
′
n(ka) + J ′

n(ka)In(ka) = 0. (4.12)

Equation (4.12) is reduced to an expression without derivatives

Jn(ka)In+1(ka)− Jn+1(ka)In(ka) +
2n

ka
Jn(ka)In(ka) = 0. (4.13)

The properties of solutions of this equation are presented in the next subsection. In particular,
solutions are real and positive. Let us denote the i-th root of equation (4.13) by γ(i)n = ka. There
are infinitely many roots. Hence, the spectral parameter A is

Ai
n =

νχ

ρgβa4

(
γ(i)n

)4
. (4.14)

Returning to system (4.11), we find that C3 = A1Jn

(
γ
(i)
n

)/
In

(
γ
(i)
n

)
. Finally, we obtain

that eigenfunctions of problem (4.10) are

Tni = Bni
C1

In

(
γ
(i)
n

) [In (γ(i)n

)
Jn

(
γ
(i)
n r

a

)
+ Jn

(
γ(i)n

)
In

(
γ
(i)
n r

a

)]{
cosnϕ

sinnϕ

}
, (4.15)

wni = Dni
χ

A

(
a

γ
(i)
n

)2
C1

In

(
γ
(i)
n

) [In (γ(i)n

)
Jn

(
γ
(i)
n r

a

)
+ Jn

(
γ(i)n

)
In

(
γ
(i)
n r

a

)]{
cosnϕ

sinnϕ

}
.
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To find the minimum value of spectral parameter A0, one need to choose the smallest root
of equation (4.13). Unfortunately, in the well-known reference books [6, 7, 8] there is no solution
of this equation so the roots were determined numerically. It was obtained that the magnitude
of roots increases with their number and with an increase of the order of the Bessel function.
Also the numerical results show that the equation has no complex roots, which is consistent with
Lemma 2.

Thus, the root γ(1)0 = 4.6109 should be chosen since it is the smallest root of equation (4.13).

So we have A0 = νχ
(
γ
(1)
0

)4 (
ρgβa4

)−1.
As shown in Section 5, one can obtain asymptotic values of the roots of equation (4.13).

Comparison of the asymptotic values of the roots with the numerically obtained roots for n = 0

is presented in Tab. 1. One can see that the difference between two adjacent roots tends to π
when the number of the root increases.

Table 1. The approximate values of roots of equation (4.13). First row presents results of
numerical solution of equation (4.13). Second row presents asymptotic values (5.6)

The profile of vertical velocity w01 is shown in Fig. 4. The fluid moves in one direction since
the flow rate is not equal to zero in this case.

Fig. 4. The profile of velocity w01 for problem (4.10)

5. Some properties of the roots of equation (4.13)

Let us assume that z = ka is the complex root of equation (4.13).
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Lemma 3. The roots of equation (4.13) are real and isolated except for zero. Roots are sym-
metrically located with respect to the point 0 and they have no finite limit points.

Proof. Using representation [6, 7]

Jn(z) =
(z
2

)n ∞∑
k=0

(−1)k

k!(k + n)!22k
z2k,

In(z) =
(z
2

)n ∞∑
k=0

1

k!(k + n)!22k
z2k ,

we rewrite equation (4.13) as

(z
2

)2n{(z
2

)2 [ ∞∑
k=0

(−1)k

k!(k + n)!22k
z2k

∞∑
k=0

1

k!(k + n+ 1)!22k
z2k −

−
∞∑
k=0

(−1)k

k!(k + n+ 1)!22k
z2k

∞∑
k=0

1

k!(k + n)!22k
z2k

]
+ (5.1)

+ n

∞∑
k=0

(−1)k

k!(k + n)!22k
z2k

∞∑
k=0

1

k!(k + n)!22k
z2k

}
= 0.

It is clear that the root z = 0 has at least multiplicity 2n. We transform the expression in

curly brackets of equation (5.1). If there are two converging power series
∞∑
k=0

akz
2k,

∞∑
k=0

bkz
2k

then their product is the power series
∞∑
k=0

ckz
2k with coefficients ck =

k∑
j=0

ajbk−j (by induction).

Designating the coefficients for the products c1k, c
2
k, c

3
k, sequentially, we find

c1k =

k∑
j=0

(−1)j

j!(j + n)!(k − j)!(k − j + n+ 1)!22k
,

c2k =

k∑
j=0

(−1)j

j!(j + n+ 1)!(k − j)!(k − j + n)!22k
, (5.2)

c3k =

k∑
j=0

(−1)j

j!(j + n)!(k − j)!(k − j + n)!22k
.

Then we have

c1k − c2k =

k∑
j=0

(−1)j

j!(j + n)!(k − j)!(k − j + n)!22k

[
1

k − j + n+ 1
− 1

j + n+ 1

]
=

=

k∑
j=0

(−1)j(2j − k)

j!(j + n+ 1)!(k − j)!(k − j + n+ 1)!22k
≡ dk.

(5.3)

Now we obtain from (5.1) the following equation

∞∑
k=1

dk
4
z2k+2 −

∞∑
k=0

nc3kz
2k = 0, (5.4)
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because d0 = 0. The last equation is transformed into (the replacement k + 1 ↔ k replacement
for the first row)

−nc30 − nc31z
2 +

∞∑
k=2

(
dk−1

4
− nc3k

)
z2k = 0,

or
∞∑
k=0

d1kz
2k = 0, d10 = −nc30, d11 = −nc31, d1k =

dk−1

4
− nc3k, k > 2. (5.5)

Thus d10 = −n/(n!)2 ̸= 0 when n ̸= 0, d11 = 0 then multiplicity of the root z = 0 is 2n. For
n = 0 it follows from (5.4) that multiplicity of the root z = 0 is two, that is, d1 ̸= 0, according
to (5.3).

In (5.5) all the numbers d1k, k = 0, 1, 2, . . . are real, therefore z and z̄ are solutions. Let
z = |z|eiϕ and z̄ = |z|e−iϕ are roots. Then we obtain from (5.5)

∞∑
k=0

d1k|z|2k(cos 2kϕ± i sin 2kϕ) = 0.

Then sin 2kϕ = 0 at ϕ = 0, π; cos 2kϕ = 1, k = 0, 1, 2, . . . and the imaginary part of the root
z is zero.

So, the non-zero roots of equation (4.13) are real, z = γ ∈ R1. If γ is a root, −γ is also a root.

So it is sufficient to find positive roots. Further, function f(γ) =
∞∑
k=0

d1kγ
2k is a whole function.

Zeros of the function are isolated and they cannot have finite limit points [9]. The Lemma is
proved.

Remark 2. For γ ≫ 1 [8]

Jn(γ) =

√
2

πγ
cos
(
γ − πn

2
− π

4

)
+O

(
1
√
γ

)
,

In(γ) =

√
1

2πγ
eγ
[
1 +O

(
1

γ

)]
,

and the roots of equation (4.13) have asymptotic representation

γ(m)
n ≈ (n+ 1)π

2
+mπ, m≫ 1. (5.6)
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Об одной спектральной задаче для уравнений конвекции
Виктор К. Андреев
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Аннотация. Рассматриваются спектральные задачи, возникающие при моделировании стационар-
ных однонаправленных конвективных течений в вертикальных теплообменниках при различных
температурных режимах на их границах. Роль спектрального параметра играет постоянный темпе-
ратурный градиент на вертикальных стенках. При этом поперечное сечение теплообменника может
быть произвольной формы. Установлены общие свойства решений спектральных задач. Для прак-
тически важных сечений — прямоугольника и круга — решения получены в аналитическом виде.
Найдены критические значения градиента температуры, при которых возникает конвективное те-
чение, и построены соответствующие профили вертикальной скорости. Изучены свойства решений
нового трансцендентного уравнения, определяющего спектральные значения.

Ключевые слова: конвекция, спектральная задача, собственные функции, собственные значе-
ния.

– 100 –


