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Abstract. The construction of any antenna-feeder system, in addition to providing radio 

technical parameters, must has the specified strength and rigidity under operational loads. This 

paper considers the stress and deflection of a twisted waveguide at bending as the most 

common and dangerous type of loading. According to the technical theory of beams, obtained 

equations which describing the integral characteristics of the across section as well as stresses 

and deflections of the twisted waveguide. It is shown that in calculating the twisted waveguide 

strength and stiffness, it is necessary to apply minimum values for integral characteristics of 

the cross section regardless of the load direction. 

1.  Introduction  

Twisted waveguides are often used in antenna-feeder systems to turn the polarization plane of the 

transmitted electromagnetic signal [1-3]. Structure of a twisted waveguide is an extended thin-walled 

shell with a rectangular cross-section (figure 1). 
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Figure 1. Twisted waveguide. 

 

Until recently, waveguides in antenna-feeder systems did not count for strength and rigidity, as it 

had overly large wall thickness of 3-4 mm. This thickness provided excessive strength and rigidity to 

any waveguide structure. At present, in order to minimize the mass and size parameters of an antenna-

feeder system, it is necessary to reduce the wall thickness of the waveguide to the minimum possible 

value. Consequently, works have recently appeared on methods of calculating the strength and 

stiffness of a waveguide [4,5], but none of them contain information about a twisted waveguide. The 

obvious reason for this is the fact that a twisted waveguide is rarely present in the antenna feeder 

system. 
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In this paper, we consider the bend of a twisted waveguide as the most common and not strong type 

of loading for any lengthy structure. 

2.  Twisted waveguide model 

The geometry analysis of twisted waveguide design (figure 1) shows that it satisfies several 

approaches of mechanics: the Euler–Bernoulli beam theory [6-10], the generalized beam theory [11-

13] and the theory of shells [14-17].  

The most accurate approach seems to be the theory of shells [14-17]. But in this case we get a 

system of partial differential equations, which is a intricate problem. The generalized beam theory [11-

13] was primary designed for constrained torsion, which we do not consider. Therefore, we examine 

the bending of twisted waveguides on the basis of the Euler–Bernoulli beam theory. For this purpose, 

we derive equations for inertial characteristics of a cross section from which, according to known 

dependencies of beam theory [6-10], stresses and deflections of twisted waveguides directly are 

derived. 

3.  Integral cross-sectional characteristics of the twisted waveguide 

The following integral characteristics of the cross-section of a twisted waveguide are used in the 

calculations of stresses and deflections during bending: cross-section area, moments of inertia and 

section modulus [18-20]. 

3.1.  Cross-sectional area 

The cross section at the end of a twisted waveguide is rotated ("twisted") about the central axis of the 

waveguide relative to its initial position by some angle (figure 1). As a result, all longitudinal lines, 

being straight and parallel to the central axis of the waveguide, are simultaneously curved by the 

helical line. In the plane perpendicular to the axis of the waveguide, the geometry of the cross section 

remains rectangular (figure 2). 
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Figure 2. Cross section geometry of twisted waveguide. 

 

Therefore, the cross-sectional area of the twisted portion is also constant along its length and equal 

to: 

 

A H B h b=  −  .                                                                  (1) 

 

The moments of inertia and the section modulus of the cross section for the twisted waveguide 

continuously change their value along its length. 

3.2.  Moments of inertia of twisted waveguide 

Let's consider a twisted waveguide of length l, which has one end uniformly twisted relative to the 

other end by one revolution. In this case, the twist angle of the cross section in question is related to 

the longitudinal coordinate z of the section by a linear equation: 
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where  
'

кр  – is a twist angle of waveguide with length l. 

The axial moments of inertia of the twisted waveguide at the distance z from its beginning can be 

determined by the following equations [18-20]: 
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Figure 3 shows moments of inertia (3,4) for a twisted waveguide along its length. 

 

 

Figure 3. Moments of inertia of the twisted waveguide along its longitudinal axis. 

 

The horizontal axis is expressed in a dimensionless form such that its total length l corresponds to a 

uniform twist of the cross section by one revolution: 
' 0360кр = . 

3.3.  Section modulus of a twisted waveguide 

The section modulus values are calculated on the basis of the dependencies (3-4) as well as the 

distances hx and hy from longitudinal axis of a twisted waveguide to the maximum distant points of 

the cross section along the axes x and y according to the equations: 
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Using the equations (3-5), the equations for the section modulus values take the forms [18-20]: 
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Figure 4 shows the graphs of the section modulus values (6) along the length of a twisted 

waveguide. 

 

 

Figure 4. Section modulus values of a twisted waveguide along its longitudinal axis. 

 

4.  Bending stress and deflection distribution for a twisted waveguide 

According to the Euler–Bernoulli beam theory [6-10], the stress and bending deflections of the twisted 

waveguide are inversely proportional to the integral characteristics of the cross section (3-6). 

4.1.  Bending stresses of twisted waveguide 

The section modulus values (6) determine the maximum bending stresses in a twisted waveguide 

according to the following equations [6-10]:  
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Figure 5 shows the graphs of the maximum normal stresses along the length of the twisted 

waveguide at bending by unit moments: Mx = My = 1. 

 

 

Figure 5. Maximum bending stress of twisted waveguide along its longitudinal axis. 
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4.2.  Distribution of bending deflections for a twisted waveguide 

According to the equation of the elastic line of a beam [6-10], bending deflections are inversely 

proportional to the moments of inertia (3,4): 
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where Е - Young's modulus. 

Figure 6 shows the deflections (8) for single moments and Young 's module. 

 

 

Figure 6. Twisted waveguide deflection along its longitudinal axis. 

 

It should be noted that figure 6 shows the flexibility distribution of the twisted waveguide along its 

longitudinal axis rather than the deflection plots. 

5.  Discussion 

The analysis of the graphs in figures 5,6 shows that there are two orthogonal principal axes, relative to 

which the strength and rigidity take maximum and minimum values. The ratio of maximum to 

minimum values for moments of inertia and the section modulus are equal to: 
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So stresses and deflections of a twisted waveguide appear to equivalents to straight waveguide with 

some averaged values 'J  and 'W , which can be taken as calculated in the solution (figures 3,4). 

However, in most cases of waveguide sizes, the equation (9) are in the range of: 

 

2...3Ik = ,     4...6Sk = .                                                        (10) 

 

The significant differences in values (10) lead to the corresponding changes in strength and rigidity 

of twisted waveguides. It is rational to use in solve the worst combination of geometric parameters 
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relative to a load direction. For example, in aircraft and spacecraft, the direction of action of external 

loads fails to remain constant, so the minimum values must be taken into consideration: 

 

( )min ,u x yI I I= ,  ( )min ,u x yW W W= .                                        (11) 

 

In this case, deflections have the minimum values and while bending stresses have the maximum 

values. 

6.  Conclusion 

In this paper, the Euler–Bernoulli beam theory has been chosen to evaluate the general distribution of 

stress and deflection, in a twisted waveguide at bend. This allows to clearly identify the influence of a 

waveguide’s geometry on stresses and deflections to provide general recommendations for its design. 

The shell model of a twisted waveguide is expected to be developed in further research and allow to 

obtain a more accurate assessment of stresses and deflections. 
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