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Abstract. The identification of an unknown coefficient in the lower term of elliptic second-order differ-
ential equation Mu+ku = f with boundary condition of the third kind is considered. The identification
of the coefficient is based on integral boundary data. The local existence and uniqueness of the strong
solution for the inverse problem is proved.
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Introduction

In this paper an inverse problem for some stationary equation is considered.

Problem. For given functions f(x), σ(x), β(x), h(x) and constant µ find function u(x) and
constant k that satisfy the equation

−div(M(x)∇u) +m(x)u+ ku = f, (1)

boundary condition (
∂u

∂N
+ σ(x)u

)∣∣∣
∂Ω

= β(x), (2)

and the condition of overdetermination∫
∂Ω

uh(x)ds = µ. (3)

Here Ω ⊂ Rn is a bounded domain with boundary ∂Ω, t ∈ (0, T ), M(x) ≡ (mij(x)) is a matrix

of functions mij(x), i, j = 1, 2, . . . , n; m(x) is a scalar function,
∂

∂N
= (M(x)∇,n), n is the

unit vector of the outward normal to the boundary ∂Ω.

A main goal of this paper is to establish the existence and uniqueness of the strong solu-
tion of inverse problem (1)–(3). The additional integral boundary data similar to condition of
overdetermination (3) were considered [1–3]. Following the idea given in [1–3] and using method
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developed in [4], we prove the existence of the solution by reducing the inverse problem to an
operator equation of the second kind for the unknown coefficient. Note that the problem for the
same equation with Dirichlet boundary conditions was considered [5].

The study of inverse problems for the elliptic equations goes back to fundamental work of
M.M. Lavrentiev [6]. Inverse problems for the elliptic equation with special boundary conditions
(non-local conditions, non-classical conditions) were considered [7–9].

Such problems arise in determination of unknown physical properties of a medium. In par-
ticular, the lowest coefficient k specifies, for instance, the catabolism of contaminants due to
chemical reactions [10] or the absorption in diffusion and acoustic problems [11].

1. The preliminaries

The following notations are used ∥ · ∥R, (·, ·)R — the norm and the inner product in Rn;
∥ · ∥, (·, ·) — the norm and the inner product in L2(Ω); ∥ · ∥j ,

〈
·, ·

〉
1

— the norm in W j
2 (Ω),

j = 1, 2, and the duality relation between
◦

W 1
2 (Ω) and W−1

2 (Ω), respectively. The linear operator
M : W 1

2 (Ω) → (W 1
2 (Ω))

∗ of the form

M = −div(M(x)∇) +m(x)I,

Is introduced, where I is the identity operator. The notation

〈
Mv1, v2

〉
M

=

∫
Ω

((M(x)∇v1,∇v2)R +m(x)v1v2)dx

is also used for v1, v2 ∈ W 1
2 (Ω). The following assumptions hold throughout the paper

I. mij(x), ∂mij/∂xl, i, j, l = 1, 2, . . . , n, and m(x) are bounded in Ω. Operator M is elliptic,
that is, there exist positive constants m0 and m1 such that for all v ∈ W 1

2 (Ω)

m0∥v∥21 6
〈
Mv, v

〉
M

6 m1∥v∥21. (4)

II. M is self-adjoint, that is, mij(x) = mji(x) for i, j = 1, . . . , n.

The existence and uniqueness results for problem (1)–(3) is based on two lemmas for direct
problem (1)–(2) with known coefficient k.

Lemma 1.1. Let u be the strong solution of problem (1)–(2). If f > 0, β > 0, σ > 0, k > 0
and assumptions I, II are fulfilled, then u > 0 almost everywhere in Ω.

Proof. Multiplying (1) by ū = min{ū, 0} in terms of the inner product in L2(Ω) and integrating
by parts in first term, we obtain

⟨Mū, ū⟩1 + k∥ū∥2 +
∫
∂Ω

σū2ds−
∫
∂Ω

βūds− (f, ū) = 0.

Taking into account the lemma conditions, the last equality implies that

m1∥ū∥21 6 0.

So, ū = 0 almost everywhere in Ω. Lemma is proved. 2
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Lemma 1.2. Let u1, u2 ∈ W 2
2 (Ω) are the solutions of the problems

Mui + kiui = fi,(
∂ui

∂N
+ σui

)∣∣∣
∂Ω

= βi,

here i = 1, 2.
If 0 6 k1 6 k2, 0 6 β2 6 β1, 0 6 f2 6 f1 and σ(x) > 0 then u1 > u2 > 0 for almost all

x ∈ Ω̄.

Proof. By Lemma (1.1), ui > 0, i = 1, 2, for almost all x ∈ Ω̄. The difference u1 − u2 satisfies
equation

M(u1 − u2) + k1(u1 − u2) = (k2 − k1)u2 + f1 − f2, (5)

and boundary condition (
∂(u1 − u2)

∂N
+ σ(x)(u1 − u2)

)∣∣∣
∂Ω

= β1 − β2.

Taking into account the lemma conditions, the right side of (5) is non-negative and β1 − β2 > 0.
So, by Lemma (1.1), u1 − u2 > 0 for almost all x ∈ Ω̄. Lemma is proved. 2

2. Existence and uniqueness

First of all the solution of the inverse problem should be defined. By the solution of the inverse
problem is meant function u ∈ W 2

2 (Ω) and a positive real number k. They satisfy equation (1)
almost everywhere in Ω and conditions (2)–(3) almost everywhere on ∂Ω. Now, to formulate the
theorem functions a, aτ and b are introduced as the solution of the problems

Ma = f(x),

(
∂a

∂N
+ σ(x)a

)∣∣∣
∂Ω

= β(x); (6)

Maτ + τaτ = f,

(
∂aτ

∂N
+ σ(x)aτ

)∣∣∣
∂Ω

= β(x); (7)

Mb = 0,

(
∂b

∂N
+ σ(x)b

)∣∣∣
∂Ω

= h(x), (8)

where τ > 0 is a real number.

Theorem 2.1. Let ∂Ω ∈ C2 and assumptions I, II are fulfilled. Suppose also that

(i) f(x) ∈ L2(Ω), β(x), h(x) ∈ W
3/2
2 (∂Ω), σ(x) ∈ C(∂Ω);

(ii) f(x) > 0 almost everywhere in Ω; β(x) > 0, σ(x) > 0, h(x) > 0 for almost all x ∈ ∂Ω and
there is a smooth piece Γ of the boundary ∂Ω and a constant δ > 0 such that β > δ and
ω > δ almost everywhere on Γ.

Then problem (1)–(3) has a solution {u, k}. Moreover, the estimates

aτ 6 u 6 a, 0 6 k 6 τ, ∥u∥2 6 C(τ + 1)∥a∥+ ∥a∥2 (9)

hold with some τ > 0, and constant C depends on mesΩ, τ,m0 and m1. If

0 6 µ−Ψ 6 m0(a, b)
2

∥a∥∥b∥
, (10)

where Ψ =
∫
∂Ω

ahds− (f, b), then the solution is unique.
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Proof. Following the idea given in [4] and the method developed in [1], the original problem is
reduced to an equivalent inverse problem with a non-linear operator equation for k. It follows
from (1)–(3) that function w = a− u and the constant k satisfy the following relations

Mw + kw = ka, (11)(
∂w

∂N
+ σ(x)w

)∣∣∣
∂Ω

= 0, (12)∫
∂Ω

whds =

∫
∂Ω

ahds− µ. (13)

Taking into account (8), (11) and (12), multiplying (9) by b in terms of the inner product in
L2(Ω) and integrating by parts twice, we obtain

k(u, b) =

∫
∂Ω

ahds+ (f, b)− µ = Ψ− µ.

Let operator A : R+ → R maps every y ∈ R+ into the real number Ay by the rule

Ay =
Ψ− µ

(uy, b)
, (14)

where uy is the solution of direct problem (1)–(2) with y = k. One can show that the original
problem is solvable if and only if operator A has a fixed point, i.e., the operator equation Ak = k

has a solution.
Now we need to prove that there exists τ > 0 such that operator A defined for all k ∈ [0, τ ], is

continuous on [0, τ ], and maps [0, τ ] into itself. Indeed, Lemma 1.2 implies that for all 0 6 y 6 τ

aτ 6 uy 6 a. (15)

Therefore
Ay > Ψ− µ

(a, b)
> 0.

On the other hand, let us introduce the difference between (6) and (7)

M(a− aτ ) + τ(a− aτ ) = τa.

Then, multiplying the difference by a − aτ in terms of the inner product in L2(Ω), integrating
by parts in the first term and estimating the left-hand side of the result with the help of (4), we
obtain

m0∥a− aτ∥21 + 2

∫
∂Ω

σ(a− aτ)2ds+ 2τ∥a− aτ∥2 6 τ2

m0
∥a∥2.

This estimate and (15) allows one to obtain the lower bound of (uy, b) in (14)

(uy, b) > (aτ , b) = (a, b)− (a− aτ , b) > (a, b)− τ
√
m0

∥a∥∥b∥ > 0. (16)

Hence
0 6 τ 6

√
m0(a, b)

∥a∥∥b∥
.

In view of (14) and (16)

Ay 6 Ψ− µ

(a, b)− τ√
m0

∥a∥∥b∥
6 τ.
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Accordingly, the relation Ay 6 τ holds for all τ > 0 such that

τ2
√
m0

∥a∥∥b∥ − τ(a, b) + Ψ− µ 6 0. (17)

The last inequality is possible, because it follows from the theorem conditions that

D ≡ (a, b)2 − 4(Ψ− µ)∥a∥∥b∥
√
m0

> 0.

Then (17) is valid for τ that obeys the inequality

√
m0((a, b)−

√
D)

2∥a∥∥b∥
6 τ 6

√
m0((a, b) +

√
D)

2∥a∥∥b∥
.

Thus, the operator A maps the segment into itself.
Now one can obtain the estimate of uy in W 1

2 (Ω) provided that y ∈ [0, τ ]. Let wy = a− uy.
This function satisfies (11)–(13) with y = k. Multiplying (11) for k = y by wy in terms of the
inner product in L2(Ω) and integrating by parts in the first term, we obtain

(Mwy, wy) + y∥wy∥2 = ⟨Mwy, wy⟩M + y∥wy∥2 +
∫
∂Ω

σw2
yds = y(a,wy).

In view of (15) and the definition of wy, we have∣∣∣y ∫
Ω

awydx
∣∣∣ 6 τ∥a∥2.

Taking into account the ellipticity of operator M , the last two relations implies that

∥uy∥1 6
√

τ

m0
∥a∥+ ∥a∥1. (18)

In accordance with [12], direct problem (11)–(12) has a unique solution wy ∈ W 2
2 (Ω) for all

y > 0. Furthermore, (11) is fulfilled almost everywhere in Ω and Mwy ∈ L2(Ω). Multiplying
(11) with k = y by Mwy in terms of the inner product in L2(Ω) and integrating by parts in the
second component, one can obtain the equality

∥Mwy∥2 + y⟨wy,Mwy⟩M +

∫
∂Ω

σw2
yds = y(aM,wy). (19)

In accordance with (4), the second term of (19) is non-negative and

y|(a,Mwy)| 6 τ∥a∥∥Mwy∥ 6 1

2
τ2∥a∥2 + 1

2
∥Mwy∥2.

it follows from the last two relations that

∥Mwy∥2 6 τ2∥a∥2. (20)

In view of the definition of wy and the inequality [12]

∥v∥2 6 CM (∥Mv∥+ ∥v∥),
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valid for all v ∈ W̊ 1
2 (Ω) ∩ W 2

2 (Ω) with the constant CM depending on M and mesΩ, relations
(18), (20) imply the estimate

∥u∥2 6 ∥wy∥2 + ∥a∥2 6 CM (τ + 1)∥a∥+ ∥a∥2.

Now one can show that operator A is continuous on segment [0, τ ]. Let y1, y2 ∈ [0, τ ] and uy1 , uy1

are the solutions of problem (11), (12) with y1 = k and y2 = k, respectively. By the definition of
operator A, (15) and (16)

|Ay1
−Ay2

| 6 ∥uy2
− uy1

∥∥b∥(Ψ− µ)

(aτ , b)2
6 ∥uy2

− uy1
∥∥b∥(Ψ− µ)

((a, b)− τ√
m1

∥a∥∥b∥)2
. (21)

On the other hand, multiplying the difference of equation (1) for k = y1 and k = y2 by uy1
−uy2

in terms of the inner product in L2(Ω) and integrating by parts in the first term of the resulting
equality,we obtain

⟨M(uy1
− uy2

, uy1
)⟩1 +

∫
∂Ω

σ(uy1
− uy2

)2ds+ y1∥uy1
− uy2

∥2 = (y2 − y1)(uy2
, uy1

− uy2
). (22)

In accordance with (4) and the non-negativity of y1, the left side of (22) can be estimated as

⟨M(uy1
− uy2

), uy1
⟩1 +

∫
∂Ω

σ(uy1
− uy2

)2ds+ y1∥uy1
− uy2

∥2 > m0∥uy1
− uy2

∥21.

The right term of (22) is estimated with the use of (15) as

|(y2 − y1)(uy2 , uy1 − uy2)| 6
1

2m0
|y2 − y1|2∥a∥2 +

m0

2
∥uy1 − uy2∥21.

Hence, we obtain the relation

∥uy1
− uy2

∥1 6 1

m0
∥a∥|y2 − y1|. (23)

Then, joining (21) with

τ =
2
√
m0((a, b)−

√
D)

∥a∥∥b∥
= τ0,

and (23), we obtain the inequality

|Ay1 −Ay2| 6
∥a∥∥b∥(Ψ− µ)

((a, b) + 2
√
D)2

|y1 − y2| (24)

which implies the continuity of operator A. Thus, according to the Brouwer fixed point theorem,
operator A has a fixed point k∗ ∈ [0, τ0] and the pair {u∗, k∗}, where function u∗ satisfies (1)–(2)
with k = k∗, gives a solution of problem (1)–(3).

It remains to prove that the solution of problem (1)–(3) is unique under assumption (10). In
this case, operator A is a contractor on the segment [0, τ0] because A satisfies (24) with

q =
∥a∥∥b∥(Ψ− µ)

(a, b) + 2
√
D

<
(a, b)2

((a, b) + 2
√
D)2

< 1.

Let us assume that (u′, k′) and (u′′, k′′) are two solutions of problem (1)–(2). Then k′, k′′ are the
fixed points of operator A. By (24)

|k′ − k′′| = |Ak′ −Ak′′| 6 q|k′ − k′′|
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whence k′ − k′′ = 0. This in turn implies u′ − u′′ = 0 in view of (23). Theorem is proved. 2

Under assumption (10) the solution {u, k} depends continuously on the input data of original
problem.

Remark 1. Condition (4) is valid when m(x) > m0 > 0 almost everywhere in Ω, or
σ(x) > σ0 > 0 almost everywhere in ∂Ω, here m0, σ0 are some constants. In the last case left
inequality holds due to the Friedrichs inequality.

Remark 2. The main theorem is correct for a more general type of operator M :

M = −div(M(x)∇) + (m̄∇) +m(x)I,

where m̄ ∈ L∞(Ω) is vector of functions mi(x), i = 1, . . . , n.
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Об одной обратной задаче для эллиптического уравнения
со смешанными граничными условиями третьего рода

Александр В. Велисевич

Аннотация. В данной работе рассматривается обратная задача для эллиптического уравне-
ния с граничными условием третьего рода и условием интегрального переопределения. Доказано
существование и единственность решения, а также непрерывная зависимость решения от входных
данных.

Ключевые слова: обратная задача, краевая задача, эллиптическое уравнение, теорема существо-
вания и единственности.
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