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Abstract. A new mathematical model for the four-point bending of reinforced concrete beams is
developed and investigated. The model takes into account multi-modulus concrete behavior, nonlinear
stress-strain relationships, and damage evolution. An algorithm for a numerical implementation of
the model is proposed. The corresponding boundary value problem is solved by the hp-version of the
least-squares collocation method in combination with an acceleration of an iterative process based on
Krylov subspaces and parallelizing. Special attention is given to the influence of mathematical model
parameters on the results of numerical simulation. The results are compared with experimental data
and three-dimensional simulation. A satisfactory agreement is shown.
Keywords: reinforced concrete, nonlinear stress-strain relationships, four-point bending, multi-modulus
behavior, damage evolution, crack, modelling and simulation.

Citation: V.A. Belyaev, A. I. Boltaev, L. S. Bryndin, S. K.Golushko, A.G.Gorynin, V. P. Shapeev,
Modelling and Simulation of Deformation and Failure of Reinforced Concrete Beams under Four-Point
Bending, J. Sib. Fed. Univ. Math. Phys., 2021, 14(6), 679–689. DOI: 10.17516/1997-1397-2021-14-6-
679-689.

∗belyaevasily@mail.ru https://orcid.org/0000-0001-5901-2880
†boltaev_artem@mail.ru https://orcid.org/0000-0003-1317-9903
‡bryndin-1996@mail.ru https://orcid.org/0000-0002-0211-5800
§s.k.golushko@gmail.com https://orcid.org/0000-0002-0207-7648
¶a.gorynin@g.nsu.ru https://orcid.org/0000-0002-0250-5008
∥shapeev.vasily@mail.ru https://orcid.org/0000-0001-6761-7273

c⃝ Siberian Federal University. All rights reserved

– 679 –



Vasily A. Belyaev . . . Modelling and Simulation of Deformation and Failure of Reinforced . . .

Introduction

The widespread use of concrete in mass construction of various structures began in the second
half of the 19th century. At the same time, concrete despite having high compressive strength
is significantly (10. . . 20 times) less resistant to tension. For this reason, this limits its use in
structural elements subject to tension and bending [1].

Steel fibers reinforcement of concrete can significantly increase the bearing capacity of rein-
forced concrete (RC) structures. They are widely used in civil, industrial, transport, hydraulic,
power plant engineering, shipbuilding and machine construction [1, 2]. Advantages of RC in-
clude fire-resisting property, durability, high compressive strength, low energy consumption for
its manufacture, low operating costs for maintaining RC buildings and structures, good resis-
tance to weathering [3]. However, concrete also has a number of disadvantages. First of all, these
include high density and, consequently, heavy weight, high sound and thermal conductivity, high
brittleness.

To date, there are several approaches to modelling and simulation of RC structures. The
analysis of the stress-strain state (SSS) according to building regulations and rules is widespread
[4–7]. Another approach is aimed at taking account of RC behavior features and the development
of reduced order models. This is especially important for typical structural elements in the
form of beams, plates, and shells [8–10]. The third approach is based on the use of three-
dimensional finite element modelling and simulation of RC structures taking into account many
features of their deformation [11–13]. These approaches differ from each other in accuracy of
results, computational time, domain of applicability, number of mechanical tests required for
their application and validation.

1. Problem statement and mathematical model

Consider the four-point bending of a RC beam with the support span l, the thickness 2h,
and the width b. We introduce the rectangular Cartesian coordinate system as shown in Fig. 1.
The beam is subjected to two concentrated forces P acting downward parallel to the z-axis at
the distance a from each of the supports.

z

x
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l

2h

a a
P P

h1 h2

z

y

b

Fig. 1. Four-point bending test scheme of the RC beam (left) and its cross section (right). Black
circles denote the reinforcement cross sections

According to [5], it is assumed that the left edge of the beam is hinged, while the right one
is simply supported (Fig. 2). The model neglects the shape of the supports and assumes the
reactions RA and RB arising at the supports are concentrated. The classical beam theory is used
to describe the flexural behavior of the beam. All sought-for values are assumed to be functions
of x and/or z. The shear force Q(x), the bending moment M(x), and the longitudinal force N(x)
are determined on the reference (middle) surface of the beam. The solution of the equilibrium
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l

RA RBa a
P P

Fig. 2. The scheme of the four-point beam bending model

equations
dN

dx
= 0,

dQ

dx
= 0,

dM

dx
= Q has the form

N(x) = 0, x ∈ [0, l]; Q(x) =


P, x ∈ [0, a),

0, x ∈ [a, l − a),

−P, x ∈ [l − a, l];

M(x) =


Px, x ∈ [0, a),

Pa, x ∈ [a, l − a),

P (l − x), x ∈ [l − a, l].

It is assumed that there are no bond-slip between reinforcement and concrete. Strains dis-
tribution along the beam thickness within the framework of the classical beam theory based on
the hypothesis of plane section has the following form

ε(x, z) = e(x) + zκ(x), e(x) =
du

dx
, κ(x) = −d2w

dx2
, (1)

where ε(x, z) is the longitudinal strain in the beam, e(x) is the middle surface strain, κ(x) is
the middle surface curvature, u(x) is the longitudinal displacement, and w(x) is the deflection
of the middle surface. Under the flexural loading, tensile and compression strains arise in the
beam. The interface between these two states where deformation equals zero is denoted by zn(x).
According to (1) zn(x) = −e(x)/κ(x). The physical relationships between stresses and strains
can be expressed as σc(x, z) = g±c (ε), σr(x, z) = gr(ε), where the superscript “+” refers to the
relationships for the area with ε > 0, “−” — for the area with ε < 0, g±c and gr are approximating
functions for σ–ε diagrams of concrete and steel, respectively. The least-squares method (LSM)
is used for the curve fitting of sigma-epsilon diagrams hereinafter.

Damage evolution due to formation and propagation of cracks. To take into account
the effect of tension and compression, it is necessary to consider strains on the interval ε− 6
ε 6 ε+, where ε± are a limit tension (+) and compression (−) strains, different for each beam
material, σ± are corresponding limit stresses [14]. The damage evolution mechanism of concrete
is associated with the formation and propagation of flexural cracks. The part of the cross section
where longitudinal strains and stresses exceed their limits is assumed to be completely damaged
as shown in Fig. 3. The beam is discretized along its length with a finite number of nodes.
Only cross sections associated with the discretization nodes are considered. The evolution of
the damaged area in cross sections with the progressive load P increasing on the value ∆P is
modeled according to the following algorithm:

1) e(x) and κ(x) are found taking into account only the non-damaged areas at each load step.
Coordinates hc and ht (along the z-axis) separate damaged from non-damaged regions in the
areas of compression and tension, respectively (Fig. 3).

2) The part of the cross section for which ε(x, z) > ε+ or ε(x, z) < ε− is not included in
calculations. The new coordinates of hc and ht are calculated.

3) The big difference between hc and ht calculated and those on the previous loading step
may distort the values of e(x), κ(x), and w. In order to fix that, e(x) and κ(x) are recalculated
at the same load, taking into account hc and ht already found. Then the new values hc and ht

are calculated and the difference between determined and their previous values is found. This
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process continued until the absolute of this difference became smaller δ · 2h, where δ is a small
constant.

Let h1, h2 be the coordinates along the z-axis of the top and bottom boundaries of a cross
section in the tension zone where reinforcement is located (Fig. 1, right). Then:

1) If ht > h2 then the damaged area is below the reinforcement layer (see Fig. 3a) and

N(e, κ) = b

zn(x)∫
hc

g−c dz + b

h1∫
zn(x)

g+c dz +

h2∫
h1

(bcg
+
c + brgr)dz + b

ht∫
h2

g+c dz = N(x), (2)

M(e, κ) = b

zn(x)∫
hc

g−c zdz + b

h1∫
zn(x)

g+c zdz +

h2∫
h1

(bcg
+
c + brgr)zdz + b

ht∫
h2

g+c zdz = M(x), (3)

where br = b
Sr

S
, S is the square of the cross section beam part including reinforcement, Sr is

the square of the reinforcement section, bc = b− br.
2) If h1 6 ht < h2 then the damaged area is in the reinforcement layer (see Fig. 3b) and

N(e, κ) = b

zn(x)∫
hc

g−c dz + b

h1∫
zn(x)

g+c dz + bc

ht∫
h1

g+c dz + br

h2∫
h1

grdz = N(x),

M(e, κ) = b

zn(x)∫
hc

g−c zdz + b

h1∫
zn(x)

g+c zdz + bc

ht∫
h1

g+c zdz + br

h2∫
h1

grzdz = M(x).

3) If ht < h1 then the damaged area is above the reinforcing layer (see Fig. 3c) and

N(e, κ) = b

zn(x)∫
hc

g−c dz + b

ht∫
zn(x)

g+c dz + br

h2∫
h1

grdz = N(x),

M(e, κ) = b

zn(x)∫
hc

g−c zdz + b

ht∫
zn(x)

g+c zdz + br

h2∫
h1

grzdz = M(x).

For the sake of brevity, we will hereafter refer only to the first case of the formulas (2), (3).
We assume that the beam failure occurs in one of the cases:
1) There is a cross section that has been completely damaged, i.e. hc > ht.
2) The structure is not able to take additional loads which is equivalent to the descending

branch of P–w curve. In such a case either the iterative process of solving the system of nonlinear
algebraic equations (2) and (3) does not converge or curvature κ(x) decreases at the next small
increment ∆P . In the last case, this behavior of the solution is nonphysical and is explained by
the nonlinearity of the system of equations. There is a bifurcation of its solution.

All these cases occur when values of P and corresponding w are close to each other. That is
why their appearance in the calculations can be considered as the failure of the beam.
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Fig. 3. Cross sections in different cases of cracks propagation. The dark color denotes the com-
pletely damaged part of the section; dashed lines separate areas with the certain σ–ε relationships

2. Numerical iplementation of the mathematical model

The quasi-static loading process with a small load increment is considered. It becomes nec-
essary to repeatedly solve the nonlinear equations (2), (3). They are solved here using Newton’s
method [15]. The values e and κ are computed independently at each cross section, so it is
convenient to use parallelizing to determine them. To determine w(x) after κ(x) and e(x) have
been found, it is necessary to solve the following boundary value problem

d2w

dx2
= −κ(x), w(0) = w(l) = 0.

For this purpose, the hp-version of the least-squares collocation (LSC) method is constructed,
where piecewise polynomial functions are used to approximate solution [15,16]. The polynomials
degree and grid refinement can be varied easily before running the program. The following

equations are written out in each cell. The collocation equations provide
d2w

dx2
= −κ(x) at

several interior points of the cell. Continuity between solutions and their derivatives at the points
separating adjacent cells is required in matching conditions. In addition, the boundary conditions
are approximated at the points x = 0, l. Cross sections are considered at the collocation points
and e(x) and κ(x) are calculated there taking into account damaged area. The LSC method is
effectively used in combination with the acceleration of the iterative process based on Krylov
subspaces and parallelizing using OpenMP.

The bending of the concrete beam by a distributed load (case 1) and its four-point bending
(case 2) is considered in the physically linear formulation with the known analytical solution [17]
to verify the LSC method. Tab. 1 shows the corresponding numerical results, where K is a
polynomial degree, ∥Er∥∞ is the relative error in the infinity norm, R is the convergence order.
It can be seen that R = 2 when K = 2, 3 and R = 4 when K = 4, 5 in the case 1. The value
of R ≈ 2 for any K in the case 2, since the third derivatives of the solution (the piecewise
polynomial function of the order not greater than three) have a discontinuity in the points
where concentrating loads are applied [17]. If the grid is chosen so that these points fall on the
boundaries between the cells then the numerical solution accuracy is about 10−15 for K > 3.

3. Concrete and steel stress-strain diagrams

Experimental tests data of concrete tension and compression, steel reinforcements tension,
and the four-point bending of RC beams (P–w diagram) are necessary to validate the mathe-
matical model. Note that in practice such a complex of mechanical tests is rarely carried out in
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Table 1. Numerical results arising from the LSC method

Case №1
K = 2 K = 3 K = 4 K = 5

Grid ∥Er∥∞ R ∥Er∥∞ R ∥Er∥∞ R ∥Er∥∞ R
20 1.94 · 10−3 — 6.43 · 10−5 — 9.23 · 10−8 — 1.77 · 10−8 —
40 4.85 · 10−4 2.00 1.60 · 10−5 2.01 5.76 · 10−9 4.00 1.10 · 10−9 4.01
80 1.21 · 10−4 2.00 4.01 · 10−6 2.00 2.99 · 10−10 4.31 6.97 · 10−11 3.98

Case №2
K = 2 K = 3 K = 4 K = 5

Grid ∥Er∥∞ R ∥Er∥∞ R ∥Er∥∞ R ∥Er∥∞ R
20 1.97 · 10−3 — 8.22 · 10−5 — 7.76 · 10−6 — 4.29 · 10−5 —
40 4.86 · 10−4 2.02 2.02 · 10−5 2.02 2.46 · 10−6 1.66 1.00 · 10−5 2.10
80 1.22 · 10−4 1.99 5.05 · 10−6 2.00 4.72 · 10−7 2.38 2.58 · 10−6 1.95

full under strictly controlled laboratory conditions. For instance, in the description of bending
experiments [18], whose data are used here, there are given: geometrical dimensions of the beam
2h = 46.38 cm, b = 25.756 cm, l = 457.2 mm; the number of reinforcement elements — 3 pcs.,
with the cross section radius of 7.98 cm; distance from the supports to the load application points
a = 152.4 cm; the concrete compressive strength fc = −32 MPa; the average values of the steel
tensile yield strength σy = 473 MPa and the elastic modulus E = 236 GPa.

Concrete. Uniaxial concrete compression diagrams have a clear-cut nonlinear behavior as
early as the region of average strains [14] (Fig. 4a). Diagram constructed by the method described
in [11] at fc = σ−

c = −32 MPa (experimental data) and ε−c = −0.003 is taken as the concrete
deformation law in the case №1. The diagram of concrete deformation with data from [11] is
approximated in case №2, i.e. fc = σ−

c = −33.1 MPa and ε−c = −0.003. It was assumed that
E+

c1 = 4733
√

|fc| MPa, σ+
c = 0.62

√
|fc| MPa in all cases [11].

εc εc
+

σc

σc
+
σ

ε

a)

ET=tg( )

E=tg(α)

β

α

εy εu
ε

σy

σu

σ

b)

Fig. 4. Discrete (symbol •) σ–ε diagrams of concrete and steel and its approximations (solid
lines)

We approximate the concrete σ–ε diagram by the following relationships

g+c (ε) = E+
c1ε, ε > 0,

g−c (ε) = E−
c1ε+ E−

c2ε
2 + E−

c3ε
3, ε 6 0.

Tab. 2 shows the approximation coefficients of the concrete tension and compression σ–ε
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diagrams and ε−c , ε+c , σ+
c , σ−

c in different cases.

Table 2. Approximation coefficients and limits of the concrete σ–ε diagrams

Case Tension Compression
E+

c1 , GPa ε+c σ+
c , MPa E−

c1 , GPa E−
c2 , GPa E−

c3 , GPa ε−c σ−
c , MPa

№1 26.7 1.31e–4 3.52 31.3 9.51e+3 8.76e+5 –3.0e–3 –32
№2 27.1 1.31e–4 3.58 31.2 8.96e+3 7.38e+5 –3.0e–3 –33.1

Reinforcement. We approximate the steel tension diagram by the following relationships

gr(ε) =

{
Er1ε, ε 6 εy,

Er0 + Erhε, ε > εy,

where εy is the strain value corresponding to the steel yield strength σy. Here Er0 = σy −
σyErh/Er1 . Let εu be the strain value corresponding to the σu, E and ET be the elastic and strain
hardening modulus, respectively. There are only known σy, E, and σu from the experiment [18].
For this reason we consider several cases with the different ET . Approximation coefficients of
the steel tension σ–ε diagrams are given in Tab. 3. Piecewise linear approximation of the σ–ε
diagram with the values σy, Er1 = E taken from experiment and different Erh = ET is considered
in the cases №1–3. Case №4 corresponds to the piecewise linear approximation of the data taken
from [11]. In the case №5 the σ–ε curve is also approximated by the piecewise linear function
based on the following considerations. All reinforcement is Grade 60 in [18]. It corresponds to
the yield strength σy = 60 psi = 413 MPa. Mechanical properties of such reinforcement are
described by the standard ASTM A706 presented in american building regulations ACI. The
required material (carbon steel SA 537) is determined by the standard ASTM A706. We get its
diagram by the method from [19] (Fig. 4b). Tab. 4 shows the contracted notations of the σ–ε
concrete and reinforcement diagrams used.

Table 3. Yield strength and approximation coefficients of the reinforcement σ–ε diagrams

Case Tension
Er1 , GPa Erh , MPa σy, MPa

№1 236 2360 473
№2 236 236 473
№3 236 23.6 473
№4 200 20.0 413
№5 200 3792 413

Table 4. Stress-strain relationships notations

Reinforcement
Concrete Paper [11], Paper [11],

fc =32 MPa fc =33.1 MPa

Er1 = 236e+3, σy = 473, Erh = 23.6 MPa (1, 1) (1, 2)

Er1 = 236e+3, σy = 473, Erh = 236 MPa (2, 1) —

Er1 = 236e+3, σy = 473, Erh = 2360 MPa (3, 1) —

Er1 = 200e+3, σy = 413, Erh= 20 MPa — (4, 2)

Er1 = 200e+3, σy = 413, Erh= 3792 MPa — (5, 2)
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4. Comparison with experimental data and 3D simulation

The following geometric dimensions of the beam 2h = 45.72 cm, b = 25.4 cm, l = 457.2 cm
are used for an adequate comparison with the results of [11] in calculations with notations (1, 2),
(4, 2), and (5, 2). Geometric dimensions from the experiment are taken in the other cases. The
distance from the bottom edge of the beam to the center of the reinforcement section is 6.35 cm
by the analogy with [11] in all cases. The load increment ∆P is taken to be equal to 50 N until
the yielding of the reinforcing steel and then is switched to 5 N.

The beam in the experiment contains shear reinforcement in the form of a thin U-stirrups [18],
which were not taken into account in this paper. The dominant failure mechanism in [18] was the
propagation of transverse cracks in the tensile zone of concrete. Therefore, shear reinforcement
in this case has not a significant effect on the beam SSS. It should be noted that the failure mode
of the RC beam (along a normal section and/or along an oblique section) depends on an amount
of longitudinal and shear reinforcement.

Fig. 5 shows the results of the experiment [18], calculations carried out using ANSYS [11]
and within the framework of the model proposed here. Different deformation regions are marked
with Roman numerals: I — before the appearance of the first crack, II — from the moment
of the appearance of the first crack until the beginning of reinforcement yield, III — from the
moment of reinforcement yield to the failure. The transition zones between different regions are
marked in gray. Tab. 5 demonstrates some key quantitative characteristics of the experiment
and calculations.

Fig. 5. Experimental data (*) [18], ANSYS (**) [11] and calculations in the proposed model

We can make the following conclusions from the above results.
1) On the region I the calculations within this model practically agree with the calculations

on ANSYS [11]: Pcr differs by no more than 1.5–3%. In the experiment, the slope of the P–w
curve is lower and the moment of crack initiation is earlier (Fig. 5 and Tab. 5).

2) On the region II the jumps of the deflections at Pcr (Fig. 5) and the slopes of the P–w
curves in calculations with parameters from [11] (cases (4, 2) and (5, 2)) and in ANSYS are
almost the same. The slopes of the P–w curves in calculations with parameters from [18] are
slightly larger compared to ones obtained in ANSYS [11] and experiment [18] (the difference is
no more than 15 % relative to Py) by virtue of the fact that Er1 was larger than in [11].
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Table 5. Comparison of calculation and experimental quantitative characteristics, where Pcr is
the load at first cracking, Py is the load when steel yielding occurs, Pmax is the failure load,
wmax is the maximum deflection

P–w curve Pcr, N Py, N Pmax, N wmax, cm
Experiment [18] ∼ 20000 59047 72550 9.27

ANSYS [11] 23227 59626 72870 9.49
(1, 1) 23900 67900 77655 9.94
(1, 2) 23150 66700 76320 10.07
(2, 1) 23900 67900 71920 10.10
(3, 1) 23900 67900 71280 10.13
(4, 2) 22850 58750 61580 11.57
(5, 2) 22850 58750 72405 11.03

3) On the region III the slope of the P–w curve in the reinforcement yielding zone and Pmax

strongly depend on ET . The P–w curve in case (4, 2) lies lower than the corresponding curve
obtained in ANSYS.

Table 6 shows the dependence of the values wmax and Pmax on the values of δ. The ob-
tained values of wmax may turn out to be overrated in the case of insufficiently small values δ.
Nevertheless, a significant increase of w occurs with the last few increments of ∆P . However, a
growth rate of w increases rapidly at loads close to Pmax even with a small value of δ. It has
been found that a further decrease of δ < 10−4 has not led to significant changes in the solution
of the problem in this study.

Table 6. Dependence of the results on values δ

case δ = 10−2 δ = 10−3 δ = 10−4

wmax, cm Pmax, N wmax, cm Pmax, N wmax, cm Pmax, N
(1, 1) 11.80 77690 10.12 77675 9.94 77655
(1, 2) 11.29 76345 10.16 76330 10.07 76320
(2, 1) 18.16 71940 10.82 71935 10.10 71920
(3, 1) 20.86 71290 20.86 71290 10.13 71280
(4, 2) 31.13 61590 31.13 61590 11.57 61580
(5, 2) 12.08 72450 11.15 72430 11.03 72405

The CPU time within the proposed model ranged from several tens of seconds to 20 minutes
on a computer Intel Core i5-8265U CPU 1.6 GHz, 4 Cores, DIMM DDR4-2400 1200 MHz 8
Gb depending on the grid size (from 9 to 27 cells) and the degree of approximating polynomial
(polynomials of the 2nd, 4th, and 6th degrees) in the LSC method. It has been found that the
results obtained and compared here are in a good agreement with each other.

Conclusions
The developed mathematical model and numerical algorithm have shown their effectiveness

in modelling and simulation of RC beams under four-point bending. To model RC bending up to
failure, several features of RC deformation were taken into account, such as nonlinear stress-strain
relationships, multi-modulus concrete behavior, and damage evolution caused by the formation
and propagation of cracks. The proposed numerical algorithm combines the Newton method,
LSM, verified hp-version of the LSC method of increased accuracy, and modern methods of
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accelerating the iterative process. Performed calculations demonstrate the high speed of solving
the problem and satisfactory agreement with experimental data and three-dimensional modelling
results. The influence of various deformation laws and the method of their approximation, as
well as the parameter δ on the results of numerical simulation has been shown.

The research was carried out within the state assignment of Ministry of Science and
Higher Education of the Russian Federation (project Nos. 121030500137-5 and АААА-А19-
119051590004-5).
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железобетонных балок при четырехточечном изгибе
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Аннотация. Разработана и исследована новая математическая модель четырехточечного изгиба
железобетона с учетом разносопротивляемости бетона растяжению-сжатию, физической нелиней-
ности и разрушения. Предложен алгоритм численной реализации модели. Соответствующая кра-
евая задача решалась hp-вариантом метода коллокации и наименьших квадратов в комбинации
с ускорением итерационного процесса, основанным на подпространствах Крылова, и распарал-
леливанием. Исследовано влияние параметров математической модели на результаты численно-
го моделирования. Проведено сравнение результатов расчетов с экспериментальными данными и
трехмерным моделированием и показано удовлетворительное согласие с ними.

Ключевые слова: железобетон, физическая нелинейность, четырехточечный изгиб, разносопро-
тивляемость, разрушение, трещина, моделирование.
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