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A unidirectional stationary binary mixture motion in a horizontal channel is under study. New exact

solution of the Oberbeck –Boussinesque equations is constructed for description of the mentioned flow.

The obtained solution is applied for investigation of the separation process in mixture of water and

isopropanol located between two differently heated rigid walls.
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The Oberbeck – Boussinesque equations are often used in mathematical modelling of convec-

tion in fluids [1]. Application of these equations for description of mixture motion is possible if

an equation for mass transfer is added on momentum and heat transfer equations. The obtained

system of equations is nonlinear and has high order. That is why construction of exact solutions

of the system is difficult and important problem.

Analysis of compatibility of the Oberbeck – Boussinesque equations for unidirectional motion

allows to conclude that if the temperature function is a polynomial then it has degree not higher

than three. For the linear function of temperature some exact solutions of the system under study

are described in papers [2, 3]. They are constructed in cases of linear with respect to horizontal

coordinate distribution of temperature or heat flux on the rigid walls. Work [4] is devoted to

study of group properties of the two dimensional Oberbeck – Boussinesque equations and their

invariant solutions. Not only solutions with linear temperature function are discussed there

but more complex dependencies of all unknown functions on spatial coordinates are obtained.

Quadratic law for temperature and concentration distributions is used in [5] for solution of joint

motion of binary mixture and homogeneous liquid with common interface. The field of velocities

in that paper corresponds to Himenz-type velocity. Different statements of boundary value

problems are suggested in [6] for the parabolic dependence of the parameters of state on the

horizontal coordinate.

The present paper continues the study started in [6]. It is devoted to exhausted description of

constructing exact solution of the Oberbeck – Boussinesque equations for unidirectional motions

in case of quadratic dependence of temperature and concentration with respect to horizontal

coordinate. The functions of velocity, temperature, concentration and pressure are obtained.

This solution is applied for description of mixture motion between two rigid walls. The parabolic

temperature law is posed on the lower wall, the upper wall is supposed to be thermal isolated.

The algorithm of finding all constants of integration is proposed. Calculations are carried out

for the binary mixture of water and isopropanol. Distributions of velocity, temperature and

concentration are shown in figures and analyzed.
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1. Governing equations

We consider stationary equations of unidirectional binary mixture motion (velocity vector is

u = (u(y), 0, 0)) [1]

νuyy =
1

ρ0
p∗x, g(β1θ + β2c) =

1

ρ0
p∗y,

uθx = χ(θxx + θyy), ucx = D(cxx + cyy) +Dθ(θxx + θyy),

(1)

where u = u(y) is the horizontal velocity, θ = θ(x, y) is the temperature, c = c(x, y) is the light

component concentration, g = (0, 0− g) is the gravity acceleration vector, p∗ = p− gρ0y is the

modified pressure. The constant ν > 0, χ > 0, D > 0, Dθ are the kinematic viscosity, thermal

diffusivity, diffusion and thermal diffusion respectively. We deal with normal thermal diffusion at

Dθ < 0 when the light component tends to more heated region. If Dθ > 0 the light component

tends to less heated region. This thermal diffusion is named abnormal.

Equations (1) describe the binary liquid motion in the Oberbeck – Boussinesq approximation.

It means that the equation of state has the form ρ = ρ0(1 − β1θ − β2c), where β1, β2 are the

thermal and concentration extension coefficients, ρ0 is the average mixture density.

Let L be the scale of length while △T be the characteristic temperature difference. Then we

use the dimensionless variables in the form

x̂ =
x

L
, ŷ =

y

L
, û =

ν

gβ1∆TL2
u, p̂∗ =

1

ρ0gβ1∆TL
p∗, θ̂ =

1

∆T
θ, ĉ =

β2
β1∆T

c.

In these variables equations (1) take the form

uyy = px, θ + c = py,

Gru θx =
1

Pr
(θxx + θyy), Gru cx =

1

Sc
[cxx + cyy − ψ(θxx + θyy)],

(2)

where Gr = gβ1∆TL
3/ν2 is the Grashof number, Pr = ν/χ is the Prandtl number, Sc = ν/D

is the Schmidt number, ψ = −β2Dθ/(β1D) is the separation ratio. The symbols "hat" and

"asterisk" are omitted.

2. Solution of the governing equations

We differentiate the first equation from (2) with respect to y and the second one with respect

to x. Then we compare the obtained expressions and have

u′′′ = (θ + c)x. (3)

Here and below the prime denotes a derivative with respect to y. The left hand side of (3) does

not depend on x. Then the right hand side can be represented in the form

θ + c = α(y)x + β(y), (4)

the functions α and β are arbitrary. Substituting c(x, y) = α(y)x + β(y)− θ(x, y) (see (4)) into

the last equation in (2) we obtain

θx =
α′′x+ β′′

GrScΨ u
− α

Ψ
, (5)
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where Ψ = Pr(1 + ψ)/Sc − 1 is supposed to be not zero. From equation (5) we can derive a

formula for θ and derivatives of θ with respect to x and y. These derivatives should be used for

substitution into the third equation of (2). After the substitution we split the resulting expression

with respect to powers of x and have three equations

(

α′′

u

)

′′

= 0,

(

β′′

u
− ScGrα

)

′′

= PrGrα′′,
α′′

u
+ Scγ′′ = PrGr(β′′ − ScGrα). (6)

From equations (6) we conclude that

α′′ = (a0y + a1)u, β′′ = (Gr(Sc + Pr)α− b0y − b1)u,

γ′′ =
PrGr

Sc

(

αGrPr− b0y − b1

)

u− a0y + a1
Sc

,
(7)

where a0, a1, b0, b1 are arbitrary constants connecting with integration of two first equations

in (6). Using the expression for α in (7), equations (3) and (4) we derive the equation for velocity

u(V ) − (a0y + a1)u = 0. (8)

If a0 = a1 ≡ 0 we have the Birikh-type solution for the velocity. It was constructed in [2] for a

homogeneous fluid and in [7] for description of joint motion of a liquid and a gas with common

interface. This solution is not considered here. In this paper we study the case a0 ≡ 0 and

a1 6= 0. Then we have the following solution of equation (8)

u(y) = C1e
λy + eλµ1y(C2 cosλµ2y + C3 sinλµ2y) + eλµ3y(C4 cosλµ4y + C5 sinλµ4y). (9)

Here Ci, i = 1, . . . , 5, are constant. The other constants in (9) are

λ = 5
√
a1, µ1 =

√
5− 1

4
, µ2 =

√

10 + 2
√
5

4
, µ3 = −

√
5 + 1

4
, µ4 =

√

10− 2
√
5

4
.

It is interesting to note that µi, i = 1, . . . , 4, have some properties we used in calculations further

µ1 + µ3 = −0.5, µ2
1 + µ2

2 = 1, µ2
3 + µ2

4 = 1, µ2
1 − µ2

2 = µ3, µ2
3 − µ2

4 = µ1,

1 + µ1µ3 + µ2µ4 = 1 + µ1, 1 + µ1µ3 − µ2µ4 = 1 + µ3,

(1 + µ1)
2 + µ2

2 = 2(1 + µ1), (1 + µ3)
2 + µ2

4 = 2(1 + µ3).

From equation (4) and expression (3) the function α = u′′′, i. e.

α = P1e
λy + eλµ1y(P2 cosλµ2y + P3 sinλµ2y) + eλµ3y(P4 cosλµ4y + P5 sinλµ4y) (10)

with notation in the following form

P1 = AC1, P2 = A(C2µ3 − 2C3µ1µ2), P3 = A(C3µ3 + 2C2µ1µ2),

P4 = A(C4µ1 − 2C5µ3µ4), P5 = A(C5µ1 + 2C4µ3µ4), A =
a1
λ2
.

Further we can find the functions β and γ from the second and the third equations in (7)

β = Gr(Sc + Pr)M −N + C6y + C7, γ =
Gr2Pr2

Sc
M − GrPr

Sc
N − a1y

2

2Sc
+ C8y + C9. (11)
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Here Ci, i = 6, . . . , 9, are constants, the other notation is written below.

M = t1e
2λy +

eλ(1+µ1)y

2λ(1 + µ1)

(

t2 cosλµ2y + t3 sinλµ2y

)

+
eλ(1+µ3)y

2λ(1 + µ3)

(

t4 cosλµ4y + t5 sinλµ4y

)

+

+
eλ(µ1+µ3)y

2λ

(

t6 cosλm
−y + t7 sinλm

−y + t8 cosλm
+y + t9 sinλm

+y

)

+

+
e2λµ1y

2λ

(

t10 + t11 cos 2λµ2y + t12 sin 2λµ2y

)

+
e2λµ3y

2λ

(

t13 + t14 cos 2λµ4y + t15 sin 2λµ4y

)

,

N = (h1y + h2)e
λy + eλµ1y((h3y + h4) cosλµ2y + (h5y + h6) sinλµ2y)+

+eλµ3y((h7y + h8) cosλµ4y + (h9y + h10) sinλµ4y).

The constants tj , j = 1, . . . , 15, and hk, k = 1, . . . , 10, depend on constants Ci, i = 1, . . . , 5, and

a1, b0, b1 nonlinearly. In spite of cumbersomeness we list them here.

t1 =
ĀC2

1

2λ
, t2 =

ĀC1(C2(2µ3 − 1)− 2C3µ2)

2(1 + µ1)
, t3 =

ĀC1(C3(2µ3 − 1) + 2C2µ2)

2(1 + µ1)
,

t4 =
ĀC1(C4(2µ1 − 1)− 2C5µ4)

2(1 + µ3)
, t5 =

ĀC1(C5(2µ1 − 1) + 2C4µ4)

2(1 + µ3)
,

t6 =
Ā(C2(C4 + 2µ̄C5) + C3(C5 − 2µ̄C4))

4(1 + µ3)2
, t7 =

Ā(C3(C4 + 2µ̄C5)− C2(C5 − 2µ̄C4))

4(1 + µ3)2
,

t8 =
Ā(C2(C4 − 2µ̃C5)− C3(C5 + 2µ̃C4))

4(1 + µ1)2
, t9 =

Ā(C2(C5 + 2µ̃C4) + C3(C4 − 2µ̃C5))

4(1 + µ1)2
,

t10 =
Āµ3(C

2
2 + C2

3 )

2µ2
1

, t11 =
Ā((C2

2 − C2
3 )µ1 + 2C2C3µ2)

2
, t12 =

Ā(2C2C3µ1 − (C2
2 − C2

3 )µ2)

2
,

t13 =
Āµ1(C

2
4 + C2

5 )

2µ2
3

, t14 =
Ā((C2

4 − C2
5 )µ3 + 2C4C5µ4)

2
, t15 =

Ā(2C4C5µ3 − (C2
4 − C2

5 )µ4)

2
,

h1 =
b0C1

λ2
, h2 = − B̄C1

λ3
, h3 =

b0(C2µ3 − 2C3µ1µ2)

λ2
, h4 = −C2B̄µ3 − 2C3Bµ1µ2

λ3
,

h5 =
b0(C3µ3 + 2C2µ1µ2)

λ2
, h6 = −C3B̄µ3 − 2C2Bµ1µ2

λ3
, h7 =

b0(C4µ1 − 2C5µ3µ4)

λ2
,

h8 = −C4B̄µ1 + 2C5Bµ3µ4

λ3
, h9 =

b0(C5µ1 + 2C4µ3µ4)

λ2
, h10 = −C5B̄µ1 − 2C4Bµ3µ4

λ3
.

We use the notation in the formulas for tj and hk

B = 2b0 + λb1, B̄ = 2b0 − λb1, Ā =
a1
2λ3

, µ̄ = µ2 − µ4, µ̃ = µ2 + µ4.

After determination of the functions α, β and γ we can write the functions of temperature

and concentration. They have the form

θ(x, y) =
1

GrΨ

(

a1
2Sc

x2+
α(y)GrPr− b0y − b1

Sc
x+γ(y)

)

, c(x, y) = α(y)x+β(y)−θ(x, y). (12)

Formulas (9) and (12) are the exact solution of equations (2). The modified pressure p can be

calculated by integrating

p(x, y) = x

∫

α(y) dy +

∫

β(y) dy + p0
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with arbitrary constant p0. The solution obtained can be used for description of a binary mixture

motion in layers extended enough in the horizontal direction. In the next section we apply

solution (9), (12) for study of separation process of binary mixture in layer between two differently

heated rigid walls.

3. Motion in a horizontal channel with thermal isolated up-

per wall

We consider a motion of binary mixture between two rigid walls. Boundary conditions on the

lower wall are written as follows. The first of them is a quadratic distribution of the temperature

with respect to x

θ|y=0 = θ0x
2 + θ1x+ θ2, (13)

where θi, i = 0, 1, 2, are given dimensionless constants. This form of temperature is connected

with presentation of the temperature in formula (12). The second condition is the absence of

mass flow through the lower wall y = 0

(θ′ − ψc′)|y=0 = 0, (14)

and the last one is no-slip condition

u(0) = 0. (15)

Conditions (13) and (14) are splitted with respect to powers of x into five equations

a1 = 2ScGrPrΨθ0, b1 = Gr(α(0)Pr− ScΨθ1), (16)

γ(0) = GrΨθ2, β′(0)− 1 + ψ

GrΨ
γ′(0) = 0, α′(0)

(

1− (1 + ψ)Pr

ScΨ

)

+
(1 + ψ)b0
GrΨSc

= 0. (17)

The upper wall is supposed to be thermal isolated. That is why the conditions for temperature

and concentration are

θ′|y=1 = 0, c′|y=1 = 0, (18)

and no-slip condition is

u(1) = 0. (19)

Splitting conditions (18) with respect to powers of x we have four equations

γ′(1) = 0, α′(1)GrPr− b0 = 0, β′(1) = 0, α′(1)

(

1− Pr

ΨSc

)

+
b0

GrΨSc
= 0. (20)

From the second and fourth equations in (20) we conclude that b0 = 0 and α′(1) = 0, then

α′(0) = 0 from the last equation in (17) because Sc 6= 0. Thereby, we have eight conditions for

nine constants Ci and once more boundary condition should be added for the problem closure.

We use the integral condition for concentration in section x = 0

1
∫

0

(GrΨβ + γ) dy = GrΨC0, (21)

where C0 is the average concentration.
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We suggest the algorithm of finding constants in functions u, β and γ. Firstly, we express

Ci, i = 2, 3, 4, 5, through C1 from equations (15), (19) and α′(0) = α′(1) = 0. These expressions

are linear with respect to C1. Secondly, we determine Ci, i = 6, 7, 8, 9, from the third equation

in (20), condition (21) and the first equations from (20) and (17) respectively. At last, the second

equation from (17) has not used yet. After substitution of all values of constants expressed by

C1 into the second equation from (17) we have the quadratic equation for C1. We should use a

such initial data for which the roots of the obtained equation remain real. After C1 is found we

can reconstruct all constants Ci, i = 2, . . . , 9. It is obviously the couple of such constant sets is

obtained in general case.

Further we demonstrate the solution of the problem under study for the mixture of water-

isopropanol (30%/70%). The physical parameters of this mixture are given in [8]: Pr = 398.403,

Sc = 112040.8 and ψ = −0.1144. The Grashof number depends on temperature difference △T
and layer width L. We use values θ1 = 0.01, θ2 = 0.1, △T = 2K and analyze the behaviour

of the velocity in dependence on θ0 and L. There are distributions of velocity with respect to

the thermal load θ0 in Fig. 1. The decrease of thermal load θ0 leads to the essential velocity

decrease. The layer width L has influence on motion as well as θ0. Constriction of the distance

between lower and upper walls generates intensification of the flow. It can be seen in Fig. 2. For

all considered cases we observe direct and inverse zones of flow, the velocity change a sign near

the center of the layer.
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Figure 1: Dependence of velocity on θ0:
1 – θ0 = −0.0001, 2 – θ0 = −0.00001,
L = 0.001m.

Figure 2: Dependence of velocity on L:
1 – L = 0.001m, 2 – L = 0.0005m,
θ0 = −0.0001.

Temperature θ(x, y) and concentration c(x, y) are shown in Fig. 3. Both of them are close

to a flat surface in spite of that the functions θ and c in (12) are essentially nonlinear. The

concentration for the parameters used changes from its average value C0 = 0.7 essentially. It

should be noted that we deal with abnormal thermal diffusion because ψ < 0. It means the light

component tends to less heated wall. It is shown in Fig. 3 the concentration of the isopropanol is

bigger near y = 1, where smaller temperature is. Figures 1, 2 and 3 are constructed for positive

root C1. For the negative root C1 we have mirror symmetry for the velocity profiles.
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Figure 3: Temperature (left) and concentration (right) for parameters L = 0.001m, △T = 2K,
θ0 = −0.0001.

4. Conclusion

The main feature of the paper is the construction of new exact solution of the Oberbeck –

Boussinesque equations. The equations are used for mathematical modelling of liquid mixture

motion under the action of buoyancy force linearly depending on temperature and concentra-

tion. The constructed solution is significantly different from known Birikh-type solution widely

used in physical applications. It should be reminded that the Birikh-type solution presents the

linear dependence of temperature and concentration on the horizontal coordinate. The solution

obtained in the present paper is essentially nonlinear with respect both spatial variables. For

the mixture water-isopropanol the velocity profile changes a sing, regions with direct and inverse

motion occur. Increasing of thermal load on the lower wall leads to intensification of mixing, the

constriction of layer width generates more intensive flow as well. The parameters used for the

construction of temperature and concentration dependence are such that plots are similar to a

flat surface. The separation effect displays strongly for this binary mixture, changes of concen-

tration are significant. It is fair to note that nonlinearity of temperature and concentration fields

is not be pronounced tangibly for this mixture. It is verisimilar that there are binary mixtures

for which the structure of the obtained solution is more complicated and it can be applied for

description of effects which are not caught by earlier known solutions.
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Построение и анализ точного решения уравнений Обербе-
ка – Буссинеска

Ирина В. Степанова

Построено новое точное решение уравнений Обербека –Буссинеска для описания стационарно-

го однонаправленного течения бинарной смеси в горизонтальном канале. Полученное решение

использовано для изучения режима разделения бинарной смеси на компоненты. Проанализи-

ровано влияние геометрии течения и тепловой нагрузки на стенке на скорость смеси вода-

изопроапанол.

Ключевые слова: Уравнения Обербека –Буссинеска, точное решение, течение бинарной смеси.
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