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Abstract. The article deals with the problem of calculating reliable estimates
of empirical distribution functions under conditions of small sample and data
uncertainty. To study these issues, we develope computational probabilistic
analysis as a new area in computational statistics. We propose a new approach
based on random interpolation polynomials and order statistics. Arithmetic op-
erations on probability density functions and procedures for constructing the
probabilistic extensions are used.

1 Introduction

The presence of uncertainties in the remote sensing data requires the development of numer-
ical methods that take into account these uncertainties. Thus, interval uncertainty lead to
interval methods. The interval approach is actually one of the most important, but far from
the only means of obtaining reliable results in mathematical computations.

Reliability can also be based on other approaches, both purely mathematical and related to
computer tools for solving mathematical problems. To improve the reliability of calculations
we propose to use the computational probabilistic analysis.

The paper discusses reliable estimates of remote sensing data analysis. The approach is
based on the use of random interpolation polynomials and order statistics. One of the known
approaches is the use of Kolmogorov-Smirnov confidence limits. Similar methods are used
to construct the interval boundaries of empirical distribution functions or so called P-Boxes
[1].

Information availability on the probability density function makes it possible to take into
account the influence of data uncertainty in the calculations and to obtain results in the form
of random variables with a constructed probability density. One approach to accounting for
the random nature of the input data is Monte Carlo method [2].

With all its positive qualities, this method has several disadvantages. One of the most
significant drawbacks is the low convergence rate. It is important that many practical tasks
with random inputs require faster methods. Computational probabilistic analysis is one of
these approaches. The main idea of computational probabilistic analysis is to use numerical
operations and relations over probability densities.

In computational probabilistic analysis, various types of representations of the density
function of random variables are used piecewise polynomial function. Piecewise polynomial
∗e-mail: BDobronets@yandex.ru
∗∗e-mail: OlgaArc@yandex.ru

 , 0 (2020) https://doi.org/10.1051/e3sconf /20201490E3S Web of Conferences 149
RPERS 2019

20 20112 2

  © The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of the Creative
Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). 



functions are determined by grids of dimension m and the values of the functions at the grid
nodes. Histograms, frequency polygons, splines, etc. are examples of such functions [4–6].

The paper considers probabilistic extensions of interpolation polynomials and splines in
the case when the input data are random variables given by their probability densities.

The probability density functions of random variables x, y, z will be denoted by bold font
x, y, z. Let us identify through R the set of all probability density functions.

The interpolation problem can be formulated as follows [3]. Let f be some function, its
values fi = f (xi) at the points a = x0 < x1 < x2... < xn = b are random variables fi with joint
probability density function p( f0, f1, . . . , fn). The problem arises of approximate recovery of
all realizations of the function f at an arbitrary point x.

Further, this problem will be solved be using computational probabilistic analysis and
applying the concept of probabilistic extension. For these purposes, we will construct prob-
abilistic extensions of Lagrange interpolation polynomials, piecewise linear functions and
cubic splines.

2 Elements of computational probabilistic analysis

Let (x1, x2, . . . , xn) be a system of continuous random variables with joint probability density
functions p(x1, x2, . . . , xn). Let the random variable z be a function

z = f (x1, x2, . . . , xn),

where f : Rn → R.

Definition 1 We say that the random function f : Rn → R is a probabilistic continuation of
the deterministic function f : Rn → R on the set D ⊂ Rn, if f (x) = f (x) for all arguments
x ∈ D.

Definition 2 The random function f : Rn → R is called the probabilistic extension of the
deterministic function f : Rn → R on the set D ⊂ Rn, if

(i) it is probabilistic continuation of f on D,

(ii) the probability density function f coincides with the probability density function z of
the random variable z = f (x1, x2, . . . , xn), where (x1, x2, . . . , xn) is a system of continuous
random variables with joint probability density functions p(x1, x2, . . . , xn).

Consequently, we can write
z = f (x1, . . . , xn).

If at some point ξ it is necessary to directly indicate the value of the probability density
function f , we will use the notation

z(ξ) = f (x1, . . . , xn)(ξ).

The support of a continuous function f is the closure of the set {x | f (x) , 0} and it is
denoted by the symbol supp( f ).

Assuming f (x1, x2) = x1 ∗ x2, where ∗ ∈ {+,−, ·, /}, we can obtain analytic formulas for
determining the probability densities of the arithmetic operation results for random variables.

Let f (x1, . . . , xn) be a rational function. We can obtained probabilistic extension f of
real rational functions f by replacing (i) the real variables x1, x2, . . . , xn with an probability
density functions x1, x2, . . . , xn and (ii) the real arithmetic operations with corresponding
probabilistic operations. The result f is called a natural probabilistic extension [8].
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Theorem 1 ([8]) Let x1, . . . , xn be independent random variables. If f (t1, . . . , tn) is a rational
expression where each variable ti occurs not more than once, then the natural probabilistic
extension approximates a probabilistic extension.

Theorem 2 ([9]) Let f (x1, x2, . . . , xn) be probabilistic extension of function f (x1, x2, . . . , xn)
and for all real t function f (t, x2, . . . , xn) be probabilistic extension of the function
f (t, x2, . . . , xn). Then

f (x1, x2, . . . , xn)(ξ) =

∫
supp(x1)

x1(t) f (t, x2, . . . , xn)(ξ)dt. (1)

Corollary 1 ([9]) Theorem 2 implies the possibility of recursive computations for the general
form of probability extensions and reduction to the calculation of the one-dimensional case.

Consider example
z = a1x1 + a2x2 + ... + anxn. (2)

If the random variables are independent, we can calculate the value of (2) using numerical
probabilistic arithmetic sequentially calculating piecewise polynomial approximations. To
calculate one addition, we need Cm2 polynomial calculations. Accordingly, the total number
of calculations will be equal to Cnm2.

Thus, the article [7] compares the number of generate random variables of Monte Carlo
methods and numerical operations using probabilistic arithmetic to achieve the same accu-
racy. Thus, the accuracy of addition of n uniform random variables (m = 10) is achieved by
Monte Carlo methods with the number of generate uniform random variables equal to n ·106.
In the case of dependent random variables, according to 1 and [9], the number of operations
increases as mn.

In the general case, Monte Carlo methods are used [2]. To overcome the shortcomings
associated with the Monte Carlo methods, we will use a new approach, computational prob-
abilistic analysis. This allows in some cases to calculate integrals of the form (1) with the
required accuracy.

Next we will use random functions in the form of linear combinations

f (x) =

n∑
i=1

aigi(x), where gi ∈ Cm[a, b].

For this type of random functions, we introduce the following concepts. Then the formal
derivative of f (x) is defined as follows:

∂k f (x) =

n∑
i=1

aig
(k)
i (x), k = 0, ...,m,

Integral of f (x) is ∫ b

a
f (x)dx =

n∑
i=1

ai

∫ b

a
gi(x)dx.

Function

f (x) =

n∑
i=1

aigi(x), where ai ∈ supp(ai)

we will call the constriction of the function f by constants ai.
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3 Interpolation problems
The interpolation problem is formulated as follows. Let the probability densities f i be known
at the points a = x0 < x1 < x2... < xn = b and their joint probability function p( f0, f1, . . . , fn)
is given. We need to build a random polynomial interpolation ln(x): ln(xi) = f i.

We consider Lagrange interpolation polynomials for the case of linear interpolation. Let
f1, f2 be known values of some function f at the points x1, x2. In the case of linear interpo-
lation we obtain the exact equality

f (x) = l1(x) +
(x − x1)(x − x2)

2
f ′′(ξ), ξ ∈ [x1, x2],

where l1 is the first-degree Lagrange polynomial

l1(x) = f1
x2 − x
x2 − x1

+ f2
x − x1

x2 − x1
.

If the values of f1 ∈ supp( f 1), f2 ∈ supp( f 2) are not exactly known, it is necessary to
construct a linear random function l(x) satisfying the interpolation conditions l(x1) = f 1
and l(x2) = f 2. Thus, using natural probabilistic extensions, we construct random Lagrange
polynomials of the first degree

l(x) = f 1
x2 − x
x2 − x1

+ f 2
x − x1

x2 − x1
.

The interpolation function l(x) is equal to the given values at the interpolation nodes. It
is important that the constriction of a random linear function with respect to the constants f i
is a real linear function. Further, if it is necessary to construct a random function l satisfying
the inclusion f ∈ supp(l), for all x ∈ [x1, x2] then you will need to have a priori information
about the probability density of f ′′ ∈ supp( f ′′) on the interval [x1, x2]. Then we can get an
estimate

f (x) ∈ supp
(
l(x) +

(x − x1)(x − x2)
2

f ′′
)
.

Next, we consider the general case for the Lagrange interpolations polynomial. We have

ln(x) =

n∑
i=0

f i

∏
j,i

(x − x j)
(xi − x j)

.

Thus the calculation of Lagrange interpolation polynomial at an arbitrary point reduces to
calculating the sum of f i with weights. If the random variables f i are independent the calcu-
lations are simple because they fall under the conditions of Theorem 1.

For the number of nodes n ' 5, the application of the Lagrange interpolation polynomials
is not effective. In this case you can use piecewise linear interpolation defined by the first
degree Lagrange polynomial on each interval [xi, xi+1].

l1(x) = f i
xi+1 − x
xi+1 − xi

+ f i+1
x − xi

xi+1 − xi
. (3)

Let us estimate the mathematical expectation of the Lagrange interpolation polynomials.
In accordance with the linearity property, the expectation of the interpolation polynomial will
be a linear combination of the expectations of the function values. It will coincide with the
Lagrange interpolation polynomial constructed from the expectation values of the function:

E[l1(x)] = E[ f i]
xi+1 − x
xi+1 − xi

+ E[ f i+1]
x − xi

xi+1 − xi
.

If, for the mathematical expectation of the random function f , we are estimates of the
second derivative maxx∈[a,b] |E[ f (2)]|, then following theorem takes place:
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Theorem 3 [[3]] Let l1 be a piecewise linear interpolation of the random function f . Then
we have the estimate

|E[l1] − E[ f ]| ≤ Kh2 max
x∈[a,b]

|E[ f (2)]|,

where K is a constant independent of h.

Consider the properties of a variance for piecewise linear interpolation l1 of a random func-
tion f .

Theorem 4 ([3]) The variance of piecewise linear interpolation l1 satisfies following esti-
mate

Var[L1] ≤ max
0≤i≤n−1

{
max{Var[Fi],Var[Fi+1],Ki,i+1}

}
.

4 Reliable approximation of the distribution function

The section discusses the construction of reliable approximation of the empirical distribution
function.

Let x1, . . . , xn be a sample of a random variable x with the distribution function F(t), t ∈
[a, b]. The empirical distribution function is defined as follows

Fn(t) =
mt

n
, (4)

where mt is the number of xi < t.
Consider zi = F(xi), i = 1, . . . , n. Notice, zi, i = 1, . . . , n are uniformly distributed random

variables on [0, 1]. If z1 ≤ z2 ≤ . . . ≤ zn, then zk is the kth order statistic and its expectation is
equal E[zk] = k/(n + 1) [10].

Further, we will use the points (xi, i/(n + 1)) to construct an approximation of the distri-
bution function F(t). Suppose that ω = {a = x0 < x1 < x2 < . . . < xn < b = xn+1} is a grid.
Then we construct a piecewise linear function l(t), t ∈ [a, b] and

l(xi) = i/(n + 1), i = 1, . . . , n, l(a) = 0, l(b) = 1.

Note, if instead of mathematical expectations i/(n + 1) if used exact values zi, then the error
of the piecewise-linear function l(t) with the step h = max0≤i≤n−1(xi+1 − xi) would satisfy the
estimate

‖F − l‖∞ ≤ Kh2‖F(2)‖∞.

Hence, the constructed piecewise-linear function fairly well approximate the distribution
function F even for relatively small n.

As for zi, we are aware that they form the order statistics. It is known that the probability
density of the kth order statistic is (see [10])

pk(z) =
n!

(n − k)!(k − 1)!
zk−1(1 − z)n−k, z ∈ [0, 1]. (5)

The joint probability density for the vector (z j, zk) has the form (see also [10])

p j,k(z j, zk) =
n!

( j − 1)!(k − j − 1)!(n − k)!
z j−1

j (zk − z j)k− j−1(1 − zk)n−k, (6)

j < k, 0 ≤ z j ≤ zk ≤ 1.
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For each random vector (z1, z2, ..., zn) we have the corresponding piecewise linear func-
tion l. Looking through all possible random vectors (z1, z2, ..., zn), we get the whole set of
piecewise linear functions {l}. Note that {l} contains the interpolant of the distribution func-
tion F. Hence, using the probability density of the kth order statistic for a node ξk, the set
{l} can be represented as a random piecewise linear function l. Accordingly, l is a reliable
approximation of the empirical distribution function.

5 Conclusion

We have discussed the problem of calculating reliable estimates for empirical distribution
functions in a small sample. We have identified modeling and algorithmic advances necessary
for success on calculation problems. For these purposes, random interpolation polynomials
and order statistics are used.

We also have proposed the arithmetic operations on probability density functions and pro-
cedures for constructing probabilistic extensions as the basis of computational probabilistic
analysis [3–9].

The application of the developed procedures allows us to get knowledge not only about
the location of the solution area, but also to identify its probabilistic structure. There are
other related issues that we can tackle: for example, the use of this approach to estimate the
parameters of technical systems.
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