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4Theoretical Chemistry & Biology, School of Biotechnology,

Royal Institute of Technology, S-106 91 Stockholm, Sweden

5Department of Physics and Astronomy,

UppsalaUniversity, SE-75120Uppsala, Sweden

6Institute of Nanotechnology, Spectroscopy and Quantum Chemistry,

Siberian Federal University, 660041 Krasnoyarsk, Russia

∗ jicailiu@ncepu.edu.cn

1



Abstract

We explore the X-ray second harmonic generation process induced by resonant two-photon ab-

sorption in systems with inversion symmetry. We show that this process becomes allowed in the

X-ray region due non-dipole contributions. We also show that while a plane wave pump field gen-

erates only a longitudinal second harmonic field, a gaussian pump beam creates also a transverse

second harmonic field which is zero on the axis of pump beam and which is stronger than the

longitudinal one and which, contrary to the longitudinal component, can run in free space. It is

furthermore found that the second harmonic fields have radial polarization. Our theory is applied

to Ar and Ne atomic vapours which have an energy conversion efficiency of X-ray SH generation

3.3× 10−11 and 1.3× 10−12, respectively.

PACS numbers: 33.20.Rm, 33.80.Gj, 33.20.Fb, 32.80.Aa
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Hans comments: 1) Faris, if X-ray SHG becomes allowed for symmetry inversion, then it

woudl be applicable as a source for X-ray diffraction in crystals, like protein crystals ?

In this diamond experiment showing X-ray SHG, they must have concluded that one does

not need inversion symmetry breaking ? How do they comment that (I cant dowload the

paper from home) If so our paper gives an explanation rather than a prediction ?

Hans 2) HI Faris, the paper is not about SHG, it is fluorscence after two-photon absorp-

tion. SHG is a non-resonant process. We need to disicuss this tomorrow Hans

I. INTRODUCTION

Modern X-ray Free Electron Laser (XFEL) facilities can deliver high intensities 1015 −

1019W/cm2 making it possible to significantly populate a core-excited state and even create

population inversion and X-ray lasing[1–7]. At these intensities, X-ray matter interaction

becomes nonlinear creating a room for studies of nonlinear effects like stimulated X-ray

Raman scattering[3–5, 8–10], pulse compression [3–5] and X-ray four-wave mixing.[3–5, 11,

12] Glover et al[16] have demonstrated nonlinear wave mixing of X-ray and near-infrared

beams. Second harmonic generation (SHG) is a nonlinear optical process of sum frequency

generation which produces new photons with twice the frequency. SHG has traditionally

been studied as an even-order nonlinear optical effect allowed in media without inversion

symmetry[17] and is one of the best-understood nonlinear effects in optics[18]. In light of

the XFEL development its study in the angstrom regime, e.g., on the natural scale of atomic

and molecular structure of matter, has become of great interest both from a fundamental

and practical viewpoint. A pioneering study by Shwartz, Yudovich et al[19, 20] gave recently

experimental evidence for ”off-resonant” SHG in diamond in the hard X-ray region with a

pump frequency of 7.3 keV. In the present work we show that due to the large momentum

of the photon k the nonlinearity in X-ray region is different from conventional nonlinearities

in the visible regime and that SHG is generally possible possible to observe for centro-

symmetric systems even when phase matching conditions do not prevail. We present a

theoretical study of X-ray SHG in atomic gases induced by resonant two-photon absorption

(TPA). We show that the plane wave pump field can create only longitudinally polarised

X-ray second harmonic (SH) fields which can not propagate in free space (see however

ref.[21]), but also that gaussian pump pulses induce in addiiton transverse second harmonic
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fields which contrary to the longitudinal component can run in free space. Our idea is

in a certain sense inverse to the use of longitudinal component of focussed light beams in

laser particle accelerators[22]. Another important feature of studied SHG problem is that

the transverse field, being strictly equal to zero on the beam axis, has an unusual radial

polarization.

Our work is organized as follows. After this Introduction, we outline in the next Sec-

tionII A the basics theory of the SHG using plane-wave pump radiation which generates only

the longitudinal field. Then, in the following SectionII B we show that the gaussian pump

field creates also the transverse polarized SH field. SectionII C is devoted to the analysis of

the longitudinally and radially polarised SH fields. We shed light on the role of the absorp-

tion of an SH field in SectionII D. Some theoretical details can be found in Appendices A

and B. We disscuss our results further in Sec.III where we numerically analyse the efficiency

of SHG in Ne and Ar vapours. Finally, in Sec.IV, we come to the conclusions.

II. THEORY

Quantum mechanically, the second order nonlinearity in the optical susceptibility origi-

natse from a perturbational solution of the Schrödinger’s equation. To get insight into the

physics of the SHG process in X-ray region, we consider a propagation of an X-ray pump

field Ep in an atomic gas far away from the absorption edge. To gain the SHG we choose

twic ethe frequency of the pump field to be resonant with the frequency of a two-photon

transition 2ω ≈ ω10. The scheme of SHG is shown in Fig.1 where the pump field resonantly

promotes the 1s electron of atom to the np unoccupied level. The resonant population of

the state |1〉 in the course of TPA is followed by the emission of the SH field E. Let us start

from the atom-field interaction which in Coulomb gauge reads as (we use SI units)

V = V (1) + V (2) = − e

mc
p ·Ap +

e2

2mc2
A2
p. (1)

where m and e is the mass and charge of the electron, c is the speed of the light and p is

the operator of electronic momentum. Below we will use more frequently the electric field

instead of the vector potential, E = −∂A/∂t. The square of the vector potential of the

pump field A2
p describes the TPA process in the first order of perturbation theory while the

scalar product p ·Ap contributes in the TPA in second order of perturbation theory.
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A. Plane wave pump field

It is instructive to consider first the interaction with the simplest and most fundamental

electromagnetic wave, the transverse plane wave Ap = (Ap/2) exp(−ı(ωt−k ·r−k ·re))+c.c

Ep =
1

2
Epe

−ı(ωt−k·r−k·re) + c.c,

Ep = eE(0)
p = −∂Ap

∂t
= ıωAp (2)

with the polarization e orthogonal to k. Here re is the coordinate of the electron with

respect to the atom and r ia the radius vector of atom in laboratory frame. To avoid an

unnecessary complexity (see also below) we will focus only on the A2
p term assuming that

the wave length of the photon is longer than the size of core orbital ka� 1

V (2) =
e2

8mc2
A2e−ı2(ωt−k·re−k·r) ≈ e2

8mc2
A(0)2
p e−ı2(ωt−k·r)(1 + ı2k · re). (3)

The term A
(0)2
p being independent on the electron radius-vector re can not induce transitions

between electronic states. Thus the transition between the ground (s) and core-excited (p)

states is induced solely by the the matrix element

V
(2)

01 ≈ ı
eE

(0)2
p

4mc2ω2
(k · d01)e−ı2(ωt−k·r) (4)

of the second term k · re on the right-hand side of eq.(3). This pure non-dipole process

opens the s → p TPA channel with the transition dipole moment d01 = er01 = e〈0|re|1〉

(Fig.1). We chose the axis z of quantization along the photon momentum k. In this frame

the pump field populates only the npz level (see Fig.1) and the problem is reduced to the

interaction with the two-level atom with the transition dipole moment parallel to the photon

momentum

d01 ‖ k. (5)

The resonant TPA population of the core-excited state of the p-symmetry is followed by the

dipole allowed one-photon transition p → s which creates the SHG field with the double

frequency 2ω. This explains why the SHG is possible in systems with inversion symmetry

in the X-ray region.

To quantify the studied process one should compute the polarization P . The induced

macroscopic polarisation of the medium being the expectation value of the dipole moment
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d is specified in terms of the density matrix ρ(t)

P = NTr(dρ) = N (d01(t)ρ10(t) + d10(t)ρ01(t)) , (6)

where N is the concentration of atoms and d01(t) = d01 exp(ıω10t) is the dipole moment

in the interaction representation[22, 23]. The off-diagonal element of the density matrix

ρ10(t) = %10 exp(−ı(νt − 2k · r)) satisfies the following kinetic equation in the interaction

picture[23] (
∂

∂t
+ Γ− ıν

)
%10 =

1

~m

(eE(0)
p

2ω

)2

(k · r10) (ρ11 − ρ00) , (7)

where ν = 2ω − ω10 is the detuning from the two-photon resonance and Γ is the lifetime

broadening of core-excietd state |1〉. We neglect very weak depopulation of the ground state

in the course of the two-photon absorption, (ρ00 ≈ 1, ρ11 � 1) and assume that the duration

τ of the pump pulse is longer than the lifetime of core excited state 1/Γ. In this case one

can use the stationary solution of eq.(7)

%10 = %∗10 = − 1

~m

(
eE

(0)
p

2ω

)2
(k · r10)

Γ− ıν
(8)

to find the induced macroscopic polarization taking into account eq.(5)

P = P e−ı2(ωt−k·r) + c.c., (9)

P = k̂p, p = −

(
eE

(0)
p

2ω

)2
Nker2

01

m~(Γ− ıν)
.

Here k̂ = k/k is the unit vector along k. One can see that the pump radiation creates a

macroscopic polarisation P oriented along the direction of propagation of the pump field k

and, hence of the SH field E , which is created in the course of the spontaneous transition

|1〉 → |0〉 whic also is parallel to k. This longitudinal field exists everywhere where there

is pump-field and the medium and this field copies exactly the polarization according to

Maxwell’s equation for the induction, divD = ∂(ε0E + P)/∂z = 0:

E = − 2

ε0
P 6= 0, D = 0, H = 0. (10)

This does not contradict the well known fact that the plane wave longitudinal field does not

exist in free space[21]. This statement means that longitudinal field can not propagate in

free space. Indeed, the here studied case is different. The longitudinal field E exists only in
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the region where the pump field creates longitudinal polarization P ∝ k. This longitudinal

field oscillating in time and space is a pure electric field, H = 0.

As we have already noticed above the TPA process is a first-order process with respect

to A2
p and a second-order process with respect to p ·Ap. Here we study the two-photon

transition s→ p which is a pure non-dipole effect. Since both A2
p and p ·Ap induced TPA

result in the same orientation of the TPA induced polarization we consider here only the

A2
p contribution. The taking into account of the p ·Ap TPA process will result only in a

rescaling (increase) of the SHG efficiency.

B. Gaussian pump beam and paraxial equation

In this section we will show that the pump Gaussian pump beam makes it possible

Ep =
1

2
Epe

−ı(ωt−kz) + c.c., (11)

Ep = x̂E(0)
p g

(
t− z

c

) w0

w(z)
exp

(
− %2

w2(z)

)
exp

(
ı

(
k

%2

2R(z)
− ψ(z)

))
to transform the longitudinal SHG X-ray field into a transfer field which can propagate in free

space in contrast to the pure longitudinal field. Eq.(11) identifies R(z) = z (1 + (zR/z)2)

as the radius of curvature of the wavefront of the beam at z, w0 as the beam waist and

g(t) = exp(−t2/2τ 2) as the temporal shape of the pulse with duration τ . Here w(z) =

w0

√
1 + (z/zR)2, ψ(z) = arctan(z/zR), ρ =

√
x2 + y2, w0/zR � 1. The gaussian beam

remains well collimated up to the the Rayleigh range zR = kw2
0/2 (Fig.2).

Since the wavefront is not orthogonal to z as one can see from the phase φ = 2k(z+ρ2/2R)

of E2
p ∝ exp(ıφ), that the polarization P is slightly tilted from the z-axis. To find the matrix

element V
(2)

01 of the interaction with the pump gaussian beam (11) we need the value of this

interaction at the point of the electron re with respect to the atom r = (ρ, z)→ r + re.

〈0|eı(φ+δφ)|1〉 ≈ eıφ〈0|1 + ıδφ|1〉 = κ · 〈0|re|1〉eıφ ı2k, (12)

where δφ = ∇φ · re. Similar to the derivation of eq.(9) one obtains a polarisation that is

oriented along ∇φ ≡ (∂zφ, ∂ρφ) = 2kκ

P = −κ
(
eEp
2ω

)2
Nker2

01

m~(Γ− ıν)
, κ = ẑ + ρ̂

ρ

R
(13)

instead of the beam axis ẑ ‖ k.
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Let us write the optical wave equation for the SHG field E

∇(∇ · E)−∇2E +
1

c2

∂2E
∂t2

= −µ0
∂2P
∂t2

(14)

in the usual manner[18] starting from the couple of Maxwell’s equations (in SI units) for

nonmagnetic materials (µ=1)

∇× E = −µ0
∂H
∂t

, ∇×H =
∂D
∂t

. (15)

Contrary to conventional theories[18] for the transfer electromagnetic field where ∇ · E =

divE = 0 we can not ignore ∇ · E . This is because the polarization P is essentially a

longitudinal one (see eq.(13)): divP 6= 0. To resolve this problem we use the Maxwell’s

equation for the induction D = ε0E + P

∇ ·D = 0, ∇ · E = − 1

ε0
∇ ·P , (16)

which makes it possible to rewrite the wave equation (14) as follows

−∇2E +
1

c2

∂2E
∂t2

=
1

ε0

(
− 1

c2

∂2P
∂t2

+ ∇(∇ ·P)

)
, (17)

E =
1

2
Ee−ı2(ωt−kz) + c.c., P = Pe−ı2(ωt−kz) + c.c..

This wave equation differs from the conventional one [18] by the extra term ∇(∇ ·P) 6= 0

which is not equal to zero because of the longitudinal contribution in P . We would like to

point out that when the pump field is a plane wave there is only a longitudinal SH field

E ‖ z (see Sec.II A). In this case the wave equation (14) becomes ∂2(ε0E + P)/∂t2 = 0,

which is very different from eq.(17) because ∇(∇ · E)−∇2E = (∂2/∂z2 − ∂2/∂z2)E ≡ 0.

Now we are in a stage to simplify the wave equation (17). In our case the wave is

propagating primarily along the z-axis with a small divergence angle

θ ≈ 1

kw0

=
2w0

zR
∼ λ

ω0

� 1. (18)

This makes it possible to neglect ∂2A/∂z2 in eq. (17) and to get the following paraxial

equation for the SHG field(
∂

∂z
+

1

c

∂

∂t
− ı

4k
∆⊥

)
E =

ı

2k
feı2(ωt−kz), (19)
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where ∆⊥ = ∇2
ρ = ∂2/∂x2 + ∂2/∂y2 is the Laplacian operator over transverse cartesian

coordinates. The source term on the right-hand side of the paraxial equation has now both

longitudinal (fz) and transverse components (fρ)

f = ẑfz + ρ̂fρ, (20)

f =
2

ε0

(
− 1

c2

∂2P̃

∂t2
+ ∇(∇ · P̃)

)
≈ 2

ε0

(
(2k)2P̃ + ∇(∇ · P̃)

)
,

P̃ = Pe−ı2(ωt−kz).

Taking into account eqs.(11), (13) and (18) one can get the following expression for the

transverse and longitudinal components of f

fρ = − ı16kρ

ε0w2
P, (21)

fz =
ı4kP

ε0(z2 + z2
R)

[2kρ2zR(ızR + z)

z2 + z2
R

− ı4zR − z
]
.

One should point out that origin of the fρ is the term ∇(∇ · P̃) = ρ̂∂ρ(∂zP̃ ) + · · · . A simple

estimation shows that the transverse contribution dominates: |fρ/fz| ∼ kw0 � 1. As one

can see from the paraxial equation (19) the transverse and longitudinal components of f

generate, respectively, the transverse and longitudinal components of the SH field E.

C. Spatial distribution of the transverse and longitudinal SH fields. Radial polar-

ization

The solution of the paraxial equation (19) is convenient to write in terms of the retarded

Green’s function (see Appendix A)

E(z,ρ, t) =
1

2π

∫
G(z − z′,ρ− ρ′, t− t′)f̃(z′,ρ′, t′)dz′dρ′dt′, (22)(

∂

∂z
+

1

c

∂

∂t
− ı

4k
∆⊥

)
G(z − z′,ρ− ρ′, t− t′) = δ(z − z′)δ(ρ− ρ′)δ(t− t′)Θ(t− t′).

G(z − z′,ρ− ρ′, t− t′) = −ıδ
(
t′ − t− z′ − z

c
)

)
Θ(t− t′) k

π(z − z′)
exp

(
ı
k|ρ− ρ′)2

z − z′

)
,

which guarantees that no contribution at remotely early times , t, before the source

f̃(z′,ρ′, t′) = f(z′,ρ′, t′) exp(ı2(ωt′ − kz′)) has been activated. Taking into account that

ẑ′ = ẑ, ρ̂′ = ρ̂ cosϕ + ŷ sinϕ, ŷ ⊥ ρ̂, one can perform an integration over directions of ρ′
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using eq.(A5)

2π∫
0

dϕ[ρ̂′fρ(z
′, ρ′, t′) + ẑfz(z

′, ρ′, t′)] exp

(
ı
k|ρ− ρ′)2

z − z′

)
(23)

= 2π exp

(
ı
k(ρ2 + ρ′2)

z − z′

)[
− ρ̂ıfρ(z′, ρ′, t′)J1

(
2kρρ′

z − z′

)
+ ẑfz(z

′, ρ′, t′)J0

(
2kρρ′

z − z′

)]
,

where Jn(x) is a Bessel function. One can obtain the remaining integral over ρ′ using eq.(A5)

and get the following expressions for transfers and longitudinal contributions

E(z,ρ, t) = ρ̂Eρ(z,ρ, t) + ẑEz(z,ρ, t), (24)

Ei(z, ρ, t) = E(0)
p g2

(
t− z

c

)
Ji(z, ρ), i = (ρ, z),

where

Jρ(z, ρ) = −2ρs0

z∫
−∞

dz′
eΦ

w4(z′)α2(z′)
, (25)

Jz(z, ρ) =
ı4πw0s0

(kw0)3

z∫
−∞

dz′
eΦ

w4(z′)α(z′)

[
2(ızR + z′)

w2(z′)α(z′)

(
z − z′ − 2k2ρ2

α(z′)

)
− (ı4zR + z′)

]
,

Φ =
ıkρ2

z − z′
− ı2ψ(z′)− k2ρ2

(z − z′)α(z′)
, α(z′) =

2(z − z′)
w2(z′)

− ık
(
z − z′

R(z′)
+ 1

)
,

s0 = 8π
G

Γ− ıν
NzRr01re

Here re = e2/(4πε0mc
2) = 2.82×10−13 cm is the classical electron radius and G = E

(0)
p d01/~

is the Rabi frequency. It is important to notice that there is no transverse field on the beam

axis

Eρ(z, ρ = 0, t) = 0. (26)

Eq.(24) indicates that the transverse SH field ρ̂Eρ is oriented along the radius ρ perpendic-

ular to the beam axis. This means that the transverse field has radial polarization (see also

Sec.III).

D. Role of photoabsorption

In the above equations the photoabsorpion of X-rays is ignored. This approximation is

valid for the pump beam which is far from any resonance. In contrast, the SHG field is in
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strict resonance with the dipole allowed transition |0〉 → |1〉 (1s-3p for Ne and 1s-4p for Ar).

Therefore, this absorption channel should be taken into account. With the solution (24) at

hand we are almost prepared to include the photoabsorption in the SH field. As it is shown

in Appendix B the photoabsorption of the SHG field modifies only the integrands at the

right-hand side of equations (25) for Jρ(z, ρ) and Jz(z, ρ). Namely, these integrands should

be multiplied by the factor

exp

(
z′ − z

2`

)
, (27)

where ` = 1/Nσabs is the photoabsorption length while σabs is the the resonant photoabsorp-

tion cross section. According to simulations the photoabsorption length should be larger or

comparable with the Rayleigh range

` ∼ zR (28)

to make it possible for the SHG field reach the optimal value.

III. RESULTS OF SIMULATIONS AND DISCUSSION

We applied the theory to two atomic system, Ne and Ar, with the strict two-photon

resonance (2ω = ω10) with 1s → 3p transitions for Ne and 1s → 4p transitions for Ar. In

the simulations with the peak pump intensity I
(0)
p = cε0|E(0)

p |2/2 = 1016W/cm2 we used

the following parameters for Ne: ~ω1s−3p = 867.4 eV, σabs(1s − 3p) = 1.5 × 10−18cm2[24],

2~Γ = 0.27 eV [25] and for Ar: ~ω1s−4p = 3203.42 eV, σabs(1s− 4p) = 0.12× 10−18cm2[26],

2~Γ = 0.66 eV[27]. The concentration of the atoms and the beam waist were equal to

N = 1019cm−3 and w0 = 1µm, respectively. The Rayleigh range was zR ≈ 103µm and

zR ≈ 4×103µm for Ne and Ar, respectively. The corresponding values of the photoabsorption

lengths ` ≈ 0.67× 103µm and 8× 103µm satisfy the condition (28).

We deliberately solved the paraxial equation with homogeneous distribution of the con-

centration along the z-axis. This makes it possible to easily to estimate the size of the gas

cell. We characterize the SHG by its intensity distribution of the transverse and longitudinal

components of the SH field (24).

Ii(z, ρ, t) =
1

2
cε0|Ei(z, ρ, t)|2, i = (ρ, z) (29)

and by the energy conversion efficiency

βi =
Wi(z)

Wp

, Wi(z) = 2π

∫ ∞
0

dt

∫ 2π

0

dρIi(z, ρ, t). (30)
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First we show the SH field neglecting the photoabsorption. In Fig.3 and Fig.4 we display the

spatial distribution of the SH intensities Iρ(z, ρ, t) and Iz(z, ρ, t) for Ne and Ar, respectively.

One can see that the transverse SH field Iρ is much stronger than longitudinal one Iz and

Iρ = 0 on the axis of the beam ρ = 0. The transverse field ρ̂Eρ (24) has an unusual

radial polarization as is shown in Fig.6. The photobasorption changes dramatically the

spatial distribution of the SH field. The photoabsorption also reduces the energy conversion

efficiency, in one order of magnitude for Ne and in four times for Ar, as one can see from

Fig. 5 and Fig.8. As it is expected the SH field is confined in the focal region in the range

limited by the photobasorption length ` (see Fig. 7). Due to this circumstance the energy

conversion efficiency becomes maximal at z = zmax = 0.7 mm for Ne and zmax = 0.5 cm for

Ar. This range defines the size of the gas cell which should be around zmax.

IV. SUMMARY

In this paper, we investigated the second harmonic generation in systems with the in-

version symmetry in the X-ray region. Our theory is applied to SHG in neon and argon

pumped by a strong X-ray field tuned in resonance with the two-photon transition 1s→ 3p

in Ne and 1s→ 4p in Ar. The non-dipole population of these core-excited states is followed

by the emission of the SH field. We describe the SHG in atoms in terms of a density matrix

formalism and paraxial equation taking into account the resonant photobasorption of the

SH radiation. I contrast to the plane wave pump field, the gaussian pump beam generates

transverse SH photons with the radial polarization. Theory predicts the energy conversion

efficiency 10−11 and 10−12 in Ne (867.4 eV) and Ar (3203.4 eV) atomic vapours for the pump

1016 W/cm3, respectively.
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Appendix A: Green’s function for the time-dependent paraxial equation

Let us find the Green’s function of non-stationary paraxial equation(
∂

∂z
+

1

c

∂

∂t
− ı

2K
∆⊥

)
G(z,ρ, t) = Θ(t)δ(t)δ(z)δ(ρ), (A1)

where ∆⊥ = ∂2/∂x2 + ∂2/∂y2, ρ = (x, y), δ(ρ) = δ(x)δ(y) and Θ(t) is the step function

which is equal to zero when t < 0. Taking the Fourier transform of the Green’s function

and of the Dirac δ-functions we get

G(z,ρ, t) =
Θ(t)

(2π)4

∞∫
−∞

dµ

∞∫
−∞

dν

∞∫
−∞

dp

∞∫
−∞

dqGµ,ν,p,qe
ıµt+ıνz+ıpx+ıqy,

Gµ,ν,p,q = − 2ı
µ
c

+ ν + p2+q2

2K

. (A2)

Keeping in mind that t ≥ 0 and taking the integral along half circle in upper half plane

around the pole µ = −c
(
ν + p2+q2

2K

)
∞∫

−∞

eıµt

µ
c

+ ν + p2+q2

2K

dµ = −ıcπ exp

(
−ıct

(
ν +

p2 + q2

2K

))
, (A3)

we obtain the following expression for the Green’s function

G(z,ρ, t) = −ıδ
(
t− z

c

)
Θ(t)

K

2πz
exp

(
ı
Kρ2

2z

)
(A4)

which allows to find the SHG field (22) with help of the following integrals[28]

J0(a) =
1

2π

∫ 2π

0

eıa cos θdθ,

1

2π

∫ 2π

0

cos θe−ıa cos θdθ = ı
d

da
J0(a) = −ıJ1(a), (A5)

∞∫
0

e−a
2ρ2ρn+1Jn(bρ)dρ =

bn

(2a2)n+1
e−

b2

4a2 , Re(a2) > 0.

Appendix B: Photoabsorption of SHG field

The strongest absorption channel is the absorption of SH field which is in the resonance

with |0〉 → |1〉 transition. To account this photoabsorption we need to add −E/2` at the

13



right-hand side of paraxial equation (19)(
∂

∂z
+

1

c

∂

∂t
− ı

4k
∆⊥

)
E = − 1

2`
E +

ı

2k
feı2(ωt−kz), (B1)

where ` = 1/σN is the length of resonant absorption of the SHG field with the photoabsorp-

tion cross-section σ. Using the substitution E = Ẽ exp(−z/2`) one can see that Ẽ satisfies

paraxial equation (19) (
∂

∂z
+

1

c

∂

∂t
− ı

4k
∆⊥

)
Ẽ =

ı

2k
feı2(ωt−kz)ez/2` (B2)

with modified source term. This equation has the solution given by eq.(22) with f̃ replaced by

f̃ exp(z′/2`). Taking into account this we get immediately the solution of paraxial equation

with photoabsorption (B1)

E(z,ρ, t) = Ẽe−z/2` =
e−z/2`

2π

∫
G(z − z′,ρ− ρ′, t− t′)f̃(z′,ρ′, t′)ez′/2`dz′dρ′dt′. (B3)

This means that to account the photoabsorption we should multiply by exp((z′− z)/2`) the

integrand at the right-hand side of equations (25) for Jρ(z, ρ) and Jz(z, ρ).
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m=-1	 0	 1	1 = np

0 = 1s

!r10  ↑↑ z ↑↑ 
!
k

FIG. 1: The dipole moment r10 of the 1s → np transition in atom is parallel to k. The axis of

quantization z is along the photon momentum k.
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FIG. 2: 2D map of the pump intensity at t = z/c for Ne and Ar. The legend shows the intensity

in W/m2.
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FIG. 3: 2D map of the SHG intensity at t = z/c of Ne. The photoabsorption is negleted. The

legend shows the intensity in W/m2.
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FIG. 4: 2D map of the SHG intensity at t = z/c of Ar. The photoabsorption is neglected. The

legend shows the intensity in W/m2.
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FIG. 5: Energy conversion efficiency of Ne and Ar. The photoabsorption is neglected.
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FIG. 8: Energy conversion efficiency βρ(z) for Ne and Ar taking into account the photoabsorption.

Ne: βmax
ρ = 3.2× 10−11 at zmax = 0.7mm. Ar: βmax

ρ = 1.3× 10−12 at zmax = 0.5cm.
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