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Abstract. Numerical simulation of the oil displacement process from a porous medium by 
nanofluid was carried out. To describe this process a flow model of two immiscible fluids 
taking into account the surface tension forces and the wetting angle was used. The simulation 
results of the penetration of fluid with nanoparticles into a porous medium are obtained using 
the example of the oil displacement. The nanoparticles addition to the displacing fluid affects 
the process of oil displacement from porous medium significantly. SiO2 particles with a size of 
5 nm were used as nanoparticles. The concentration of nanoparticles ranged from 0 to 1 wt.%. 
The main reason for the increase in ORF (oil recovery factor) during oil displacement by 
nanofluid is the improvement of rock wetting. 

1. Introduction
The efficiency of oil recovery from oil-bearing strata by modern industrially methods in all oil-
producing countries is considered unsatisfactory today, despite the consumption of petroleum products 
is increasing worldwide from year to year. The average final oil recovery in different countries and 
regions ranges from 25 to 40% [1-2]. Residual or non-recoverable oil reserves reach an average of 55–
75% of the original geological reserves in the subsurface. Traditionally, to increase the oil recovery 
coefficient, the aqueous solutions of various surfactants are used. In recent years, studies show that the 
nanosuspensions significantly increase the ORF of the reservoir [3-7]. Nanosuspensions have 
approximately the same characteristics in reducing the interfacial tension at the boundary with oil and 
reducing the contact wetting angle. Authors of [8-9] showed that the nanoparticles addition to the 
displacing fluid can significantly increase the oil recovery factor. In work [8], SiO2 nanoparticles with 
sizes of 20–70 nm were used for these purposes. A 5% NaCl solution with a density of 1.05 g/cm3 and 
viscosity of 1.09 cP served as a reservoir water model. The displacing nanofluid was prepared by 
adding to this solution nanoparticles with a concentration of 4 g/l. The displacement of natural oil with 
a viscosity of 11.014 cP and a density of 859.3 kg/m3 from cores of the carbonate reservoir was 
investigated. The use of nanofluids makes it possible to increase the ORF from 47% to 76% compared 
to reservoir water. The authors explained this effect by the adsorption of nanoparticles: the rock 
acquires the properties of water wetting, which contributes to the leaching of both film and capillary-
retained oil. In another paper [9] TiO2 nanoparticles with an average size of 50 nm were used for oil 
displacement. The heavy natural oil with a density of 920 kg/m3 and dynamic viscosity of 41.21 cP 
was used for the experiments. The measurement results show that the ORF increases at least 1.3 times 
using nanofluids. 
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In our study numerical simulation of the oil displacement process from a porous medium by 
nanofluid was carried out. To describe this process, a flow model of two immiscible fluids taking into 
account the surface tension forces and the wetting angle was used. 

2.  Numerical simulation 

2.1.  Mathematical model of oil displacement process 
To simulate the oil displacement process by nanofluid, we used a numerical method based on the fluid 
in cells method, which is good for calculating macroscopic flows with a free surface [10-11]. The idea 
of the Volume of Fluid (VOF) method is that fluids are considered as a single two-component 
medium, and the spatial distribution of phases within the simulation domain is determined using a 
special function of the marker F (x, y, z, t), the value of which defines the volume fraction fluid phase 
in the simulation cell as follows: F (x, y, z, t) = 0 if the cell is empty, F (x, y, z, t) = 1 if the cell is 
completely filled with fluid. 

Since the free surface moves with the fluid, the movement of the free boundary in area is monitored 
by solving the transfer equation for the volume fraction of the fluid phase in the cell: 

0dF V F
dt

+ ⋅∇ =  (1) 

where V is the velocity vector of a two-phase medium, found from the solution of hydrodynamic 
equations system consisting of the mass conservation equation or the continuity equation 

( ) 0d V
dt
ρ ρ+ ∇ ⋅ =  (2) 

and motion equations or the momentum conservation law: 

( ) ( )d V V V p F
dt
ρ ρ τ+ ∇ × = −∇ + ∇ +

 
(3) 

where τ is the viscous stress tensor, F is the volume force vector, p is the static pressure, ρ is the 
density of the two-phase medium. 

The components of the viscous stress tensor τij are defined as: 
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where µ is the dynamic viscosity of the two-phase medium, iju are the components of the velocity 
vector V. 

The density and molecular viscosity of the two-component medium are defined by the fluid volume 
fraction in the cell according to the mixture rule, where ρ1, μ1 are the density and viscosity of one 
fluid, respectively ρ2, μ2 are the density and viscosity of the other: 

1 2(1 )F Fρ ρ ρ= + −  

1 2(1 )F Fμ μ μ= + −  

(5) 

(6) 

2.2.  Mathematical model of surface tension 
When considering two-component fluid flows in a porous medium it is necessary to take into account 
the surface tension phenomena. The study of flows controlled by surface tension forces is a difficult 
task. Therefore, another advantage of the VOF method is the relatively simple consideration of the 
influence of surface tension forces. To simulate the surface tension within the VOF method the CSF 
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(Continuum surface force) algorithm was used [10]: the addition of the surface force Fs into the 
motion equations: 

sF k Fσ= ∇  (7) 
where σ is the coefficient of surface tension, k is the curvature of the free surface defined as the 
divergence of the normal vector n: 

( )nk
n

= ∇  (8) 

The normal to the free surface is calculated as the gradient of the volume fraction of the fluid phase 
in the cell: 

n F= ∇  (9) 
On a solid wall the normal vector is determined from the wetting angle θ, where nw, τw are the 

normal and tangential components of the vector: 

cos sinw wn n θ τ θ= +  (10)
The method is described in detail in [12]. We note the main points of the numerical simulation. The 

difference analogue of convective-diffusion equations is found using the finite-volume method for 
structured multi-block grids, the conservativeness of the resulting scheme is automatically performed. 
The connection between the fields of velocity and pressure is implemented using SIMPLEC 
procedures on the combined grids. 

3.  Results and discussion 
The experimental data on the interfacial tension at the oil / nanofluid boundary and the wetting angle 
at the oil / water / rock boundary were used for simulation. The viscosity increases by 8%, the 
interfacial tension decreases by 10%, the contact angle increases from 70 to 145° with nanoparticles 
addition to a displacing fluid at concentration of 1 wt.%. Silicon oxide nanoparticles of 5 nm in size 
were used as additive to suspension. The concentration of nanoparticles ranged from 0 to 1 wt.%. The 
viscosity of the oil was set equal to 10 cP, the density was 800 kg/m3. The measured interfacial tension 
at the water / oil boundary was 22.5 mN/m. 

A sandstone model was used as a rock model. The core porosity was 30%. The average soil size 
was 100 microns. 

To simulate the displacement process, a three-dimensional simulation core model was created. In 
this model the rock particles are in the form of spherical balls. The porous medium in this model is the 
form of random filling of balls. The balls sizes were randomly distributed. The minimum soil size was 
50 µm, the average size was 100 µm, and the maximum was 200 µm. 

The simulation was carried out in a two-dimensional formulation. The simulation domain was 
obtained by cutting a three-dimensional region in the central plane. A simulation grid consisting of 
350000 nodes was used for calculations (see Fig. 1). 

The nanofluid velocity of 0.0002 m/s was set as the boundary conditions at the entrance to the 
simulation domain. Such velocity value corresponded to the conditions of a standard experiment on 
flooding the core of 3 cm in diameter with a flow rate of 10 ml/min. Neumann conditions were 
specified at the exit from the simulation domain. The sticking condition was set on the channel walls. 

At the initial moment the simulation domain is completely filled with oil. In the process of 
calculation the displacement fluid fills the free volume of the simulation domain and displaces oil. The 
ORF and the magnitude of the pressure drop during fluid injection were determined by the calculation. 
The ORF was defined as the ratio of the displaced oil volume to the original oil volume in the porous 
medium. 
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Figure 1. The simulation grid. 
 
First, the effect of nanofluid concentration on oil displacement efficiency was studied. A 

calculations series with the nanoparticle concentration from 0 to 1 wt.% was carried out. The oil 
displacement process (blue) by nanofluid (red) over time is shown in Fig. 2. 

 

 
a) φ = 0% b) φ = 0,25% 

 
c) φ = 0,5% d) φ = 1% 

Figure 2. Distribution of oil (blue) and nanofluid (red) in a porous medium for various concentrations 
of nanoparticles at time t = 5 sec. after the start of displacement. 



XXXV Siberian Thermophysical Seminar

Journal of Physics: Conference Series 1382 (2019) 012115

IOP Publishing

doi:10.1088/1742-6596/1382/1/012115

5

Analysis of the simulation results shows that the nanoparticles addition to the displacing fluid 
significantly affects the process of oil displacement from a porous medium. The displacing fluid 
moves through the oil-saturated rock in the form of separate streams or streams with a low 
nanoparticles concentration in the case of pure water or nanofluid. The displacing fluid moves through 
the channels in a porous medium, where the hydraulic and interfacial resistances are minimal. Such 
water streams break quickly through to the exit from the simulation domain. Further water flow occurs 
through this channel, and the water distribution throughout the volume of the porous medium actually 
stops. At the same time, most of the porous medium volume remains filled with oil. In the simulation 
water displaced is about 30% of oil. Further flushing of such rock is not effective. The flow process 
becomes stationary. Figure 2 shows the steady-state distribution of the flow rate modulus. The water 
moves in the form of thin streams. 

The process of oil displacement by nanofluid is significantly different. At high nanoparticles 
concentrations the nanofluids do not move in separate streams, but in a more uniform front throughout 
the entire simulation domain (Fig. 2 c,d). As a result the breakthrough of the displacing fluid occurs 
much later. So, if water breaks through to the exit from the simulation domain in approximately 1 
second from the moment of the start of flooding, then a nanofluid with a particle concentration of 1 
wt.% does this in about 1.8 seconds. As a result, a much more volume of the porous medium is 
covered by the movement of the displacing fluid. And, accordingly, a significantly more oil is flushed 
out of the rock. 

The dependence of oil recovery efficiency on displacement time at various nanoparticles 
concentrations is shown in Fig. 3. The ORF increases with increasing nanoparticles concentration in 
the displacing fluid significantly. As a result of simulation, a 1 wt.% concentration of silicon oxide 
nanoparticles of 5 nm in size allows an increase in ORF by about 2.15 times as compared to water. 
The dependence is non-monotonic. Saturation of the ORF occurs at nanoparticles concentrations of 
more than 0.5 wt.%, and a further increase in the concentration is impractical. 

 

 
Figure 3. The dependence of the oil recovery factor from on time at various concentrations of silica 

nanoparticles with an average size of 5 nm. 
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Conclusion 
The results of a numerical study of the nanofluid penetration into a porous medium are obtained at an 
example of the oil displacement. Analysis of the simulation results showed that the nanoparticles 
addition to the displacing fluid significantly affects the process of oil displacement from porous 
medium. In contrast to the displacement of oil by water, which moves through the oil-saturated rock in 
the form of separate streams, nanofluid displaces oil by a uniform front. As a result, the oil recovery 
factor increases significantly. The 1 wt.% nanoparticles concentration of silicon oxide with a size of 5 
nm makes it possible to increase ORF by about 2.15 times as compared to water. The main reason for 
the increase in ORF with oil displacement by nanofluid is the improvement of rock wetting. 
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