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Аннотация

Исследуемые вопросы строения конечных квазиполей изучались в различных
ситуациях уже давно. Мы рассматривем конечные полуполя, то есть дистрибутивные
квазиполя, и конечные почти-поля, то есть ассоциативные квазиполя. Конечное ква-
зиполе называем минимальным собственным квазиполем, если всякое его собствен-
ное под-квазиполе является подполем. Доказано, что всякое полуполе порядка p3>8
или p4 (p – простое) есть минимальное собственное полуполе. Для конечных почти-
полей Диксона найден алгоритм построения минимального собственного почти-поля,
в котором количество максимальных подполей больше любого заданного числа.
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Minimal Proper Quasifields with Additional Conditions

O. V. Kravtsova (Krasnoyarsk)

Abstract

The problems of the structure of finite quasifields have been studied in various cases for a
long time. We investigate the finite semifields which are distributive quasifields, and finite
near-fields which are associative quasifields. A finite quasifield is called a minimal proper
quasifield if any of its sub-quasifield is a subfield. We proved that any semifield of order
p3>8 or p4 (p be prime) is a minimal proper semifield. For Dickson’s finite near-fields we
obtained an algorithm for constructing a minimal proper near-field with the number of
maximal subfields greater than fixed natural number.

Keywords: quasifield, semifield, near-field, subfield.

1 Introduction

Closely related problems of classification and construction of projective translation
planes and their coordinatizing quasifields have been studied from the beginning of 1900
(Dickson [1], Veblen and Maclagan-Wedderburn [2]; see also [3, 4]). Recall that a set L
with a binary operation ◦ is called a loop if L contains a neutral element and the equations
a◦x=b and x◦a=b are uniquely solvable for any a, b∈L [5, 6]. So, a groop is an associative
loop. A set Q with binary operations of addition + and multiplication · is called a right
quasifield [3], if the following conditions hold:

1) (Q,+) is an abelian group with a zero 0,
2) Q∗=(Q\{0}, ·) is a loop with an identity e,
3) x0=0 for any x∈Q,
4) Q satisfies the right distributivity (x+y)z=xz+yz for any x, y, z∈Q,
5) if a, b, c∈Q and a 6=b, then the equation xa=xb+c has an unique solution in Q.
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A left quasifield is defined the same way with the replacement of the right
distributivity with the left distributivity. Any associative right quasifield is called a right
near-field. Any distributive quasifield is called a semifield.

Concerninig finite quasifields, we investigate the following problems, see also [7].
(A) Enumerate the maximal subfields and their possible orders.
(B) Find the finite quasifields Q with not-one-generated loop Q∗.
The hypothesis is as follows: a loop Q∗ of any finite semifield Q is generated by

one element.
(C) Define a spectra of a loop Q∗, if Q is a finite quasifield or a semifield.
(D) Find the automorphism group AutQ.

The questions had been investigated earlier for certain semifields and quasifields of
small orders [7, 8, 9]. See also Theorem 4 in Section 3. In Section 2we study the question
(A) on maximal subfields for the finite near-fields.

Clearly that a field is a trivial example of a quasifield. Any finite quasifield which
is not a field is said to be a proper quasifield. A quasifield Q is called a minimal proper
quasifield if any of its sub-quasifield H 6=Q is a subfield. For instance, any of non-trivial
quasifields of order p2 (p be prime) is evidently a minimal proper quasifield. Therefore,
by well-known Zassenhaus’ theorem, investigations of the question (A) are reduced to
Dickson’s near-fields.

By Dancs [10, 11] and Felgner [12], the maximal subfield of Dickson’s near-field
containing the center is unique. Certain near-fields having only two or three maximal
subfields were shown in [13]. However, earlier V.M. Levchuk noted that the answer to
following question is unknown:

Does there exist an integer N such that the number of maximal subfields in arbitrary
finite near-field is less than N?

We use the Dancs’ description of sub-near-fields in a Dickson’s near-field (see also
[13]). Developing Dancs and Felgner approach we propose (Theorem 1) the method of
construction of some minimal proper near-fields. Main theorem 2 in Section 2 provides
the negative answer to the question above even in the class of minimal proper near-fields.

In the case of a finite semifield (Section 3), we proved that any semifield W of
order p4 is a minimal proper semifield, any of its sub-semifield H 6=W is a subfield of
order p or p2 (Theorem 3). A semifield of order p3>8 is a minimal proper semifield too,
according Knuth’s theorem [14], such a semifield contains only the prime subfield.

2 Subfields in finite near-fields

First examples of finite near-fields were constructed by Dickson in 1906. All finite
near-fields were described by Zassenhaus [15] in 1936. His construction of Dickson’s near-
field is based on the special expansion of a Galois field GF (q) (q=pl). It uses the additive
group of a Galois field GF (qn) and is characterized by the Dickson’s pair (q, n), where

1) any prime divisor of n divides q−1;
2) if q≡3 (mod 4) then n 6≡0 (mod 4).
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By Zassenhaus’ theorem [15], all finite near-fields are Dickson’s near-fields, except seven
near-fields of order p2 where p=5, 7, 11 (two near-fields), 23, 29 and 59. See also[6].

Clearly that the prime subfield P ={ke | k∈Z} of any finite near-field Q is in the
kernel

K(Q)={x∈Q | x(y+z)=xy+xz, (y+z)x=yx+zx ∀y, z∈Q}.

However, the center Z(Q) is not necessary a subfield. In fact, as it is shown in [13,
Th. 1]: For any finite near-field the center coincides with the kernel, except Zassenhaus’
near-fields Q of orders 52, 72, 112 and 292 with |Z(Q∗)|=2, 2, 2 and 14, respectively.

The prime subfield is a unique maximal subfield in a near-field of order pr for any
prime r, according to [16]. So, in this case the near-field is a minimal proper near-field,
and the question (A) is reduced to the case of Dickson’s near-fields where r= ln is not
prime.

The class of all Dickson’s near-fields of order qn with the center GF (q), q=pl,
is denoted as DF (q, n). The well-known correspondence between the subfields in a
Galois field GF (pm) and the divisors of m may be generalized to Dickson’s near-fields
and their sub-near-fields (see [10, 11]). The following lemma describes this generalized
correspondence.

Lemma 1. For any sub-near-field H of a Dickson’s near-field Q∈DF (pl, n) there
are h | (ln) and 0<j≤n such that |H|=ph, H∈DF (pz, h/z), z=GCD(jl, h), and

j≡ p
ln−1

ph−1
(mod n). (1)

And inverse, if h | (ln) then Q contains the unique sub-near-field H of order ph.
Felgner [12] proved that any Dickson’s near-fieldQ has the unique maximal subfield

M(Q) containing the center Z(Q). Its order is determined explicitly in [13]: note the
canonical decomposition of n and the number λ:

n=pn1
1 p

n2
2 . . . pnr

r , λ=p
[n1/2]
1 p

[n2/2]
2 . . . p[nr/2]

r .

Then the order of M(Q) equals qλ.

Example 1. LetQ be any near-field of order 2180 from the classDF (24, 45). We use
Lemma 1 to construct the lattice of sub-near-fields ofQ (see Fig. 1). The commutative sub-
near-fields, i.e. subfields, are coloured. The near-field Q contains three maximal subfileds,
their orders are 245, 230 and 212= |M(Q)|. The maximal sub-near-fields of orders 290, 236,
260 are not subfields.

Further, we will give the examples of minimal proper Dickson’s near-fields Q. We
need the following technical result.

Lemma 2. Let H be a sub-near-field of order ph in a Dickson’s near-field Q∈
DF (pl, n) and H∈DF (pz, h/z). Then (h/z)|n.

Proof. It is enough to consider the case where k=(ln)/h is prime. Let k divides
n. Then n=kn′, h= ln′,

z=GCD (jl, h)=GCD (jl, ln′)= l ·GCD (j, n′)= ln′′,

where n′′ divides n. So, we have
h

z
=
ln′

ln′′
=
n′

n′′
|n.
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Рис. 1: Sub-near-fields lattice in a Dickson’s near-field of order 2180 with the center GF (24)

Let k divide l. Then l=kl′, h= l′n,

z=GCD (jl, h)=GCD (jkl′, l′n)= l′ ·GCD (jk, n)= l′n′,

where n′ divides n. So,
h

z
=
l′n

l′n′
=
n

n′
,

it divides n. �

Denote π(m) the set of all prime divisors of m∈N. Firstly, we consider the case of
the minimal expansion degree n=2.

Lemma 3. The center Z(Q)'GF (pl) is the unique maximal subfield in any finite
Dickson’s near-field Q∈DF (pl, 2).

Proof. It is evident that p>2 and Z(Q) is a maximal subfield of Q. Let H be
another maximal subfield of Q. Then H 6⊂Z(Q) and |H|=p2l′ , where l′ divides l. We
consider the sub-near-fields sequence

Q=H0⊃H1⊃· · ·⊃Hk−1⊃Hk=H,

where |Hi|=phi and hi−1/hi are prime. The maximality of subfield H leads to Hk∈
DF (p2l

′
, 1) and Hk−1∈DF (pl

′′
, 2), where l′|l′′, l′′|l and l′′/l′=m is prime. We calculate

the parameter j (1) for the sub-near-field Hk in Hk−1 and obtain

j=
p2l
′′−1

p2l′−1
=
p2ml

′−1

p2l′−1
=p2l

′(m−1)+p2l
′(m−2)+ · · ·+p2l′+1≡m(mod 2),

that is j=1 if m>2 and j=2 if m=2.
Ifm>2, then z=GCD(jl′′, h)=GCD(l′m, 2l′)= l′, so Hk∈DF (pl

′
, 2) and Hk is not

a subfield, which contradicts the supposition.
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If m=2, then z=GCD(jl′′, h)=GCD(2l′′, 2l′)=2l′. We have Hk∈DF (p2l
′
, 1) and

Hk−1∈DF (p2l
′
, 2), where 2l′ divides l, so Hk is in the center Z(Q) and is not a maximal

subfield, contradiction. �

If the expansion degree n is greater than two, then we can choose the prime number
p such that a Dickson’s near-field Q∈DF (q, n) is a minimal proper near-field.

Theorem 1. There exist infinitely many minimal proper near-fields Q∈DF (q, n),
for any fixed prime n>2.

Proof. Let n>2 be prime. Consider the field GF (n) and choose its primitive
element p0, pn−10 ≡1(modn) and pm0 6≡1(modn) for any 0<m<n−1. The arithmetical
progression {p0+nt}∞t=0 contains infinitely many prime numbers. Let p=p0+nt be one of
them. Then (pn−1, n) is a Dickson’s pair. Indeed,

pn−1=(p0+nt)
n−1≡pn−10 ≡1(modn),

that is n divides q−1=pn−1−1. Now let Q be any near-field from the class DF (pn−1, n).
Consider all its maximal sub-near-fields. The number n is prime, and so it is clear that
the center Z(Q)'GF (pn−1) is a maximal sub-near-field in Q. Suppose that H 6=Z(Q)
is another maximal sub-near-field of Q. Then |H|=ph, where h=nl′ and k=(n−1)/l′ is
prime. The calculation of the parameters j and z (1) for H leads to

j≡ p
(n−1)n−1

pl′n−1
(modn),

p(n−1)n−1≡0(modn), pn≡p(modn),

pl
′n−1=(pn)l

′−1≡pl′−1(modn) 6≡0(modn),

so j=n. Further, z=GCD(jl, h)=GCD(n(n−1), nl′)=nl′=h, and H∈DF (ph, 1), that is
H is a subfield of Q. So, all maximal sub-near-fields of Q are subfields, its number equals
|π(n−1)|+1. �

The following theorem proposes a method of constructing the minimal proper
near-field where the number of maximal subfields is greater than any fixed integer.

Theorem 2. For any s∈N there exists a minimal proper Dickson’s near-field
having more than s maximal subfields.

Proof. Let s be any integer. Consider the product of s different prime numbers
N=r1 ·r2 · · · · ·rs. Then the arithmetical progression {1+Nt}∞t=1 contains infinitely many
prime numbers. Let n=1+Nt0 be one from them. According to the Theorem 1, we can
choose the prime number p such that the class DF (pn−1, n) contains a minimal proper
near-field Q. The number of maximal subfields in Q equals 1+ |π(n−1)|≥1+s. �

Example 2. Using these results, we can give an example of a minimal proper near-
field with five maximal subfields. Let n=2·3·5·7+1=211, it is prime number. The Galois
field GF (211) contains the primitive element 3: 3210≡1(mod 211) and 3m 6≡1(mod 211)
for any 0<m<210. Then the near-field Q∈DF (3210, 211) contains five subfields Hi of
orders 3hi , i=1, . . . , 5, where

h1=
210 ·211

2
, h2=

210 ·211
3

, h3=
210 ·211

5
,

h4=
210 ·211

7
, h5=

210 ·211
211

.
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Indeed, the calculation of j and z (1) shows that j=n and z=hi, so hi/z=1 и Hi'
GF (3hi). The numbers n/hi are all prime, so these subfields are maximal sub-near-fields
in Q.

Also we determine a minimal proper near-field with exactly one maximal subfield.
Lemma 4. A Dickson’s near-field Q is a minimal proper near-field having unique

maximal subfield iff Q is from one of classes DF (p, r), DF (p, r2), DF (pr, r), where p and
r are possible primes.

Proof. According to [16], in a near-field Q∈DF (p, r), the center Zp is a unique
maximal subfield, and Q have no another sub-near-fields by Lemma 1. For a near-field Q∈
DF (p, r2) or Q∈DF (pr, r) of order pr2 the unique maximal sub-near-field is the subfield
M(Q) because λ=r. And inverse, let Q∈DF (pl, n) satisfies the condition. It is clear that
ln is a degree of one prime number, ln=rt. The maximal subfield M(Q), which contains
the center GF (pl), has an order pλ, where λ=r[t/2]. If H 6=Q is a maximal sub-near-field
in Q of order prt−1 , then H=M(Q). So, t=1 or t=2. The case DF (pr, 1) is evidently
corresponds to the field GF (pr). �

3 Subfields in finite semifields

Let 〈W,+, ◦〉 be a semifield of order pn (p be prime). Remind the universal method
to determine a finite semifield (see, for example, [3, 17]) as a n-dimensional linear space
over the field Zp with a multiplication law

x◦y=x ·θ(y) (x, y∈W ).

Here, θ is an injective linear mapping from W to GLn(p)∪{0} with the property θ(e)=E
(the identity matrix) for some vector e∈W (neutral under the multiplication ◦). Then, the
set R={θ(y) | y∈W} is called a spread set of a semifieldW . We will use the notationW =
W (n, p, θ). The elements of the prime subfiled P 'Zp correspond to the scalar matrices
kE=θ(k◦e)∈R. Note that k◦a (k∈N, a∈W ) is a sum of k items equal to a. According
to the definition of a semifield, the following result is evident (see also [18]).

Lemma 5. Let W be a semifield of order pn, R⊂GLn(p)∪{0} be its spread set.
Then, for any non-scalar matrix A∈R the characteristic polynomial χA(x)∈Zp[x] has no
linear divisors x−λ.

Proof. Indeed, let A=θ(a), a∈W , and x− λ divides χA(x). If b∈W is a
correspondent eigenvector then

bθ(a)=λb, bθ(a−λ◦e)=0, b◦(a−λ◦e)=0, b 6=0.

So, we have a=λ◦e because a semifield has no zero divisors. �

We will use the results on minimal polynomials in the finite semifields which were
proved in [19]. For any polynomial f(x)∈Zp,

f(x)=cmx
m+cm−1x

m−1+ · · ·+c2x2+c1x+c0 (ci∈Zp, i=0, 1, . . . ,m),

and any element a∈W let’s define the right- and left-ordered value of the polynomial:

f(a))=cm ◦am)+cm−1 ◦am−1)+ · · ·+c2 ◦a2+c1 ◦a+c0 ◦e,
f((a)=cm ◦a(m+cm−1 ◦a(m−1+ · · ·+c2 ◦a2+c1 ◦a+c0 ◦e.

6



Here, as) and a(s are the right- and left-ordered degrees of an element a, respectively. They
are determined inductively by the rule

as) :=as−1) ◦a, a(s :=a◦a(s−1, a1) :=a=a(1.

Evidently, in the case of degree ≤2, the right- and the left-ordered values f(a)) and f((a)
are equal.

The right-ordered minimal polynomial of an element a∈W (n, p, θ) is said to be a
monic polynomial µra(x)∈Fp[x] of the minimal degree such that µra(a))=0. The left-ordered
minimal polynomial µla(x) is defined likewise. According to [19], we have

Lemma 6. If a∈W (n, p, θ) and A=θ(a), then the right-ordered minimal
polynomial of an element a is a factor of the minimal polynomial of the matrix A.

Now consider the semifields of small orders p3 and p4 and their subfields. It is
well-known [14], that a semifield of order p2 or 8 is a field. So, it is clear that any semifield
of order p3>8 is a minimal proper semifield. Let’s specify the possible orders of subfields
in such a semifield.

Lemma 7. Let W be a semifield of order pn with the multiplicative identity e.
If a non-zero element a∈W has the right-ordered minimal polynomial µra(x)∈Zp[x], then
deg(µra)=1 iff a belongs to the prime subfield P ; deg(µra)=2 iff K={α1◦e+α2◦a | α1, α2∈
Zp} is a subfield in W of order p2.

Proof. The first proposition is evident. Let deg(µra)=2. Then the sistem of vectors
e, a is linear independent over Zp, a2∈K, so |K|=p2. Moreover, K is closed under
multiplication and multiplication in K is associative. And inverse, if K is a subfield of
order p2 then a 6∈P and a2∈K. �

Corollary. Let W be a semifield of order pn. The subset of elements with the
minimal polynomial of degree 1 or 2 (together with 0) is an unity of all subfields of order
p2 in W .

Notice that for a sub-semifield (or a subfield) U of order pm in a semifield W
of order pn the condition m|n is not necessary held. This fact can be explained by the
abcense of multiplicative associativity: a semifieldW is not a linear space over U , generally.
Moreover, a finite semifield may contain more than one sub-semifields (subfields) of the
same order. For example, there exists the semifield of order 32 containing the subfield
of order 4, and also the semifields of order 81 with three disjoint subfields of order 9
(see [20, 7, 9]).

The evident examples of subfields in the finite semifields are the left, middle and
right nuclei [3]

Nl={x∈W | x◦(y◦z)=(x◦y)◦z ∀y, z∈W},
Nm={x∈W | y◦(x◦z)=(y◦x)◦z ∀y, z∈W},
Nr={x∈W | y◦(z ◦x)=(y◦z)◦x ∀y, z∈W},

the nucleus N=Nl∩Nm∩Nr and the center Z={z∈N | z◦x=x◦z ∀x∈W}. We consider
now another example of a semifield of order p4 with a subfield of order p2 (see [17]).

Lemma 8. Let W be a semifield of order p4 and ϕ be an involutory automorphism
of W . Then the stabilizer U={x∈W | ϕ(x)=x} is a subfield of order p2.

It is natural to assume that for a semifield of order pn, any sub-semifield is of order
pm, where m≤n/2. We show that it is true, at least, for the semifields of order p3 and p4.

Theorem 3. For a semifieldW of order pn, where n=3 or n=4, any sub-semifield
is a subfield of order pm, m≤n/2.
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Proof. Let W is a semifield of order p3, U be its subfield of order p2, and the
element a∈U does not belong to the prime subfield P . Then, its minimal polynomial
µa(x)∈Zp[x] is of degree two and it divides the minimal polinomial µA(x) of the
correspondent matrix A=θ(a)∈GL3(p) from the spread set. Then, the characteristic
polynomial χA(x) of the matrix A has a linear factor, which is impossible.

Let W be a semifield of order p4, U be its sub-semifield of order p3. It was proved
above that it does not contain the subfields of order p2. So, any of its elements a∈U ,
not from the prime subfield P , has the right-ordered minimal polynomial µra(x)∈Zp[x]
of degree 3. Then, the characteristic polynomial χA(x) of the correspondent matrix A=
θ(a)∈GL4(p) from the spread set has a linear factor. �

We can generalize the obtained result, using the notion of the right-cyclic semifield.
An element a of a semifield W of order pn is called right-cyclic over Zp, if the elements

e, a, a2, a3), . . . , an−1)

form a base of W as a n-dimensional linear space over Zp. So, the semifield W is called
right-cyclic over Zp. A left-cyclic element and a left-cycllic semifield are defined likewise.
Note, that all known up to this time finite semifields are right- and left-cyclic, even non-
primitive semifields of order 32 and 64 (see, for example, [21, 22, 18] and [7].

Corollary. A semifield W of order pn contains no right-cyclic over Zp sub-
semifields of order pn−1.

Proof. It is enough to consider the right-ordered minimal polynomial of a right-
cyclic element a of a sub-semifield of order pn−1. The characteristical polynomial of
correspondent matrix A=θ(a) from a spread set has a linear factor. �

Now we illustrate these results by the examples of the semifields of order 54 and
134 with additional condition to autotopisms. Remind, that the triple of automorphisms
〈α, β, γ〉 of the additive group (W,+) is called an autotopism of a semifield W , if for all
x, y∈W holds xα◦yβ=(x◦y)γ. It is simple to prove (see [17]), that fixed α and γ defines
the automorphism β.

Let W be a semifield of order p4 (p be prime, p≡1(mod 4)), determined as a
4-dimensional linear space over Zp. Now consider its mappings

α1 : (x1, x2, y1, y2)→(−ix1,−ix2, iy1, iy2),
α2 : (x1, x2, y1, y2)→(−y1,−y2, x1, x2), xj∈Zp, j=1, 2, 3, 4,

(2)

where i∈Zp, i2=−1. Let σ1=〈α1, β1, α1〉, σ2=〈α2, β2, α2〉 be the autotopisms ofW , where
α1 and α2 are defined by (2), and H=〈σ1, σ2〉 be the autotopism subgroup. Then, H
is isomorphic to the quaternion group Q8, it is checked by direct calculation. Denote
n(p) and n′(p) the numbers of non-isomorphic and non-isotopic semifields of order p4
admitting H, respectively. The computer constructions solve the questions (A)–(D) from
the introduction.

Theorem 4. Let W be a semifield of order p4, where p=5 or p=13, which admit
an autotopism subgroup H=〈σ1, σ2〉'Q8. Then W is not commutative, it is left- and
right-primitive, with the center of order p and the left nucleus Nl of order p2, and

n(5)=9, n′(5)=3, n(13)=99, n′(13)=33.

The number of maximal subfields of order p2 in W equals 1, 2 or p+2. The automorphism
group AutW is the cyclic group Z2 or Zp+1.
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Note, that any such semifield is a minimal proper semifield, but it may contain more
than one subfiled of order p2. It is anomaly property in comparison with the properties of
finite fields and finite near-fields. The theorem does not concern the question (C) on the
spectra of elements of multiplicative loop because of its complicated statement. But it is
another anomaly property of finite semifields that the spectra contain the integers which
does not divide the order of W ∗.
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