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Rotationally-axisymmetric motion of a binary mixture with a flat free boundary at small

Marangoni numbers is investigated. The problem is reduced to the inverse linear initial-

boundary value problem for parabolic equations. Using Laplace transformation properties

the exact analytical solution is obtained. It is shown that a stationary solution is the limit-

ing one with the growth of time if there is a certain relationship between the temperature of

the solid wall and the external temperature of the gas. If there is no connection, the conver-

gence to the stationary solution is broken. Some examples of numerical reconstruction of

the temperature, concentration and velocity fields are given, which confirm the theoretical

conclusions.
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Introduction

The main purpose of this work is to construct an exact solution of the inverse initial boundary
value problem of rotationally symmetric motion of a viscous heat-conducting binary mixture
with a flat free boundary at small Marangoni numbers, as well as a numerical solution of the
problem.The movement is caused by a non-stationary pressure gradient.

It is well known that for small Marangoni numbers, the momentum equation can be sim-
plified by discarding convective acceleration. Such movements are called crawling. Similar sim-
plifications can be obtained for the energy and concentration transfer equations. One of these
problems, considered in paper [1], is devoted to the study of solving the thermodiffusion equa-
tions of a special type that describes the two-dimensional motion of a binary mixture in a flat
channel. In the resulting initial boundary value problem, the analog of the Marangoni number
is the Reynolds number. Assuming that this number is small, the problem becomes linear. Its
solution is found using trigonometric Fourier series that converge rapidly for any given time.
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There are a lot of theoretical works concerning convective movements in flat layers with
a free boundary. R. V. Birikh’s exact stationary solutions to the problem of thermocapillary
convection in a flat horizontal layer are well known in work [2]. One solution describes the
flow in the band −h < x < 0, both borders of which are solid walls, and in the second –
the upper border of the band is free, subject to the action of thermocapillary forces. The
solutions were widely used and cited [3–15]. In a number of these works [6,7,10,13–15], the flat
Benard-Marangoni convection of a viscous incompressible liquid was studied in the Oberbeck–
Bussinesque model. A characteristic feature of the obtained solutions is the one-dimensional
velocity coordinates, and the temperature and pressure fields are three-dimensional. In the
work [13], an exact solution was obtained near the point of the temperature extremum at
zero Grasgoff number. The found solution serves as an initial approximation for constructing
solutions for Grasshoff numbers greater than zero. In works [14, 15] of the initial boundary
value problem describing non-stationary layered flows of the Benard–Marangoni convection in
an infinitely extended flat layer, the existence of counterflows in the liquid layer was found. The
presence of counterflows is equivalent to the presence of stagnant points, which indicates the
existence of a local extremum of the kinetic energy of the liquid.

In this paper, in the absence of external forces, we study the creeping axisymmetric motion
of a mixture with a flat free boundary with a Ximenz type velocity field [16]. Here the inverse

problem arises, since the non-stationary pressure gradient is also the desired function.

1. Statement of the problem

We consider the axisymmetric motion of an infinite horizontal plane layer of a viscous heat-
conducting binary mixture bounded by a solid wall z = 0 and a free boundary z = l(t) (see
Fig. 1). Let u(x, t) is the velocity vector, p(x, t) is the pressure, θ(x, t), c(x, t) are deviations
from the average values temperature and concentration values of the mixture under conditions
of complete weightlessness. The process is described by a system of equations of thermodiffusion
motion [17]:

du

dt
+

1

ρ
∇p = ν∆u, divu = 0,

dθ

dt
= χ∆θ,

dc

dt
= d∆c + αd∆θ,

(1)

where ρ is the average density, ν is the kinematic viscosity, χ is the thermal diffusivity, d is the
diffusion coefficient, α is the thermodiffusion coefficient (Soret coefficient); d/dt = ∂/∂t +u · ∇
is the full time derivative, ∆ is the Laplace operator.

Remark 1. The equation of energy from the system (1) does not take into account the
term describing the dissipation of kinetic energy. This is due to the fact that the ratio of this
term and u ·∇θ for most processes does not exceed 10−7. In addition, all model parameters are
assumed to be constant, and they are reliably determined experimentally.

Let u(r, z, t), w(r, z, t) are projections of the velocity vector in cylindrical coordinate system.
The solution of the problem is searched for in a special form:

u = ru1(z, t), w = w(z, t), p = p(r, z, t), θ = a(z, t)r2 + b(z, t),

c = h(z, t)r2 + g(z, t).
(2)
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Рис. 1. Diagram of the flow region

A solution of the form (2) is called a Ximenz type solution [16], in which the velocity field is
linear relative to one from the coordinates. It is partially invariant with respect to the five-
parameter subgroup generated by the operators ∂/∂r, t∂/∂r + ∂/∂u, ∂/∂θ, ∂/∂c, ∂/∂p [18].

Substituting the form (2) into the system of thermodiffusion equations leads to the system
(reassign u1 ↔ u):

rut + ru2 + rwuz +
1

ρ
pr = rνuzz; (3)

wt + wwz +
1

ρ
pz = νwzz; (4)

2u + wz = 0; (5)

at + 2au + waz = χazz; (6)

bt + wbz = χ(4a + bzz); (7)

ht + 2hu + whz = dhzz + αdazz; (8)

gt + wgz = d(4h + gzz) + αd(4a + bzz), (9)

that needs to be solved in the field t > 0, 0 < z < l(t).
It is assumed that the surface tension coefficient σ at the free boundary linearly depends

on the temperature and concentration

σ(θ, c) = σ0 − æ1(θ − θ0) − æ2(c − c0),

where æ1 > 0 is the temperature coefficient of surface tension, æ2 is the concentration coef-
ficient of surface tension (usually æ2 < 0, since the surface tension increases with increasing
concentration); θ0, c0 are some constant average values.

Boundary conditions on an unknown free boundary z = l(t) for the system (3)–(9) have the
form:

dl

dt
= w(l(t), t); (10)

uz = −2æ1

ρν
a − 2æ2

ρν
h; (11)

pgas − p + 2ρνwz = 0; (12)

kaz + γ(a − agas) = 0; (13)

kbz + γ(b − bgas) = 0; (14)
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hz + αaz = 0; (15)

gz + αbz = 0, (16)

where pgas, θgas are the pressure and the temperature of the surrounding gas; k, γ are the thermal
conductivity and the heat transfer coefficients. It is assumed that the transfer processes in gas
can be neglected. It is assumed that the gas pressure pgas is constant, and its temperature θgas

is at the boundary with the liquid mixture given by the function. Thus, the ratio (10) is the
kinematic condition, (11), (12) are tangential and normal dynamic conditions, (13), (14) is a
condition for heat exchange with the gas surrounding the mixture, (15), (16) is a condition for
the absence of a flow of matter across a free boundary (thus the effect of surfactants on z = l(t)
is not taken into account).

Boundary conditions on a solid wall z = 0:

u(0, t) = 0 , w(0, t) = 0 , a(0, t) = a(t) , b(0, t) = b(t) ,

hz + αaz = 0 , gz + αbz = 0.
(17)

Initial conditions:

u(z, 0) = u0(z), w(z, 0) = w0(z), a(z, 0) = a0(z), b(z, 0) = b0(z),

h(z, 0) = h0(z), g(z, 0) = g0(z), l(0) = l0 > 0,
(18)

moreover, the functions u0(z), w0(z), a0(z), b0(z), h0(z), g0(z) satisfy the conditions (10)–(16),
(17), that is, the approval conditions have been met.

From the equations (3), (4), the pressure gradient (pr, pz) is expressed:

pr = −rρ(ut + u2 + wuz − νuzz); (19)

pz = ρ(wzz − wt − wwz); (20)

The compatibility conditions of the equations (19), (20) are satisfied identically: prz = pzr = 0.
It follows that the function u(z, t) will be determined from the equation

ut + u2 + wuz = νuzz + f(t), (21)

and the pressure is restored by the formula

p = −r2

2
ρf(t) + s(z, t), (22)

here f(t) is arbitrary function, and the derivative of the variable z from the function s(z, t)
is exactly the right side of the equation (20). The function s(z, t) is considered known if the
function w(z, t) is found.

Therefore, the problem is inverse, since the longitudinal pressure gradient f(t) is an unknown
function. In the theory of inverse problems, it is called a source function.

2. Converting to a task in a fixed area

You can see that the equations (21), (5), (6), (8) are independent of the others. They form
a closed initial boundary value problem for defining the functions u(z, t), a(z, t), h(z, t), and
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l(t). Therefore, we will reduce the task to finding only these functions. To do this, we integrate
the equation (5) and exclude the function w in the equations (21), (6), (8). In the resulting
system, we introduce dimensionless variables and functions with equalities:

τ =
νt

l20
, y =

z

l(t)
, U =

l20u

ν
, A =

l20a

T̄
,

Agas =
l20agas

T̄
, H(z, t) =

l20h

c̄
, L(τ) =

l(t)

l0
, F (τ) =

l40f(t)

ν2
,

(23)

here T̄ , c̄ are characteristic temperature and concentration.
The result is a task in a fixed area 0 < y < 1:

M(U) ≡ Uτ − (ln L)τyUy − 2Uy

y∫

0

U(y, τ) dy + U2 − 1

L2
Uyy − F (τ) = 0; (24)

F (U,A) ≡ Aτ − (ln L)τyAy − 2Ay

y∫

0

U(y, τ) dy + 2AU − 1

Pr L2
Ayy = 0; (25)

R(U,A,H) ≡ Hτ − (ln L)τyHy − 2Hy

y∫

0

U(y, τ) dy + 2HU−

− 1

Sc L2
Hyy −

Sr

Sc L2
Ayy = 0.

(26)

In (24)–(26), dimensionless parameters are entered: Sc = ν/d is Schmidt number, Sr = αdT̄/νc̄
is Soret number, Pr = ν/χ is Prandtl number.

The following conditions are met on a solid wall y = 0:

U(0, τ) = 0, A(0, τ) = A(τ), Hy + SrAy = 0. (27)

On a free boundary y = 1:

dL

dτ
= −2L

1∫

0

U(y, τ) dy; (28)

Ay + L Bi(A − Agas) = 0; (29)

− 1

2L
Uy = Ma A + Mc H; (30)

Hy + SrAy = 0, (31)

where Bi = γl0/k is the number of Bio; Ma = æ1T̄ l0/ρν2, Mc = æ2c̄l0/ρν2, respectively, the
thermal Marangoni number and the concentration Marangoni number.

Initial conditions for τ = 0:

U(y, 0) = U0(y) , A(y, 0) = A0(y) , H(y, 0) = H0(y) ,

L(0) = 1 , F (0) = F 0 ≡ const.
(32)
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To find an unknown pressure gradient F (τ) when solving the inverse problem, you need to
set an additional condition. As such the condition is an integral redefinition condition, which
is written as:

1∫

0

Udy = 0, y = 1; (33)

This is a condition of closed flow. Thus, the flow rate of the liquid mixture through any normal
cross-section is zero. Given the conditions (28) and (32), it follows from the integral redefinition
condition (33) that the free boundary remains fixed and is equal to L(τ) = 1.

3. Stationary solution

We will assume that the thermal Marangoni number is Ma ≪ 1 (the creeping motion),
as well as Ma ∼ Mc, that is, thermal and concentration effects on a free boundary of the
same order. Formally decomposing the functions U , A, H in a row by Ma, we get for the
first approximation the problem (24)–(26) with Ma = 0. In the equations of momentum, heat
transfer, and concentration, the convective terms are discarded. We will consider the steady
flow of the liquid. For such a movement, all the required functions do not depend on time;
let’s denote them by U0(y), A0(y), H0(y). Also, on a solid wall, A(τ) = A ≡ const. Let’s write
out the corresponding boundary value problem for 0 < y < 1, which becomes linear for small
Marangoni numbers:

U0

yy + F 0 = 0; (34)

A0

yy = 0; (35)

H0

yy + SrA0

yy = 0, (36)

with boundary conditions (27)–(32).
When searching for a stationary solution, a fundamental result was obtained. That is, in

order for the solutions found to satisfy all boundary conditions, it is necessary and sufficient
that the temperature of the solid wall is associated with the external temperature of the gas
by a certain condition. The relationship between temperatures is as follows:

A = −
Bi A0

gas

Bi + 2
. (37)

Then the required functions in the first approximation have the form:

A0(y) =
Bi A0

gas (2y − 1)

Bi + 2
; (38)

H0(y) =
Bi Sr A0

gas (1 − 2y)

Bi + 2
; (39)

U0(y) =
Bi A0

gas (1 − MSr)(y − 1, 5y2)

Bi + 2
; (40)

F 0 = 3
Bi A0

gas (1 − MSr)

Bi + 2
, (41)
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where M = æ2c̄/æ1T̄ is a dimensionless parameter equal to the ratio of the thermal Marangoni
number to the concentration Marangoni number.

In addition, representations are found for other functions of the General problem, which
made a significant contribution to obtaining a certain relationship between temperatures:

B0(y) = −2

3
α1y

3 − 2α2y
2 + β1y + β2; (42)

G0(y) = −2

3
γ1y

3 − 2γ2y
2 + δ1y + δ2; (43)

where α1, α2, β1, β2, γ1, γ2, δ1, δ2 are constants defined from boundary conditions (27)–(32):

α2 = −
Bi A0

gas

Bi + 2
, α1 = −2α2, β2 = B,

β1 =
Bi(B0

gas − β2 + 2

3
α1 + 2α2) + 2α1 + 4α2

Bi + 1
, (44)

γ1 = −α1 Sr, γ2 = −γ1

2
, δ1 = −β1 Sr, δ2 =

α1 Sr

6
+

β1 Sr

2
+ C.

Here B is the second component of the solid wall temperature for the stationary case, and C
is a constant that sets the average cross-section concentration y = 0.

4. Determining of the temperature field

For solution of nonstationary linear problem is used Laplace transform. Believe (assuming
the existence of Ã, Ãy, Ãyy, Ãgas [19]):

Ã(y, p) =

∞∫

0

A(y, τ)e−pτ dτ, (45)

then the problem for A(y, τ) is reduced to the boundary value problem for an ordinary differ-
ential equation

Ãyy − Pr p Ã = −Pr A0(y), 0 < y < 1; (46)

Ã(0, p) = Ã(p), y = 0; (47)

Ãy + Bi(Ã − Ãgas) = 0, y = 1; (48)

The General solution of the equation (46) is as follows:

Ã = C1 ch
√

Pr p y + C2 sh
√

Pr p y +

√
Pr p

p

y∫

0

A0(x)sh

[√
Pr p (x − y)

]
dx; (49)

with the constants C1 and C2, which are defined from boundary conditions (47), (48):

C1 = Ã(p), (50)
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C2 =

[√
Pr p ch

√
Pr p + Bi sh

√
Pr p

]
−1{

Bi Ãgas−

−Ã(p)
(√

Pr p sh
√

Pr p + Bi ch
√

Pr p
)
−

−Bi
√

Pr p

p
Pr

1∫

0

A0(x)sh

[√
Pr p (x − 1)

]
dx

}
.

(51)

The original A(y, τ) is restored using the formula

A(y, τ) =
1

2πi

l+i∞∫

l−i∞

Ã(y, p)epτ dp. (52)

The integral (52) is taken along any straight line Re p = l > s0, where s0 is the growth index
of the function A(y, τ), and is understood in the sense of the main value.

The task for determining the image B̃(y, p) is exactly the same as the task (46)–(48) with
the replacement of the right part: −Pr A0(y) for −Pr B0(y) − 4Ã. Thus, this function is found
by the formula:

B̃ = C3 ch
√

Pr p y + C4 sh
√

Pr p y+

+

√
Pr p

p

y∫

0

B0(x)sh

[√
Pr p (x − y)

]
dx − 2C1y√

Pr p
ch

√
Pr p−

− 2C2y√
Pr p

sh
√

Pr p +
2y

p

y∫

0

A0(x)ch

[√
Pr p (x − y)

]
dx,

(53)

with constants C3 and C4 defined from boundary conditions:

C3 = B̃(p), (54)

C4 =

[√
Pr p ch

√
Pr p + Bi sh

√
Pr p

]
−1{

Bi B̃gas−

−B̃(p)
(√

Pr p sh
√

Pr p + Bi ch
√

Pr p
)

+

+Pr

1∫

0

B0(x)ch

[√
Pr p (x − 1)

]
dx − 2(1 + Bi)

p

1∫

0

A0(x)ch

[√
Pr p (x − 1)

]
dx+

+
2
√

Pr p

p

1∫

0

A0(x)sh

[√
Pr p (x − 1)

]
dx+

+2C1

(
ch
√

Pr p√
Pr p

+ sh
√

Pr p +
Bi ch

√
Pr p√

Pr p

)
+

+2C2

(
sh
√

Pr p√
Pr p

+ ch
√

Pr p +
Bi sh

√
Pr p√

Pr p

)}
.

(55)
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You can show using the explicit formulas (49)–(51) and asymptotic representations: shx ∼
x + x3/6, chx ∼ 1 + x2/2 for x → 0 [20], that

lim
τ→∞

A(y, τ) = lim
p→0

pÃ(y, p) = A0(y),

where A0(y) is a stationary solution for the function A(y, τ) in (38). When proving, keep in
mind that the functions Agas(τ) and A(τ) are originals along with their first derivatives [19] and
assume the existence of limits: lim

τ→∞

Agas(τ) = lim
p→0

pÃgas(p) = A0
gas, lim

τ→∞

A(τ) = lim
p→0

pÃ(p) = A.

In addition, the condition (37) must be met.
Similarly, it is shown that

lim
τ→∞

B(y, τ) = lim
p→0

pB̃(y, p) = B0(y),

that is, as time increases, the temperature perturbation becomes stationary, provided that the
functions Bgas(τ) and B(τ) are originals along with their first derivatives and there are limits:
lim

τ→∞

Bgas(τ) = lim
p→0

pB̃gas(p) = B0
gas, lim

τ→∞

B(τ) = lim
p→0

pB̃(p) = B.

Thus, the fair
Theorem 1. Problem solving for the functions A(y, τ), B(y, τ) are determined by the in-

verse Laplace transform by the formulas (49), (53), and with the growth of time, they reach a

stationary regime, if Agas(τ) → A0
gas, Bgas(τ) → B0

gas, A(τ) → A,B(τ) → B when τ → ∞ and

the condition (37) is met.

5. Determination of the mixture concentration

Applying to the initial-boundary problem for the concentration the mixture of Laplace trans-
form, obtain for the image H̃(y, p) task

H̃yy − Scp H̃ = −ScH0(y) + SrPr A0(y) − SrPrp Ã, 0 < y < 1; (56)

H̃y + SrÃy = 0, y = 0; (57)

H̃y + SrÃy = 0, y = 1; (58)

The General solution of the equation (56) for Pr 6= Sc is as follows:

H̃ = C5 ch
√

Sc p y + C6 sh
√

Sc p y+

+
1√
Sc p

y∫

0

(ScH0(x) − SrPrA0(x))sh

[√
Sc p (x − y)

]
dx−

− SrPr

Pr − Sc

(
C1ch

√
Pr p y + C2sh

√
Pr p y +

√
Pr p

p

y∫

0

A0(x)sh

[√
Pr p (x − y)

]
dx

)
,

(59)

with constants C5 and C6 defined from boundary conditions (57), (58):

C6 =
C2 Sr

√
PrSc

Pr − Sc
, (60)
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C5 =

[√
Sc p sh

√
Sc p

]
−1{ 1∫

0

(ScH0(x) − SrPrA0(x))ch

[√
Sc p (x − 1)

]
dx+

+
SrSc

Pr − Sc

[√
Pr p

(
C1 sh

√
Pr p + C2 ch

√
Pr p

)
−

−Pr

1∫

0

A0(x)ch

[√
Pr p (x − 1)

]
dx

}
− C2 Sr

√
PrSc

Pr − Sc
cth

√
Sc p.

(61)

The task for defining an image G̃(y, p) is exactly the same as the task (56)–(58) with
replacing the right part: −ScH0(y)+SrPr A0(y)−SrPrp Ã for −ScG0(y)+SrPr B0(y)−SrPrp B̃−
4H̃.

The General solution for G̃(y, p) when Pr 6= Sc has the form:

G̃ = C7 ch
√

Sc p y + C8 sh
√

Sc p y+

+
1√
Sc p

y∫

0

(ScG0(x) − SrPrB0(x))sh

[√
Sc p (x − y)

]
dx−

− 2C5y√
Sc p

ch
√

Sc p y − 2C6y√
Sc p

sh
√

Sc p y−

− SrPr

Pr − Sc

(
C3 ch

√
Pr p y + C4 sh

√
Pr p y +

√
Pr p

p

y∫

0

B0(x)sh

[√
Pr p (x − y)

]
dx−

− 2C1y√
Pr p

ch
√

Pr p y − 2C2y√
Pr p

sh
√

Pr p y +
2y

p

y∫

0

A0(x)ch

[√
Pr p (x − y)

]
dx

)
+

+
2y

Scp

y∫

0

(ScH0(x) − SrPrA0(x))ch

[√
Sc p (x − y)

]
dx,

(62)

where the constants C7 and C8 are defined from the boundary conditions as follows:

C8 =
2C5

Scp
+

Sr Sc (Prp C4 − 2C1)√
PrSc p (Pr − Sc)

, (63)
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C7 =

[√
Sc p sh

√
Sc p

]
−1{

2C5

(
ch
√

Sc p√
Sc p

+ sh
√

Sc p

)
+

+2C6

(
sh
√

Sc p√
Sc p

+ ch
√

Pr p

)
+

+

1∫

0

(ScG0(x) − SrPrB0(x))ch

[√
Sc p (x − 1)

]
dx+

+
SrSc

Pr − Sc

[√
Pr p

(
C3 sh

√
Pr p + C4 ch

√
Pr p

)
−

−Pr

1∫

0

B0(x)ch

[√
Pr p (x − 1)

]
dx−

−2C1

(
ch
√

Pr p√
Pr p

+ sh
√

Pr p

)
− 2C2

(
sh
√

Pr p√
Sc p

+ ch
√

Pr p

)
+

+
2

p

1∫

0

A0(x)ch

[√
Pr p (x − 1)

]
dx − 2

√
Pr p

p

1∫

0

A0(x)sh

[√
Pr p (x − 1)

]
dx

]
−

− 2

Scp

1∫

0

(ScH0(x) − SrPrA0(x))ch

[√
Sc p (x − 1)

]
dx+

+
2√
Sc p

1∫

0

(ScH0(x) − SrPrA0(x))sh

[√
Sc p (x − 1)

]
dx

}
− C8 cth

√
Sc p.

(64)

You can show using the formulas (59)–(61) that

lim
τ→∞

H(y, τ) = lim
p→0

pH̃(y, p) = H0(y),

where H0(y) is a stationary solution for the function H(y, τ) in (39). When output, you must
again assume that there are limits: lim

τ→∞

Agas(τ) = A0
gas, lim

τ→∞

A(τ) = A. In addition, the condi-

tion (37) must be met.

Similarly, it is shown that

lim
τ→∞

G(y, τ) = lim
p→0

pG̃(y, p) = G0(y),

where G0(y) is a stationary distribution for the function G(y, τ).

Thus, the fair

Theorem 2. Problem solving for the functions H(y, τ), G(y, τ) are determined by the in-

verse Laplace transform by the formulas (59), (62), and with the growth of time, they reach a

stationary regime, if Agas(τ) → A0
gas, Bgas(τ) → B0

gas, A(τ) → A,B(τ) → B when τ → ∞ and

the condition (37) is met.
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6. Determination of the velocity field

Applying the Laplace transform to a problem for speed reduces it to a boundary value
problem for an ordinary differential equation

Ũyy − pŨ = −U0(r) − F̃ (p), 0 < y < 1; (65)

Ũ(0, p) = 0, y = 0; (66)

1∫

0

Ũdy = 0, y = 1; (67)

Ũy = −2(Ã + MH̃), y = 1; (68)

The General solution of the equation (65) is written as follows:

Ũ = C9 ch
√

p y + C10 sh
√

p y +
1
√

p

y∫

0

U0(x)sh

[
√

p (x − y)

]
dx; (69)

with constants C9 and C10 defined from boundary conditions (66)–(68):

C9 = − F̃ (p)

p
, (70)

C10 =

2(Ã + MH̃) +
√

p
1∫
0

U0(x)ch
√

p (x − 1) dx + F̃ (p) sh
√

p

p ch
√

p
,

(71)

where the functions Ã(y, p), H̃(y, p) are given by the formulas (49), (59) for y = 1, and the
pressure gradient F̃ (p) is as follows:

F̃ (p) =

[
√

p сh
√

p − sh
√

p

]
−1{√

p (ch
√

p − 1)(2Ã + 2MH̃−

−
1∫

0

U0(x)ch
√

p (x − 1) dx) − p ch
√

p

1∫

0

[ y∫

0

U0(x)ch
√

p (x − 1) dx

]
dy

}
.

(72)

You can derive equality from the expressions (69)–(71):

lim
p→0

pŨ(r, p) = U0(y), (73)

where U0(y) is a stationary velocity distribution from (40). When you output (66), you must
assume the existence of the limits: lim

τ→∞

Agas(τ) = A0
gas, lim

τ→∞

Bgas(τ) = B0
gas, lim

τ→∞

A(τ) = A,

lim
τ→∞

B(τ) = B and the fulfillment of the condition (37).

Thus, the fair
Theorem 3. Problem solving for the function U(y, τ) is determined by the inverse Laplace

transform by the formulas (69), (71), and with the growth of time, they reach a stationary

regime, if Agas(τ) → A0
gas, Bgas(τ) → B0

gas, A(τ) → A,B(τ) → B when τ → ∞ and the

condition (37) is met.
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7. Numerical solution

The obtained formulas in the Laplace images were used to find the temperature, concentra-
tion, and velocity fields of the mixture under certain conditions imposed on the external tem-
perature Agas(τ) and the solid wall temperature A(τ). In this purpose, the numerical method
of the inverse Laplace transform was used using the quadrature formula of the highest degree
of accuracy, constructed for the Riemann–Mellin integral [21]:

f(t) =
1

2πi

c+i∞∫

c−i∞

F (σ)eσt dσ. (74)

Let the image function F (σ) is regular in the half-plane Reσ > α. Replacing σ = p/t + α
converts (74) to an integral

f(t) =
1

2πi

eαt

t

ε+i∞∫

ε−i∞

F ∗(p)ep dp, (75)

here ε — any small positive number, and F ∗(p) = F (p/t + α) = F (σ). It is assumed that F ∗(p)
has the form F ∗(p) = ϕ(p)/pk, here k > 0, ϕ(p) is regular in the half-plane Re p > 0 and there
is lim

t→∞

ϕ(p) 6= 0;∞. Then the quadrature formula of the highest degree of accuracy is applied

to the integral

1

2πi

ε+i∞∫

ε−i∞

ϕ(p)
ep

pk
dp

which has the form

1

2πi

ε+i∞∫

ε−i∞

ϕ(p)
ep

pk
dp ≃

n∑

m=1

Amϕ(pm), (76)

and since
ϕ(pm) = pk

mF ∗(pm) = pk
m F (pm/t + α),

then

f(t) ≃ eαt

t

n∑

m=1

Am pk
m F (pm/t + α), (77)

moreover, the coefficients Am and pm nodes depend on k и n. The formula (77) was the basis
of a program that performs the inverse Laplace transform. The coefficients Am and the nodes
pm were taken from [22].

Using the numerical method, quantitative results were obtained for a model system with
the following parameter values: A0

gas = 0.2, Sr = 3, Bi = 2, Pr = 2, Sc = 1, M = 100,
Agas(τ) = A0

gas + exp(−λτ) sin(ωτ), here ω = 1. Fig. 2–7 shows the evolution of dimensionless
profiles of temperature, concentration, and velocity of the mixture at different times.

If the functions Agas(τ), A(τ) have finite limits at τ → ∞, equal to A0
gas and A, respectively,

and the condition (37) is met, then there is convergence to the stationary distribution (see Fig.
2a, 3a, 4a at λ = 1). If these functions have no limits at τ → ∞, then non-stationary solutions
do not converge to stationary solutions with increasing time (see Fig. 2b, 3b, 4b at λ = 1).
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Рис. 2. The temperature profile at λ = 1: 1 – τ = 0.02, 2 – τ = 0.2, 3 – τ = 2.4, 4 – τ = 4.5, 5 – the
stationary solution.

Рис. 3. The concentration profile at λ = 1: 1 – τ = 0.02, 2 – τ = 0.2, 3 – τ = 1.7, 4 – τ = 4.8, 5 – the
stationary solution.

For Fig. 5, 6 presents temperature, concentration, and velocity profiles for λ = 10−3. It
takes a longer period of time for the solution to return to the steady state, and there are
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Рис. 4. The velocity profile at λ = 1: 1 – τ = 0.04, 2 – τ = 1.0, 3 – τ = 1.4, 4 – τ = 3.14, 5 – the
stationary solution.

Рис. 5. The temperature and concentration profiles at λ = 10−3: 1 – τ = 0.03, 2 – τ = 0.3, 3 – τ = 35.6,

4 – τ = 37.85, 5 – the stationary solution.

fluctuations. The dependence of the speed U(y, τ) on the parameter M was also studied (see
Fig. 7). It turned out that the non-stationary solution quickly switches to the stationary regime

15



Рис. 6. The velocity profile at λ = 10−3: 1 – t = 0.5, 2 – τ = 4.5, 3 – τ = 35.2, 4 – τ = 37.8, 5 – the
stationary solution.

Рис. 7. The velocity profile for different values of the parameter M: a) M = 10, b) M = 1.

for any M.

Analyzing the numerical solution for the radial component of a vector finally, we conclude
that the function U(h, τ) takes a minimum value for y = 1/3, as well as U < 0 for 0 < y < 2/3
and U > 0 for 2/3 < y < 1, which corresponds to the result obtained in the formula (40).
It follows that the current changes direction at a depth equal to 2/3 of the thickness of the
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liquid layer.
Fig. 8 shows the trajectories of liquid particles (current lines) and the surface of the current

when moving a viscous heat-conducting binary mixture with a flat free boundary. It can be
seen that there is a return rotationally-symmetric flow of the liquid, which occurs under the
influence of a pressure gradient. The resulting motion is a vortex in the ry plane with the center
shifted to the free boundary. In this case, the maximum speed is achieved on a free surface.

Рис. 8. a) the trajectories of liquid particles, b) the surface current.

Let’s see what happens to the rest of the required functions. As a result of heat exposure, the
temperature A(y, τ) increases and the concentration H(y, τ) decreases. There is a thermodiffu-
sion effect-the Soret effect. Anomalous thermodiffusion occurs, in which light components tend
to move to colder areas, and heavy components end up in areas with increased temperature
(since c in the system (1) is the concentration of the light component).

Conclusion

Rotationally-symmetric motion of a binary mixture with a flat free boundary at small
Marangoni numbers is investigated. The problem is reduced to the inverse linear initial-boundary
value problem for parabolic equations. Using Laplace transformation properties the exact an-
alytical solution is obtained. It is shown that a stationary solution is the limiting one with
the growth of time if there is a certain relationship between the temperature of the solid wall
and the external temperature of the gas. If there is no connection, the convergence to the
stationary solution is broken. Some examples of numerical reconstruction of the temperature,
concentration and velocity fields are given, which confirm the theoretical conclusions.
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ВРАЩАТЕЛЬНО-СИММЕТРИЧНОЕ ДВИЖЕНИЕ
БИНАРНОЙ СМЕСИ С ПЛОСКОЙ СВОБОДНОЙ ГРАНИЦЕЙ

ПРИ МАЛЫХ ЧИСЛАХ МАРАНГОНИ

Victor K. Andreev

Natalya L. Sobachkina

Исследовано вращательно-симметричное движение плоского слоя бинарной смеси со

свободной границей при малых числах Марангони. Задача сводится к обратной линей-

ной начально-краевой задаче для параболических уравнений. В изображениях по Лапласу

получено точное аналитическое решение. Найдено стационарное решение задачи и дока-

зано, что оно является предельным с ростом времени при условии существования опре-

деленной связи между температурой твердой стенки и внешней температурой газа. В

случае отсутствия связи сходимость к стационарному решению нарушается. Приво-

дятся примеры численного восстановления полей температуры, концентрации и скоро-

сти, подтверждающие теоретические выводы.

Ключевые слова: бинарная смесь, свободная граница, обратная задача, градиент дав-
ления, стационарное решение, преобразование Лапласа, тепловое число Марангони.
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