РОССИЙСКАЯ АКАДЕМИЯ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ

2019

УДК 549.086; 552

МИНЕРАЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ ТЕХНОГЕННОГО ЗОЛОТОСОДЕРЖАЩЕГО СЫРЬЯ ДЕЙСТВУЮЩЕГО ХВОСТОХРАНИЛИЩА ЗОЛОТОПЕРЕРАБАТЫВАЮЩЕЙ ФАБРИКИ

В. И. Брагин^{1,2}, В. А. Макаров¹, Н. Ф. Усманова^{1,2}, П. Н. Самородский¹, Б. М. Лобастов¹, А. И. Вашлаев^{1,2}

¹Сибирский федеральный университет, E-mail: vic.bragin@gmail.com просп. Свободный, 79, 660041, г. Красноярск, Россия ²Институт химии и химической технологии СО РАН, Обособленное подразделение ФИЦ КНЦ СО РАН, ул. Академгородок, 50, стр. 24, 660036, г. Красноярск, Россия

Представлены результаты минералогических исследований лежалых хвостов переработки сульфидных и окисленных золотосодержащих руд одного из горно-металлургических предприятий Красноярского края. Материал хвостохранилища представлен как первичными, так и вторичными минеральными формами. Из вторичных минеральных образований обнаружены минералы сурьмы валентинит Sb₂O₃ и трипугиит FeSbO₄, вторичные формы минералов железа. Гипс в техногенном материале является новообразованной фазой, не встречающейся в исходных рудах, отмечается в хвостах обогащения сульфидных и смешанных руд и почти отсутствует в хвостах переработки окисленных руд. Основной ценный компонент — золото, представленное тонкими сростками в арсенопирите, крупность свободного золота не превышает первых микрон.

Золотосодержащие сульфидные и окисленныу руды, хвосты обогащения, вторичные минеральные формы, гипергенные преобразования

DOI:

Неотъемлемой составной частью горно-металлургических комплексов являются хвостохранилища, которые создают огромную техногенную нагрузку на экологию и ландшафт регионов добычи [1-3], в некоторых случаях приводящую к техногенным бедствиям [4]. В то же время хвосты обогащения руд сульфидного, окисленного состава — потенциальная минерально-сырьевая база для извлечения благородных и цветных металлов [5-9]. По различным оценкам, ежегодные отходы горно-металлургического производства в России составляют более 5 млрд. т [10]. В отечественной практике, начиная с 2000-х годов, вопросами повторной переработки техногенного сырья различного вещественного состава занимаются как недропользователи, так и научноисследовательские организации [11-13]. В золотодобыче в повторную переработку вовлека-

№ 1

Электронно-микроскопические исследования выполнены на оборудовании Красноярского регионального центра коллективного пользования СО РАН.

ются в основном техногенные россыпные объекты, поскольку минеральный состав и крупность золота позволяет без больших капитальных затрат получить максимальный результат [14–16].

Техногенное сырье большинства золотосодержащих хвостохранилищ, сформировавшихся в результате переработки руд сульфидного, смешанного состава по флотационной, флотационно-гидрометаллургической технологии, представляют собой сложный, труднообогатимый объект, где ценный компонент в меньшей степени находится в свободном виде, в большей — представлен тонкой вкрапленностью, зачастую микронной и наномикронной крупности. Помимо этого, материал в процессе хранения подвергается гипергенным преобразованиям, в результате которых образуются новые минеральные формы, технологические свойства которых необходимо дополнительно изучать, разрабатывать новые решения для извлечения ценных компонентов. В последние годы вопросам изучения гипергенноизмененных форм минеральной составляющей в техногенном сырье большое внимание уделяется как в нашей стране [17, 18], так и за рубежом [19–22].

Цель настоящего исследования — изучение вещественного состава материала хвостохранилища, исследование распределения золота в объеме накопителя.

ОБЪЕКТ ИССЛЕДОВАНИЙ

Исходным сырьем для исследований послужил материал хвостохранилища золотоизвлекательной фабрики одного из предприятий Красноярского края, в котором за годы эксплуатации накоплены хвосты переработки окисленных, смешанных, первичных сульфидных золотосодержащих руд.

Складирование хвостов обогащения в хвостохранилище осуществляется с 1996 г. В течении первых пяти лет на фабрике перерабатывали окисленную руду по схеме цианидного выщелачивания. Затем помимо окисленных руд началась отработка сульфидных руд по комбинированной гравитационно-флотационно-биогидрометаллургической технологии. Были периоды, когда в накопитель поступали хвосты обогащения смешанных руд (окисленных и сульфидных). В последнее годы в хвостохранилище направляются хвосты переработки первичных сульфидных руд. Материал для исследований отобран из скважин, пробуренных с ограждающей дамбы хвостохранилища золотоизвлекательной фабрики (ЗИФ) (рис. 1). Глубина пробуренных скважин составила более 70 м.

Рис. 1. Карта отбора фактического материала с ограждающей дамбы хвостохранилища

Материал керновых проб объединен в секции по 5 м для последующего комплексного изучения. По результатам изучения керновых проб для дальнейших технологических исследований формировались пробы по типу сырья (сульфидный, смешанный, окисленный).

На рис. 2 показаны уровни заполнения объема хвостохранилища хвостами различного вещественного состава.

Рис. 2. Геологический разрез по линиям скважин, пробуренных с ограждающей дамбы хвостохранилища (положение скважин на дамбе приведено на рис. 1)

МАТЕРИАЛ И ОБОРУДОВАНИЕ

Химический анализ техногенного сырья выполнен рентгенофлуоресцентным (РСФА) и спектральным (РСА) методами. Анализ продуктивных растворов проводился атомноэмиссионным спектральным методом с индуктивно-связанной плазмой. Для определения содержаний золота применяли пробирную плавку с атомно-абсорбционным окончанием, рациональный анализ на золото. В минералогических исследованиях использовали микрорентгеноспектральный и оптический методы анализа.

Микроскопические исследования осуществляли бинокулярным микроскопом ЛОМО МС-1 и микроскопом Axioscope 40 A Pol. Съемка дифрактограмм выполнена автоматизированным рентгеновским дифрактометром XRD-6000 фирмы Shimadzu (Япония), расчет и расшифровка данных — по стандартной методике с использованием картотеки эталонных порошковых спектров JCPDS. Рентгенофлуоресцентный анализ проводился волновым рентгенофлуоресцентным спектрометром XRF-1800 фирмы Shimadzu (Япония) по стандартной методике — полуколичественный анализ по способу фундаментальных параметров средствами программного обеспечения поставщика оборудования. Электронно-микроскопические исследования и микрорентгеноспектральный анализ выполнены на сканирующем электронном микроскопе Hitachi TM-3000, (Япония) с системой микроанализа Quantax 70 (Bruker, Германия). Образцы перед микроскопическим изучением готовили импрегнированием эпоксидной смолой ЕроFix, последовательной обработкой поверхности наждачной бумагой SiC P200-P2000 и корундовыми суспензиями различной крупности с последующей финишной полировкой суспензиями коллоидного кремнезема на шлифовальнополировальном станке TegraPol-15 (Struers, Швейцария).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследуемый материал хвостохранилища представлен преимущественно тонкодисперсной фракцией, присутствуют отдельные частицы металла техногенного происхождения, обломки горных пород (сланцев), единичные зерна кварца и граната, единичные вторичные сростки пылеватых и песчаных частиц, сцементированные гипсом (хвосты переработки первичных руд) и гидроксидами железа (окисленные хвосты). Цвет варьирует от светло-серого (продукты переработки первичных руд) до светло-бурого (хвосты обогащения окисленных руд). По результатам рентгенофазового анализа породообразующая часть материала хвостов представлена в основном кварцем, слюдами. Кальцит, хлорит, доломит, гипс в большем количестве находятся в хвостах переработки первичных руд, в меньшем — в хвостах переработки окисленных руд (табл. 1). Химический состав изученных проб приведен в табл. 2.

ТАБЛИЦА 1. Минеральный состав породообразующих минералов хвостов по результатам рентгенофазового анализа

Распространенность	Хвосты переработки руд				
минералов	первичных	окисленных			
Главные	Кварц (75.9–36.0/54.3) мусковит + биотит (29.1–8.57/18.3) кальцит (14.8–6.6/9.93) хлорит (16.3–2.38/10.1)	Кварц (90.4 – 60.0/81.2) мусковит + биотит (17.7 – 5.25/11.83)			
Второстепенные	Доломит (3.76-0/2.05) альбит (6.7-0/2.89) гипс (4.4-0.16/1.52)	Кальцит (4.8–0/1.15) доломит (0.96–0/0.36) хлорит (19.3–0/4.1) альбит (3.76–0/0.65)			
Редкие	Рутил (0.9-0.11/0.2)	Шеелит (0.16-0/0.01) рутил (0.79-0/0.23), гипс (1.6-0/0.16)			

Примечание. В скобках указаны интервал содержания от максимального до минимального и среднее содержание, %

Компонент	Проба, %				
Компонент	сульфидная	смешанная	окисленная		
Na ₂ O	0.76	0.54	0.15		
MgO	2.04	1.86	0.69		
Al_2O_3	9.99	8.38	6.58		
K_2O	2.49 2.14		1.51		
CaO	10.46	10.46 10.14			
MnO	0.24	0.24	0.31		
SiO_2	58.28	61.79	80.45		
P_2O_5	0.14	0.13	0.09		
Fe ₂ O ₃ (общее)	5.35	4.58	4.52		
Fe_2O_3 (окисное)	2.17	2.06	4.39		
FeO (закисное)	2.86	2.27	0.11		
S (общая)	0.64	0.56	0.10		
S (сульфидная)	0.46	0.39	0.068		
SO ₃ (сульфатная)	0.46	0.42	< 0.25		
Sb (окисленная)	0.083	0.088	0.045		
Sb (сульфидная)	0.037	0.062	0.23		
TiO ₂ , %	0.46	0.38	0.31		
п.п.п., %	9.24	9.29	3.21		

ТАБЛИЦА 2. Химический состав изученных проб

Гипс является новообразованной фазой, не встречающейся в исходных рудах. Он отмечается в хвостах обогащения неокисленных и смешанных руд и почти отсутствует в хвостах окисленных руд (табл. 1). Такое распределение связано как с образованием сульфатной серы при окислении сульфидов, так и с техногенными сульфатами оборотной воды. При электронно-микроскопическом изучении установлено, что гипс образует рыхлые и сплошные каймы и налеты на поверхности различных минеральных фаз, особенно обогащенных кальцием. Чаще всего кайма представлена пылевидными частицами минералов хвостов, сцементированными гипсом. Для всех проб хвостов характерно снижение содержания кварца в мелких классах крупности и возрастание доли слюд и хлорита. Очевидно, это связано с более высокой устойчивостью кварца к дроблению и истиранию. Напротив, содержание мусковита, биотита и в меньшей степени хлорита увеличивается к мелкому классу крупности.

Основными рудными минералами проб хвостов являются магнетит, пирит, пирротин, арсенопирит, антимонит. Галенит и некоторые первичные минералы сурьмы (джемсонит, гудмундит, бертьерит и ульманнит) встречаются в виде единичных выделений преимущественно в пробах неокисленных хвостов. Обнаружены также вторичные минеральные формы железа, сурьмы, возникшие в результате техногенных преобразований (рис. 3). Из вторичных минералов сурьмы присутствуют валентинит Sb₂O₃ и трипугиит FeSbO₄ в виде тонких налетов и корочек, пористых агрегатов, обнаруженные в основном в материале окисленных хвостов.

При окислении арсенопирита на поверхности зерен, реже внутри них образуются пленки и скопления скородита, гетита, валентинита и других вторичных минералов (рис. 36). Характерно практически полное отсутствие серы в продуктах гипергенного минералообразования по арсенопириту.

Рис. 3. SEM-изображения вторичных минералов в материале хвостохранилища: *a* — вторичные окислы сурьмы (светло-серое), обрастающие лимонитом (серый); *б* — "рубашка" вторичных минералов (гетит, арсенолит, скородит) вокруг кристалла арсенопирита; *в* — сферолитовые выделения валентинита; *г* — колломорфные выделения трипугиита с отпечатками чешуйчатых силикатов; *д* — гипергенный апатит (тёмно-серый), нарастающий на вторичный трипугиит; *e* — агрегат гетита, обрастающий каймой вторичных оксидов сурьмы и железа (валентинити и трипугиит)

Анализ распределения содержания золота на разрезе (рис. 4) показывает относительно низкие 0.2–0.4 г/т (среднее 0.292 г/т) его концентрации в нижней части (хвостах переработки окисленных руд) и более высокие — в верхней части разреза — в хвостах переработки смешанных и сульфидных руд 0.7–1.13 г/т (среднее 0.602 г/т). В сульфидных хвостах следует отметить тесную корреляцию золота с серой, мышьяком и углеродом. Для окисленного сырья характерна корреляция золота с сурьмой и вольфрамом. Концентрация этих элементов здесь в 2 раза и более превышает таковые в хвостах переработки первичных руд.

Коэффициент вариации содержания золота по данным опробования скважин составил 50 %. В скважинах 6-3, 6-4, 6-5 отчетливо выделяется горизонт повышенных концентраций золота (>0.7 г/т), совпадающий с горизонтом хвостов смешанного типа — переход от хвостов

переработки окисленных руд к первичным (между отметками –40 и –20 м). Это косвенно подтверждает нестабильность технологического процесса и относительно повышенные потери металла с хвостами обогащения в период переработки смешанного типа сырья на фабрике.

Рис. 4. Характер распределения содержания золота по разрезу хвостов в профиле скважин, пробуренных с ограждающей дамбы

Изучено распределение золота по керновым пробам в крупных классах (-100+40 мкм) и в шламовых фракциях (-40 мкм) по разведочному профилю дамбы хвостохранилища (рис. 5). Распределение золота по классам крупности неоднородно. Участки с повышенным содержанием золота (>0.7 г/т) в классе -100+40 мкм в хвостах первичных сульфидных руд свидетельствуют о неполном раскрытии металла в процессе переработки, что связано, вероятнее всего, с его тонкой вкрапленностью. Нижние горизонты хвостохранилища, представленные хвостами переработки окисленных руд как в песчаных, так и в шламовых фракциях, обеднены золотом по сравнению с верхними горизонтами.

Рис. 5. Карта содержания золота в классе -100 + 40 мкм (*a*); -40 мкм (б)

В шламовых фракциях участки с повышенным содержанием золота (>0.7 г/т) отмечаются как в окисленном, так с сульфидном и смешанном сырье. Характер изолиний на рис. 4, отражающих распределение содержаний золота по профилю хвостохранилища, свидетельствует о смыве тонких фракций, содержащих в своем составе повышенные содержания металла, вглубь от ограждающей дамбы хвостохранилища.

Рациональный анализ на золото показал, что максимальное количество металла — 56.25 % в цианируемой форме находится в сульфидном материале хвостов. В пробе, характеризующей смешанное сырье, в цианируемой форме присутствует 50 % золота. Из трех проб наиболее труднобогатимый — окисленный материал, где в цианируемой форме сосредоточе-

но всего 33 % (табл. 3). Относительно обогащенным является смешанное сырье, где содержание золота составляет 0.72 г/т. В сульфидном и окисленном материале содержание металла 0.64 и 0.36 г/т соответственно.

	Содержание золота, г/т		Распределение золота, %			
Форма нахождения золота	Проба					
	сульфидная	смешанная	окисленная	сульфидная	смешанная	окисленная
Свободное и в сростках (извлекаемое цианированием)	0.36	0.36	0.12	56.25	50.0	33.33
Извлекаемое цианированием после обработки солянокислым раствором двухлористого олова (ассоциированное с оксидами и гидроксидами железа, карбонатами)	0.08	0.08	0.10	12.50	11.11	27.78
Ассоциированное с сульфидами	0.11	0.20	0.05	17.19	27.78	13.89
Тонковкрапленное в породообра- зующие минералы	0.09	0.08	0.09	14.06	11.11	25.00
Итого	0.64	0.72	0.36	100	100	100

ТАБЛИЦА 3. Результаты рационального анализа исследуемых проб

По результатам электронно-микроскопического изучения, золото в материале хвостохранилища находится в тонких сростках в основном с арсенопиритом либо арсенопиритом, замещаемым пирротином. При замещении происходит концентрирование невидимого золота в оставшейся части кристалла арсенопирита и формирование дисперсных его частиц. Повышенное содержание золота в горизонте хвостов переработки первичных руд косвенно указывает на арсенопирит как основной носитель золота в хвостах. Возрастание содержания золота в пробах и фракциях, обогащенных тонкодисперсными (–20 мкм) рентгеноаморфными гидроксидами железа, связано с сорбцией золота на активной поверхности лимонита.

Самородное золото в пробах отмечено в виде единичных проявлений размером менее 0.1 мм в шлиховом материале и в срастании с арсенопиритом, пирротином и цирконом (рис. 6). В тонкодисперсных фракциях наблюдается повышенное содержание золота, связанное с рентгеноаморфными гидроксидами железа.

Рис. 6. SEM-изображения частиц золота в материале хвостохранилища: a — самородное золото в арсенопирите, замещаемом пиритом: длина частицы около 25 мкм, пробность в интервале 814–891 ‰, содержание ртути 5.21–10.32 мас.%; δ — самородное золото в арсенопирите. Общая длина агрегата частиц около 14 мкм, пробность варьирует от 911 до 693 ‰; e — самородное золото в цирконе: поперечный размер частицы около 1 мкм; e — самородное золото в арсенопирите, замещаемом пирротином: поперечный размер частицы около 3 мкм, пробность 934, основная примесь — ртуть

Свободное золото отличается светло-желтым цветом и крючковатой формой. Характерной особенностью золотосодержащего арсенопирита является замещение пирротином. На фронте замещения происходит накопление невидимого золота в арсенопирите и появляются относительно крупные частицы. Пробность золота варьирует от высокой (934) до низкой (693), основная примесь — ртуть, серебро практически отсутствует.

Помимо золота, в материале хвостохранилища в качестве ценных компонентов следует отметить сурьму в виде как первичных, так и вторичных минеральных образований и вольфрам, представленный шеелитом. Максимальные концентрации W и Sb пространственно сопряжены с хвостами переработки окисленных руд.

выводы

Составлена обобщенная модель распределения золота и сопутствующих элементов по выбранному профилю геологических скважин, дающая общее представление о распределении металлов от поверхности хвостохранилища до его ложа.

Распределение золота и сопутствующих элементов корреспондирует с последовательностью отработки и складирования различных типов руд от окисленных к смешанным и далее сульфидным. Для слоя хвостов переработки окисленных руд характерны минимальные концентрации золота (среднее 0.29 г/т) и тесная его пространственная корреляция с сурьмой и вольфрамом. Пробы, отобранные в верхней части разреза, по хвостам переработки смешанных и первичных руд имеют содержание золота в среднем в 2 раза выше, чем по окисленным рудам. Тесную корреляцию с золотом здесь обнаруживают сера, мышьяк и углерод.

Установлено, что для золота свободная форма нахождения не характерна. Металл находится в тонких сростках в основном с арсенопиритом либо арсенопиритом, замещаемым пирротином.

Сурьмяная минерализация присутствует как в хвостах переработки первичных, так и окисленных руд, тяготея в большей степени к последним. Для хвостов переработки неокисленных руд наиболее характерен антимонит, реже встречаются бертьерит, гудмундит, джемсонит и ульманнит. Для хвостов окисленных руд присущи валентинит и трипугиит; помимо этих фаз, сурьма локализуется в лимоните.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований и Красноярского краевого фонда поддержки научной и научно-технической деятельности, проект РФФИ-ККФН № 18-45-242001 и фундаментальными исследованиями Российской академии наук в рамках проекта № V.46.1.1.

СПИСОК ЛИТЕРАТУРЫ

- 1. Болтыров В. Б., Селезнев С. Г., Стороженко Л. А. Экологические последствия долговременного хранения техногенных объектов типа "Отвалы Аллареченского месторождения" (Печенгский район Мурманской области) // Известия УГГУ. 2015. № 4 (40). С. 27–34.
- 2. Маслобоев В. А., Селезнев С. Г., Макаров Д. В., Светлов А. В. Оценка экологической опасности хранения отходов добычи и переработки медно-никелевых руд // ФТПРПИ. 2014. № 3. С. 138–153.
- Edraki M., Baumgartl T., Manlapig E., Bradshaw D., Franks D. M., and Moran Ch. J. Designing mine tailings for better environmental, social and economic outcomes: a review of alternative approaches //Journal of Cleaner Production, 2014, Vol. 84. — P. 411–420
- **4.** Carmo F. F., Kamino L. H. Y., do Carmo F. F., et al. Fundão tailings dam failures: the environment tragedy of the largest technological disaster of Brazilian mining in global context // Perspectives in Ecology and Conservation, 2017, Vol. 15. P. 145–151.

- 5. Гурская Л. И., Снежко О. Н., Васильев С. П., Молчанов А. В. Техногенные месторождения платиновых металлов – новый источник ценного промышленного сырья //Региональная геология и металлогения. — 2016. — № 66. — С. 80–90.
- **6.** Salinas-Rodríguez E., Hernández-Ávila J., Rivera-Landero I., et al. Leaching of silver contained in mining tailings, using sodium thiosulfate: A kinetic study // Hydrometallurgy, 2016, Vol. 160. P. 6–11.
- 7. Чернышов Н. М. Техногенный золото-платиноидный тип месторождений КМА (Центральная Россия) // Вестн. ВГУ, серия: Геология. 2010. № 1. С. 175–191.
- 8. Твердов А. А., Жура А. В., Соколова М. А. Проблемы комплексного использования минеральносырьевых ресурсов и освоения техногенных месторождений // Рациональное освоение недр. — 2013. — № 5. — С. 16-20.
- 9. Мовсесян Р. С., Мкртчян Г. А., Мовсисян А. И. Перспективы промышленного освоения техногенных минеральных ресурсов Республики Армения // Известия НАН РА, Науки о земле. — 2014. — Т. 67. — № 1. — С. 30–39.
- **10.** Ежов А. И. Оценка техногенного сырья в Российской федерации (Твердые полезные ископаемые) // Горные науки и технологии. 2016. № 4. С. 62–75.
- Иванников С. И., Эпов Д. Г., Крысенко Г. Ф. и др. Комплексный подход к извлечению золота из техногенных объектов золотодобычи Дальнего Востока России // Вестн. ОНЗ РАН. — 2013. — Т. 5. — NZ1001, DOI:10. 2205/2013NZ000115. — 2013.
- 12. Васильев Е. А., Рудой Г. Н., Савин А. Г. Перспективы переработки лежалых хвостов обогащения ОАО «Гайский ГОК» // Цветные металлы. — 2014. — № 10. — С. 25–28.
- **13.** Богданович А. В., Васильев А. М., Шнеерсон Я. М., Плешков М. А. Извлечение золота из лежалых хвостов обогащения колчеданных медно-цинковых руд // Обогащение руд. 2013. № 5. С. 38–44.
- **14.** Литвинцев В. С. О ресурсном потенциале техногенных золотороссыпных месторождений // ФТПРПИ. 2013. № 1. С. 118–126.
- 15. Мирзеханов Г. С. Оценочные критерии ресурсного потенциала техногенных образований россыпных месторождений золота Дальнего Востока России // Вестн. КРАУНЦ. Науки о Земле. — 2014. — № 1. — С. 139–150.
- 16. Александрова Т. Н., Александров А. В., Литвинова Н. М., Богомяков Р. В. Исследование возможности отработки техногенных отвалов россыпной золотодобычи методами «рудной» технологии // ГИАБ. — 2013. — № 5. — С. 65–69.
- **17.** Бортникова С. Б., Гаськова О. Л., Бессонова Е. П. Геохимия техногенных систем. Новосибирск: Гео, 2006. — 169 с.
- Bortnikova S., Bessonova E., and Gaskova O. Geochemistry of arsenic and metals in stored tailings of a Co–Ni arsenide-ore, Khovu-Aksy area, Russia // App. Geochem., 2012, Vol. 27. — P. 2238–2250.
- **19. Craw D.** Geochemical changes in mine tailings during a transition to pressure oxidation process discharge, Macraes mine, New Zealand // J. of Geochemical Exploration, 2003, Vol. 80. P. 81–94.
- 20. Smuda J., Dold B., Jorge E. Spangenberg, Friese K., Kobek Max R., Carlos A. Bustos, Hans-Rudolf Pfeifer Element cycling during the transition from alkaline to acidic environment in an active porphyry copper tailings impoundment, Chuquicamata, Chile // Journal of Geochemical Exploration, 2014, Vol. 140. P. 23–40.
- Lindsay M. B. J., Moncur M. C., Bain J. G. et al. Geochemical and mineralogical aspects of sulfide mine tailings // Applied Geochemistry, 2015, Vol. 57. — P. 157–177.
- **22. Jackson L.M., Parbhakar-Fox A.** Mineralogical and geochemical characterization of the Old Tailings Dam, Australia: Evaluating the effectiveness of a water cover for longterm AMD control //Applied Geochemistry, 2016, Vol. 68. P. 64–78.

Поступила в редакцию 15/VI 2018

После доработки 15/VI 2018 Принята к публикации 28/XII 2018