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We consider a variant of the Cauchy problem for a multidimensional difference equation with constant
coefficients, which connected with a lattice path problem in enumerative combinatorial analysis. We
obtained a formula in which generating function of the solution to the Cauchy problem s expressed in
terms of generating functions of the Cauchy data and a formula expressing solution to the Cauchy problem

through its fundamental solution and Cauchy data.
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1. Definitions and main results
On complex valued functions f : Z™ — C we define the shift operator J; as follows:
05 flan, . @y, xn) = flog, ..+ 1,000, 2y)

and the polynomial difference operator

P() = cud,

weN
where ) C Z™ is a finite set of points of an n-dimensional lattice, § = 67" -...-d%» and ¢, € C
are the coefficients of the difference operator.
We consider the difference equation
P(0)f(x) =g(z), =€X, (1)
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where f(z) is an unknown function, and g(z) is a function defined on some set X C Z™. Also
choose a set Xy C Z™, the points of which will be called initial (boundary) points.

In the general situation we have to solve the Cauchy problem: find a function f(z), satisfying
equation (1) and coinciding with a given function ¢(x) of initial data on the set X :

f(@) =¢lx), e Xo (2)

The function g(z) in the right-hand side of (1) and the initial data function ¢(x) in (2) is called
the Cauchy data of problem (1)—(2).

Existence and uniqueness of problem (1)-(2) (solvability of the Cauchy problem) depends on
all the objects involved in its formulation: the difference operator P(d), the set X on which the
right part of the equation is given, and the set X on which the initial data ¢(x) is defined.

In the one-dimensional case two variants of the Cauchy problems are usually considered:

(i) X = {x € Z : x > 0} is the set of non-negative integers, P(J) = > c,0*, Xo
w=0
{0,1,...,m—1}, ¢, #0,
(i) X={z€Z:x2>=m}, P(6)= > c,d % Xo={0,1,...,m—1}, ¢ #0.

For example, option (i) is used to dgscribe the solution to equation (1) in the theory of discrete
dynamic systems (see [6]). Option (ii) is most useful in problems of enumerative combinatorial
analysis (see [17]).

In the case of constant coefficients, the z-transformation

F(z) = Z fz(f)
z=0

is the powerful method to study discrete dynamic systems and generating functions

are used for studying problems in enumerative combinatorial analysis.

In the multi-dimensional case, the number of formulations of Cauchy problem (1)-(2) in-
creases. We discuss some of them.

An analogue of the one-dimensional case (ii), when X = ZZ is the non-negative octant in Z",
Xo=12% \ X, 0€Q, m; =max{w; :w; € Qi=1,...,n}, m=(my,...,my,) and X,, = {z €
Z% i xi =2 mgyi=1,...,m}, is considered in [2], which is devoted to multi-dimensional difference
equations with constant coefficients and their use in enumerative combinatorial analysis. Several
equivalent conditions, providing solvability of problem (1)—(2), are given in Theorem 3 in [2].
Particularly, the convex hull conv{2\ {0}} NRY is not empty.

Various analogues of variant (i) of the Cauchy problem for the multi-dimensional case are
constructed as follows. Let A = {a!,...,aN} be the set of vectors o/ = (od,...,al) € Z",j =
1,..., N, and K is a lattice cone spanned by these vectors

K={zcZ" :2=MNa'+---+Aya¥ N\, €Zs,i=1,...,N}.

For points u,v € K a partial order relation > is defined as follows: u>v < u—v € K. We
K K

also denote u 2v < u—v ¢ K. We assume that the cone K is pointed, which means it does not
K
contain any line or, equivalently, lies in an open half-space of R™.
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We consider a finite set of integer points A C K, in which there exists a point m such that
forallaf € A,j =1,...,N the condition o/ <m holds.

The solvability of the problem when the coI;e K is simplicial (which means that every element
in it admits a unique expansion in the generators) and the sets X = K and Xg = X\ (m+K), on
which Cauchy problem (1)—(2) is solved, was studied in [1], [10], [11], [12], [13], [19]. Additionally,
in these papers, the solutions f(z) to problem (1)—(2) are given in terms of the Cauchy data
and fundamental solution to (1)—(2) (the Green function). These solutions play an important
role in the study of asymptotics of solutions to the Cauchy problem, in particular, to study
the stability of the problem and its connection with the properties of the characteristic set

Vp:={2€C":P(z):= > ¢, 2¥ = 0} of the equation (1), where 2 = 2" - ... - 23"
weN
A multidimensional analogue of option (ii) for the Cauchy problem(1)—(2) was not described

in [2]. This is apparently due to the fact that in problems of enumerative combinatorial analysis
the search for the generating function for the combinatorial object is considered as a full solution
to the problem, rather than the study of its asymptotic behavior.

For n > 1 we formulate the following variant of a Cauchy problem, which combines multi-
dimensional analogs of (i) and (ii) for which the simplicity of the cone K is not required. We
denote m =al +---+a¥, g =1,a° = (0,...,0).

The Cauchy problem. Find a function f : K — C, satisfying the difference equation

N

Seife—al) =g(x), z>m, 3)
K

j=0

and which coincides with the given function ¢(z) on the set Xy = {z € K : xim}

f(@) = ¢(z), xeXo. (4)
The characteristic polynomial for (3) is a Laurent polynomial (since it may have terms of negative
N .
degree) P(z) = 3 ¢;27.
j=0

Equation (3) with initial data (4) is used to describe a major class of problems in enumer-
ative combinatorial analysis such as lattice path problems (the Dyck, Motzkin, Schroder and
generalized lattice paths, see [2], [4], [15]).

The fact that the cone K is pointed allows us to use the method of generating functions.
This involves defining for any p € K the element in the ring Cx[[z]] of (formal) power series

B2 = Y fl)=".

T2 p
K

We also define F(z) = Fy(z).

Using the method of generating functions, we will derive a formula which expresses the gen-
erating function F'(z) in terms of the characteristic polynomial for (3) and generating functions
for the Cauchy data.

Theorem 1. The generating function F(z) of a solution f(z) to difference equation (3) with
initial data (4) is representable as

N .
F(z) = P(?jfl) <Jz=:0 cjzaj ai(2) + Gm('z))» (5)
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where P(271) = P27, ..., 20 Y), @y 0i(2) = F(2) — Fy_gi(2) and Gpn(2) = 30 g(x)2*.
r>m

Proof. Multiplying the left-hand side of (3) by z* and summing over x > m yields
K

N N _ N _
Z chf(x —al)Z" = chzaj Z flx—a?)z" = chzo‘J Z flx)z" =
xz>m j=0 7=0 r>m 7=0 T+al >m
K K K

N ’ N ‘
=Y P (1) = 3032 (F() = B (2)).

j=0
Repeating the same with the right-hand side yields

N

P(zY) F(2) = 3 ;2% @i (2) + G 2).
§=0

Thus we obtain (5), which proves the theorem.

Remark 1. Formulae (5) was derived in [14] for the Riordan arrays and in [11] for K = ZV
and g(z) = 0.

A function P : Z" — C is called a fundamental solution to the Cauchy problem (3)-(4) if it
satisfies to the difference equation

N
Zcﬂ?(x —al)=dy(z), wezZ", (6)
=0

where do(z) is the Kronecker symbol:

0, ifa#0;
50(‘”):{1 ifxio.

The support of the function P(z) is a set
suppP(z) = {z € Z" : P(z) # 0}.

Lemma. If P(x) is the fundamental solution to Cauchy problem (3)—(4) and suppP C K,
where K is a pointed cone, then

P(z"")- Y Pla)zt =1 (7)

$€Zﬂ
Proof. The product
N v N ‘ N
chza] : Z P(z)z" = Z Z ¢;P(x)z"+ = Z Zcﬂ?(z —al)" = Z do(x) =1,
7=0 TEL™ J=02x€Z" zeZ™ j=0 TEL™

which proves the lemma.
The fundamental solution is

P(z) = Z (—e)M o (o) A 4 4 A)! 50,

Ad=x
ez
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and can be obtained by expanding ﬁ into the Laurent series as follows:

k
e’} N
1 1 ol
P(z1) = N ST Z Z(_Cj)z =
1— S (mej)ze? k=0 \j=1
j=1
- ¥ (_CﬂAl"“'(_CN)AN(A1+”"+’AN)!ZAHE+HAANQN _

Al !
A+ +AN=0 ! N

—c)M (o) (AL AN, -
=3 3 e O A 2 5 P =

z>0A =z
K ezl

The Laurent series Y. P(z) z* converges in a domain which can be described in term of
x>0
K
an amoeba Ap of the Laurent polynomial P(z). Namely, the logarithmic image of the domain
is a complement component of the amoeba Ap corresponded with the point 0 of the Newtone
polytope Np (see |7]).

Function P4(xz;h) = > h(\) was considered in [15] and called the vector partition function
Al=zx
rezf
!

associated with h()\). Provided that h(\) = (76);”)" , we get

P(x) = Pa(z; h). (8)

For h(A) = 1 the vector partition function P4(z;h) = Pa(x) is a number of non-negative
integer solutions to a linear Diophantine equation A\ = z (see, for example, [17]):

Pa(z)= > 1, z€Z"
Ad=x

ez
For h()\) = e~ ¥ properties of the function

Pa(y;h) = Y e ¥ yech, (9)
A=z
rez

called the vector partition function associated with the set of vectors A, were investigated in [3].
In particular, they derive the residue formulas for its generating function and an analog of the
Euler-Maclaurin formula, in which the vector partition functions are represented as the action
of the Todd operator on the volume function of a polyhedron. Furthermore, a sum of e~
in integer cones was investigated in [16] in connection to generalization of the Riemann-Roch
theorem. A structure theorem for the vector partition function was presented and polyhedral
tools for the efficient computation of such functions was provided in [18].

For ¢(x) = 1 the function P4 (); ) coincides with the classical vector partition function. For
o(x) = e~ ¥ we obtain a vector partition function of the form (9). If we take N =2, A = (1 1)

A
and ¢(x1,22) = h(x1), then Pa(N\;) = > h(zy) = >, h(xy). Thus, the problem of
T1+To=A\ x1=0
z1,7220

finding the vector partition function P4(\; ) is a generalization of the classical summation’s
problem of functions of a discrete argument.
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The concept of the fundamental solution P(z) to (3)—(4) yields a formula expressing f(x) in
terms of Cauchy data ¢(x) and g(x).
Theorem 2. A solution to the difference equation (3) with initial data (4) is given as follows:

N y .

> ciply—al), if y Em;
where 7(y) = < =0 K
9(y), if y=m.

Proof. Using expression (5) from Theorem 1 and expression (7) from Lemma yields

N .
F(z)= Z P(x)z* chzaj D, 0i (2) + G (2)
7=0

x>0
K
Since
N ) N
chza D, _0i(2) = Z chcp(y —ad) | 2Y,
Jj=0 y20,y%m \J=0
K K
we get
F(z)= P)z" Y 7(y)=",
>0 y=>0
K K
N y .
2cely—aol), ifyrm;
where 7(y) = ¢ 7=0 K

9(y), ity >m.
Finally, taking into account that P(z) = 0 for 20 we get
K

Fz)=Y [ Y Pl |=>| > Pla-yr)|="

z>20 \y>0 20 \0Ly<x
K K K K K

Equating the coefficients of z” we obtain

which proves the theorem.

2. Applications to lattice path problems

A lattice path is a finite sequence pg, p1, . .., pr, of points in Z™ and its steps are the finite set of
lattice vectors pr —pr_1 € A= {at,...,aN},k =1,2,..., L. The common class of lattice paths
arises by imposing some conditions on the paths: points py,k = 0,1,..., L, are distinct (non
intersecting paths). In the context of lattice path counting problems the function f : ZN — Z>

- 263 -



Journal of Siberian Federal University. Mathematics & Physics 2017, 2(3), 1-15

that counts the number f(z) of paths in a specified class for which py = 0 is computed (the
condition py = 0 does not result in a loss of generality). Examples of some well-known lattice
paths: Dyck, Motzkin and Schréder paths (for more details see [2], [5], [8], [9])-

It is well-known that the function f(z) satisfies difference equation (3) with ¢y =1,¢; = ... =
ey =—1and g(z) =0 (see [2]). Thus P(§) =1— 5= —... — ="

Theorem 2 yields a simple formula for the number f(z) of such paths (see also [15]). The
following condition for an initial data function (z) of Cauchy problem (3)—(4) for the lattice
path problem holds:

0, if  20;
K

plx) =1 1, if £ = 0;
(1—=P(0))p(x), if x%O,x # 0.

Since 7(y) is equal to 1 only at the origin and vanishes at other points we get f(x) = P(x).
Considering (8) we obtain

f(x) = Ps(x; h), where h(\) = |§\\—!'

Exzample A.

We consider a set with three steps A = {a! = (1,0),a? = (0,1),a® = (1,1)} and let f(z1,z2)
denote the number of paths from the origin to (z1,z2) € Z? using steps from the set A. The
cone K is spanned by the vectors from A and m = a; + as, since ag = a; + as.

We consider the two dimensional difference equation

f($1,$2> — f(l'l — 1,3’52) — f(a:l,mg — 1) — f(.’]?l — 1,5!32 — 1) = O7 (10)

and its characteristic polynomial P(z1,29) =1 — 271 — 251 — 27 25"

By Theorem 2 a solution to this difference equation is

fler,me) = Y Plar —yi, w2 — y2)7(y1,92),

0y
K K

where 7(y1,92) = @(y1,92) — (1 — Liya) —@(y1,y2 = 1) —(y1 — Liya — 1) if (y1,2) £ (2,2)
and 7(y1,y2) = 0 otherwise.

To find the fundamental solution P(z1,29) we expand P~1 (27", 25 ") as follows

oo

1 1 )
I - = E Z21+ 22+ 212 =
(z1h2")  1—(a1+ 22+ 212) k:o( L+ 22+ 2122)

min(z1,r2)

. (k1 + ko + Ek3)! 1 & ks (z1 + x5 —t)! -
= Z W%wﬁ(am) 3 = Z Z (Ilft)!(@ft)!t[’zllzf'

k1,k2,k320 1,220 t=0

Consequently, Lemma and the term of the fundamental solution gives

min(zi,r2)
($1+$2—t)! (k1+k2+k3)'
— = —_— = P 5 .
P(z1,2) tz:; (01— Dlwa — O +;=y PRI NEPY

ko+ks=xo
k1,k2,k3>0
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Finally, we have the solution for difference equation (10) with initial data function f(z1,x2) =
o(x1,22), (x1,22) # (2,2) as follows

(w1, m2) = P(a1,22)0(0,0) + > Pla1 — y1,22)(p(y1,0) — oy — 1,0))+

y1=1
x2
+ > Plan,zz — y2)(0(0,52) — 9(0,y2 — 1)).
y2=1
In the case of lattice paths, ¢(y1,0) — p(y1 — 1,0) = 0 for y1 = 1, ©(0,y2) — ¢(0,y2 — 1) =
0 for y, > 1, and ¢(0,0) = 1, we obtain
f(x1,22) = P21, 72).

Example B.
Let o' = (2,—1),a? = (—1,2) be a column vectors, we let K denote the cone K spanned by
the vectors K = (a!,a?),m = a! +a? = (1,1).

We consider the two dimensional difference equation
flzr,@e) = f(w1 — 2,220+ 1) — f(x1 + 1,20 —2) =0 (11)

and its characteristic polynomial P(z1,22) =1 — 21 29— 2125 2,
By Theorem 2 a solution to this difference equation is

f(z1,22) = Z Pz1 —y1, 2 — y2)7(y1,92),

0syse
K K

oy, y2) — W1 — 2,92+ 1) —o(y1 + 1,52 — 2),
where 7(y1,y2) = if (y1,92) i(lv 1)
07 if (yla y2) 2(]—7 1)
K

To find a fundamental solution P(x1,z2) we expand the characteristic polynomial P(z; !, 25 1)
into a series:

1 = _ _ (k‘l +k‘2)' _ _
1 1.2 Z(Z%% L4 ?1 IZS)k = Z W(Z'%Zz 1)k1 (21 1z§)k2 =

2,1 =
L—2i2y —21 25 oo k1 +k2>0
_ (F1 +F2)! ok —kytons _ (1 + 22)! o w2
N Ky lko! A 2 - (M);(M)nzl %2
k1+k2>0 (I17I2)20 3 : 3 '
K
Consequently,
(SU1+(E2)!
P(I’l,‘TQ) =

(2x1;~zg)!(a:1452x2)!'

Finally, we have the solution for difference equation (11) with arbitrary initial data

f(xlv‘r?) = (P(xlvx2)7 (‘rlvx?) }(17 1)
K
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1

fl@1,m2) = P(z1,22)0(0,0) + Y Plag — 2t, 2+ t)(p(2t, —t) — @(2t — 2, —t + 1))+

t=1
T2

+ > P(x1 +twy — 2) (p(—t,2t) — p(—t + 1,2t — 2)).

t=1

In the case of lattice paths, ¢(2t, —t) —p(2t—2, —t+1) = 0for t > 1, o(—t,2t)—p(—t+1,2t—2) =
0 for ¢t > 1, and (0,0) = 1, we obtain

flx1,22) = P(x1, 22).
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3ajgayga Komm ajgs MHOrOMEPHOTO PAa3HOCTHOTO YPAaBHEHUS B
KOHYCaX IeJIOYUNCJIEHHON peIneTKn

Anekcannap JIanwun, IHpnaarxa Yauagparupn

B pabome paccmomper, apuarm 3adavwy Kowu 0aa MHO20MEPHO20 DASHOCTIHO20 YDABHEHUA C NOCTILOAH-
HOLMU KOIPHUUUEHMAMY, 803HUKAOWUT ¢ 3a0aqet 0 wucae nymed Ha YeAouUcIeRHoT peuemxke 6 nepe-
YUCAUMEADHOM KOMOUHAMOPHOM aHaAu3e. Toaywena opmyaa, 6uparcarwyas npouseodauyo GYHKyLI0
pewenus 3adauy Kowu wepes npoussodausue gynkyuy dannor Kowu, u natideno pewenue 3adawu Kowu

yepes ee Pyndamenmanrvhoe pewerue u darnvie Kowu.

Karwesvie crosa: pasnocmuoe ypasrerue, GyroaMermasvHoe PEUEeRUe, npoudeodauas PyrKyua, nymu

Luxa

- 267 —



