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Abstract. In this paper we consider the reductant of the dihedral group Dn, consisting of a set of axial
symmetries, and the sphere S2 as a reductant of the group SU(2,C) ∼= S3 (the group of unit quaternions).
By introducing the Sabinin’s multiplication on the reductant of Dn, we get a quasigroup with unit.
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Introduction

Nonassociative structures in modern algebra is not only mathematical curiosity but actively
developed direction. The subtraction on a set of integers is not associative. Indeed, 3−(2−1) = 2,

and (3−2)−1 = 0. On the set of real numbers we introduce the averaging operation a∗b = a+ b

2
,

then

(a ∗ b) ∗ c =
a+b
2 + c

2
,

and

a ∗ (b ∗ c) =
a+ b+c

2

2
.

The vector product in three-dimensional space is nonassociative. Recall that

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1),

where a = (a1, a2, a3) and b = (b1, b2, b3) are three-dimensional vectors.
Multiplication of octonionic imaginary units, see Tab. 1, does not have the property of asso-

ciativity.
Therein

ı2 = J2 = J 2 = −1;

Jz = z∗J ;

h(qJ ) = (qh)J , (hJ )q = (hq∗)J , (hJ )(qJ ) = −q∗h,
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Table 1.

1 ı J ıJ J ıJ JJ ıJJ
1 1 ı J ıJ J ıJ JJ ıJJ
ı ı −1 ıJ −J ıJ −J −ıJJ JJ
J J −ıJ −1 ı JJ ıJJ −J −ıJ
ıJ ıJ J −ı −1 ıJJ −JJ ıJ −J
J J −ıJ −JJ −ıJJ −1 ı J ıJ
ıJ ıJ J −ıJJ JJ −ı −1 −ıJ J
JJ JJ ıJJ J −ıJ −J ıJ −1 −ı
ıJJ ıJJ −JJ ıJ J −ıJ −J ı −1

where z is an arbitrary complex number, and h, q are quaternions. Also z∗ and q∗ are conjugate
quantities, see, for example, [1]. If we add a fourth imaginary unit W with the property W 2 = −1
and expand the system of relations

ı2 = J2 = J 2 = Ω2 = −1;

Jz = z∗J ;

h(qJ ) = (qh)J , (hJ )q = (hq∗)J , (hJ )(qJ ) = −q∗h;

o(pW ) = (po)W, (oW )p = (op∗)W, (oW )(pW ) = −p∗o;

then we get a set of sedenions, therein o, p ∈ O. These are hexadecimal numbers. Thus we have
a sequence of embeddings of hypercomplex number systems

R ⊂ C ⊂ H ⊂ O ⊂ S ⊂ . . . ,

obtained one from the other using the Cayley–Dickson doubling procedure. Here R and C are
fields of real and complex numbers, respectively, H is algebra (body in Russian) of quaternions,
O is analytic Moufang loop of octonions, see for example [2], and S is loop of sedenions.

In Sections 1 and 2 we recall the basic concepts from the theory of quasigroups, and also
point out the close relationship between quasigroups and finite automata. The application of FA
in the theory of periodic groups was discussed in the article [3].

In Section 3 we discuss the reductant of the dihedral group Dn consisting of axial symmetries.
Thus, we illustrate the main ideas proposed in [4]. Following Sabinin we call by a reductant an
arbitrary subset of a group. Very close questions are discussed in the paper [5], where twisted
subsets of the dihedral group are considered. The authors of the paper call a subset K of the
group G twisted if e ∈ K and xy−1x ∈ K for all x, y ∈ K. An example of a twisted subset in
Dn is given by the involutions together with the unit.

In section 4 we show that the sphere S2 is a reductant of the group SU(2,C).

1. Quasigroups
The set Q, considered together with some binary operation ∗, will be called a groupoid (or

magma) 〈Q, ∗〉.

Definition 1. The groupoid 〈Q, ∗〉 is called a quasigroup if for any elements a and b of the Q
equations

a ∗ x = b, y ∗ a = b

are always uniquely solvable.
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The Definition 1 is equivalent to the invertibility of the ∗ operation on the right and left, see,
for example, [6, Chapter I]. In the finite-dimensional case this means that each row and column
of the Cayley table of the groupoid 〈Q, ∗〉 are permutations of elements from Q. The quasigroup
〈Q, ∗〉 with a unit will be called a unital quasigroup or a loop. Note that in the definition of a
quasigroup, the binary operation, in general, does not require associativity. In other words, a
finite quasigroup is a nonassociative Latin square.

By a reductant R of the group 〈G, ◦〉 we will call any subset of it. We introduce, quite
naturally, the law of composition on R, see, for example, [4].

m1 ∗m2 = proj (m1 ◦m2),

where m1 and m2 are arbitrary elements of R, and proj : G → R is a projector on a reductant.
We know this concept from the works of Sabinin.

In this paper we show that if we consider the set of axial symmetries in the dihedral group
Dn as R, and arrange proj as

proj : r2πk/n 7→ mπk/n,

k = 0, . . . , n − 1, then R will be endowed with the unital quasigroup structure. Here rφ is a
counterclockwise rotation of φ, and mψ is an axial symmetry relative to a straight line with an
angle of inclination ψ.

2. Quasigroup on a finite automaton

Let Kd be a complete graph, whose numbered vertices are represented by beads moving along
the edges. The symbol 0 denotes an empty position where any of the beads can be moved. Fig. 1
shows the complete graph K5.

Fig. 1

Let A = (Q,A, δ, q0, F ) be a deterministic finite automaton with the transition function
δ : Q × A → Q, and S = (Q,A, δ) be a semiatomaton see, for example, [7]. Consider
a semiautomaton S whose state set Q coincides with the permutation group Sd of vertices
{1, 2, . . . , d− 1, 0} of the graph Kd, and the input alphabet A is equal to the set {1, 2, . . . , d− 1}
with δ : (s, j) 7→ σ, where the permutation σ ∈ Sd is equal to s up to the permutation of the
elements j and 0, j = 1, 2, . . . , d− 1.

For d = 3 we get the graph, which can be depicted in the way shown in Fig. 2.
Here a, b, c, d, e and f are elements of the symmetric group S3, where a = (1, 2, 0), b = (1, 0, 2),

c = (0, 1, 2), d = (2, 1, 0), e = (2, 0, 1), f = (0, 2, 1). It is easy to see that the set S = {a, c, e}
is a normal subgroup in S3. On the set of involutions R = {b, d, f} ⊂ S3 we can introduce a
quasigroup multiplication by the rule

mi ∗mj = proj (mimj),
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Fig. 2

where proj is the projection operator on R along the Hamiltonian cycle highlighted in red in
Fig. 2, and mimj is the product in the group S3. We get a nonassociative multiplication table
(Tab. 2).

Table 2.

∗ b d f
b b d f
d f b d
f d f b

Indeed, different ways of placing parentheses lead to different results (fd)b = d, and f(db) = b.
We have obtained a third-order quasigroup.

3. Reductant of a dihedral group

Consider a regular n-gon. The group of its symmetries (dihedral group) consists of a subgroup
of rotations S = {r2πk/n} and axial symmetries R = {mπk/n}, k = 0, 1, . . . , n − 1 which are
represented by matrices (

cos 2πk/n − sin 2πk/n
sin 2πk/n cos 2πk/n

)
,

and (
cos 2πk/n sin 2πk/n
sin 2πk/n − cos 2πk/n

)
respectively. It is easy to see that the projector proj : S → R just throws the minus sign in the
second column from the first row to the second. More strictly, the projection is carried out by
multiplying the rotation matrix by the Pauli matrix on the right:

proj (r2πk/n) =

(
cos 2πk/n − sin 2πk/n
sin 2πk/n cos 2πk/n

)(
1 0
0 −1

)
=

(
cos 2πk/n sin 2πk/n
sin 2πk/n − cos 2πk/n

)
.
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Obviously, proj2 = id, where id is an identical transformation. Multiplying the matrices of two
axial symmetries, we get(

cos 2πk/n sin 2πk/n
sin 2πk/n − cos 2πk/n

)(
cos 2πl/n sin 2πl/n
sin 2πl/n − cos 2πl/n

)
=

(
cos 2π(k − l)/n − sin 2π(k − l)/n
sin 2π(k − l)/n cos 2π(k − l)/n

)
.

Let 0 < α < π, then mα = mπ+α and m−α = mπ−α. If k − l > 0, then

mπk/n ∗mπl/n = mπ(k−l)/n,

if k − l < 0, then
mπk/n ∗mπl/n = mπ(n+k−l)/n.

Let’s write out the multiplication table of the axial symmetries of the dihedral group Dn

(Tab. 3). For more elegance, instead of mπk/n, k ∈ Z∩ [−n+1, n−1] we will simply write the k.

Table 3.

∗ 0 1 2 3 4 5 . . . n− 1
0 0 n− 1 n− 2 n− 3 n− 4 n− 5 . . . 1
1 1 0 n− 1 n− 2 n− 3 n− 4 . . . 2
2 2 1 0 n− 1 n− 2 n− 3 . . . 3
3 3 2 1 0 n− 1 n− 2 . . . 4
4 4 3 2 1 0 n− 1 . . . 5
5 5 4 3 2 1 0 . . . 6
...

...
...

...
...

...
... . . .

...
n− 1 n− 1 n− 2 n− 3 n− 4 n− 5 n− 6 . . . 0

4. S2 sphere

Calculate the product of the points w = (w1, w2, w3) and v = (v1, v2, v3) from sphere S2 ⊂
SU(2,C) represented by complex matrices(

ıw1 −w2 − ıw3

w2 − ıw3 −ıw1

)(
ıv1 −v2 − ıv3
v2 − ıv3 −ıv1

)

=

(
−〈w, v〉+ ı(w2v3 − w3v2) −(w3v1 − w1v3 + ı(w1v2 − w2v1))

w3v1 − w1v3 − ı(w1v2 − w2v1) −〈w, v〉 − ı(w2v3 − w3v2)

)

=

(
ξ0 + ıξ1 −(ξ2 + ıξ3)
ξ2 − ıξ3 ξ0 − ıξ1

)
= ξ,

where the norm of a vector ‖(ξ0, ξ1, ξ2, ξ3))‖R4 coincides with the determinant of the matrix ξ
and is equal to one (‖ξ‖ = det ξ = 1).
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Now we project ξ ∈ SU(2,C) back onto the reductant. To do this, we will twist the ξ as
follows: (

a+ ıb 0
0 a− ıb

)(
ξ0 + ıξ1 −(ξ2 + ıξ3)
ξ2 − ıξ3 ξ0 − ıξ1

)
=

(
aξ0 − bξ1 + ı(aξ1 + bξ0) −(aξ2 − bξ3 + ı(aξ3 + bξ2))

aξ2 − bξ3 − ı(aξ3 + bξ2) aξ0 − bξ1 + ı(aξ1 + bξ0)

)

=

(
η0 + ıη1 −(η2 + ıη3)
η2 − ıη3 η0 − ıη1

)
,

where a2 + b2 = 1. We are looking for a and b such that η0 = 0 (aξ0 = bξ1) and

1 = η21 + η22 + η23

= (aξ1 + bξ0)
2 + (aξ2 − bξ3)

2 + (aξ3 + bξ2)
2

= a2(1− ξ20) + b2(1 + ξ21).

Some location configurations of an arbitrary ellipse and circle a2 + b2 = 1 are shown in Fig. 3.

Fig. 3

The solution of the system {
a2(1− ξ20) + b2(1 + ξ21) = 1,

a2 + b2 = 1

have the form

b = −
√
1− a2, a2 − 1 6= 0, ξ1 = − aξ0√

1− a2
;

b = −
√
1− a2, a2 − 1 6= 0, ξ1 =

aξ0√
1− a2

;

b =
√
1− a2, a2 − 1 6= 0, ξ1 = − aξ0√

1− a2
;

b =
√
1− a2, a2 − 1 6= 0, ξ1 =

aξ0√
1− a2

;

a = −1, b = 0, ξ0 = 0;

a = 1, b = 0, ξ0 = 0.
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О редуктантах двух групп
Дмитрий П. Федченко

Виталий А. Степаненко
Рустам В.Бикмурзин

Виктория В. Исаева
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. В работе рассматриваются редуктант диэдральной группы Dn, состоящий из множе-
ства осевых симметрий, и сфера S2 как редуктант группы SU(2,C) (группы единичных кватерни-
онов). Введя сабининское умножение на редуктанте из Dn, мы получим квазигруппу с единицей.

Ключевые слова: редуктанты групп, квазигруппы.
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