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Open Bose-Hubbard chain: Pseudoclassical approach
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We analyze the stationary current of bosonic carriers in the Bose-Hubbard chain of length L where the
first and the last sites of the chain are attached to reservoirs of Bose particles acting as a particle source and
sink, respectively. The analysis is carried out by using the pseudoclassical approach which reduces the original
quantum problem to the classical problem for L coupled nonlinear oscillators. It is shown that an increase of
oscillator nonlinearity (which is determined by the strength of interparticle interactions) results in a transition
from the ballistic transport regime, where the stationary current is independent of the chain length, to the diffusive
regime, where the current is inversely proportional to L.
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I. INTRODUCTION

Transport phenomena with neutral atoms is an active area
of research in experimental cold-atom physics. These studies
include Josephson oscillations of Bose atoms in a double-
well potential [1,2], atomic Bloch oscillations in quasi-one-
dimensional optical lattices [3,4], refill dynamics in the pres-
ence of induced losses [5,6], and quantized current in the
engineered transport channel [7–9], to mention a few of the
phenomena under scrutiny. From the theoretical viewpoint
these experiments refer to (or even are aimed to realize)
some paradigm models of the many-body physics that, on
the one hand, are complex enough to capture the physics of
the discussed phenomenon but, on the other hand, are simple
enough to admit an analytical treatment. The present work
analyzes one of these paradigm models, namely, the open or
dissipative Bose-Hubbard (BH) chain [10–13]. With respect
to cold atoms this model describes the atomic current between
two reservoirs of Bose atoms which are connected by a deep
optical lattice. More formally, the model assumes that the
system dynamics is governed by the master equation for the
reduced density matrix R(t ) of the bosonic carriers,

dR
dt

= −i[Ĥ ,R] + L1(R) + LL(R), (1)

where Ĥ is the Hamiltonian of the closed (isolated) BH model,

Ĥ = ω

L∑
l=1

n̂l − J

2

L−1∑
l=1

(â†
l+1âl + H.c.) + U

2

L∑
l=1

n̂l (n̂l − 1),

(2)
and the relaxation operator L1(R) acting on the first site
of the chain and the operator LL(R) acting on the last site
of the chain have the standard Lindblad form parametrized
by the relaxation constant γ1 (γL) and the particle density n̄1

(n̄L) of the respective reservoir [see Eqs. (5) and (6) below].
To be certain we assume n̄1 > n̄L; then the left reservoir
acts as a particle source and the right reservoir as a particle
sink. The goal is to find the stationary current j̃ of bosonic
particles in the chain as a function of the reservoir parameters

and parameters of the BH chain. We also mention similar
problems for the stationary current of the fermionic carriers
and heat transport in the spin chain [14–17].

Without additional assumptions or approximations the for-
mulated problem can be solved only for vanishing interparti-
cle interactions (U = 0), where one obtains a relatively simple
analytical expression for the stationary current [10,13]. As
expected, it appears to be proportional to the difference in the
reservoir densities, n̄1 − n̄L, and is independent of the chain
length L. The case of finite interactions, U �= 0, however, re-
mains a challenge. In particular, it is not clear whether the sys-
tem is conducting or becomes insulating in the limit L → ∞.
In this work we analyze this problem by using the so-called
pseudoclassical approach [18–25], which is justified for large
occupation numbers of the chain sites and was proved to be
successful in application to a number of other problems, such
as dynamics of Bose-Einstein condensates in the double-well
potential [23,25] and Bloch oscillations of interacting Bose
atoms [22]. The advantage of the pseudoclassical approach is
that it provides a clear insight into the physics of the discussed
phenomenon by mapping the quantum many-body system into
a classical (generally multidimensional) system. Using this
approach we show that an increase of the interaction constant
from zero to a finite value U ∼ J/n̄1 results in a transition
from the ballistic transport regime, where the stationary cur-
rent j̃ is independent of the chain length L, to the diffusive
regime, where j̃ ∼ 1/L.

II. PSEUDOCLASSICAL APPROACH

To illustrate the main ideas of the pseudoclassical approach
we revisit the problem of the damped nonlinear oscillator,

Ĥ = ωâ†â + U

2
(â†â)2, (3)

where we set the fundamental Planck constant to unity, i.e.,
[â, â†] = 1.
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FIG. 1. Dash-dotted line: Dynamics of I (t ) = N (t )/n̄ according
to Eq. (4). Parameters are γ = 0.5 and n̄ = 10. The initial condition
corresponds to the oscillator ground state, i.e., to the Fock state |n〉
with n = 0. Dashed line: Solution of master equation (7) for D = 0.5
and γ = 0. Solid blue line: Solution of the Langevin equation (20)
averaged over 4000 realizations of the random process ξ (t ). The inset
shows the oscillator spectral density P(ν ) for ω = 1 and different
values of nonlinearity g = 0, 0.5, 1, 2, from top to bottom.

A. Quantum analysis

Commonly the dissipative dynamics of system (3) is de-
scribed by the following master equation:

dR
dt

= −i[Ĥ,R] + Lgain(R) + Lloss(R), (4)

where the Lindblad operators Lloss,

Lloss(R) = −γ (n̄ + 1)

2
(â†âR − 2âRâ† + Râ†â), (5)

and Lgain,

Lgain(R) = −γ n̄

2
(ââ†R − 2â†Râ + Rââ†), (6)

take into account the exchange of particles between the system
and bosonic reservoir characterized by the parameter n̄. It
is easy to prove that the Lindblad operators (5) and (6)
ensure relaxation of the oscillator to the steady state with
the mean occupation number given by the parameter n̄. As
an example, the dash-dotted red line in Fig. 1 shows the
solution of Eq. (4) for n̄ = 10 and γ = 0.5 where we choose
the oscillator ground state as the initial condition. For this
specific initial condition relaxation to the steady state has a
particularly simple time dependence N (t ) = Tr[â†âR(t )] =
n̄[1 − exp(−γ t )].

To get a deeper insight into the discussed relaxation pro-
cess it is instructive to rewrite Eq. (4) in the following form:

dR
dt

= −i[Ĥ ,R] + D(R) + G(R), (7)

where

D(R) = −Dn̄

2
([â, [â†,R]] + [â†, [â,R]]) (8)

and

G(R) = −γ

2
(ââ†R − 2â†Râ + Rââ†). (9)

Here, as it will be clear in a moment, the operator (8) is the
diffusion term with the diffusion coefficient D = γ and the
operator (9) is the friction term with the friction coefficient
γ . We mention that in present-day laboratory experiments
with cold Bose atoms the diffusion and friction coefficients
can be varied independently. Then, for γ = 0 we have pure
diffusion (see dashed line in Fig. 1) while for D = 0 we have
pure decay. In the general case an interplay between these
processes leads to the steady state where

lim
t→∞ N (t ) = n̄

D

γ
. (10)

B. Classical analysis

Let us reproduce the result in Eq. (10) by using the pseudo-
classical approach. In this approach the operators â′ = â/

√
n̄

and â′† = â†/
√

n̄, which commute to the effective Planck
constant h̄′ = 1/n̄,

[â′, â′†] = h̄′, h̄′ = 1/n̄ 	 1, (11)

are identified with the pair of canonical variables a and a∗:

a = (q + ip)/
√

2, a∗ = (q − ip)/
√

2. (12)

Applying the Wigner-Weyl transformation to master equation
(7), and keeping only the zero-order terms in the expansion
over the effective Planck constant h̄′, we obtain the following
equation for the Wigner function f = f (a, a∗; t ) [26,27]:

∂ f

∂t
= {H, f } + D( f ) + G( f ), (13)

where the Hamiltonian evolution is captured by the Poisson
brackets with the Hamiltonian

H = ωa∗a + g

2
(a∗a)2, g = Un̄, (14)

the diffusion term is

D( f ) = D
∂2 f

∂a∂a∗ , (15)

and the friction term is given by

G( f ) = γ

2

(
a
∂ f

∂a
+ 2 f + a∗ ∂ f

∂a∗

)
. (16)

The obtained Fokker-Planck equation [Eq. (13)] has a
simple analytical solution if the initial distribution function
is given by the two-dimensional Gaussian

f (a, a∗; t = 0) = 1

2π iσ 2
exp

(
−|a|2

σ 2

)

= 1

2πσ 2
exp

(
−q2 + p2

2σ 2

)
. (17)
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Substituting this ansatz with σ 2 = σ 2(t ) in Eq. (13) we find
that σ 2(t ) grows linearly if γ = 0 or decays exponentially if
D = 0. Correspondingly, the mean oscillator action I (t ),

I (t ) =
∫∫

|a|2 f (a, a∗; t ) da da∗, (18)

grows as I (t ) = I0 + Dt if γ = 0 or decays as I (t ) =
I0 exp(−γ t ) if D = 0. In the general case the oscillator ap-
proaches the steady state where

lim
t→∞ I (t ) ≡ Ĩ = D

γ
. (19)

Notice that Eq. (19) holds for arbitrary oscillator
nonlinearity g.

C. Stochastic method

For the purpose of future reference we discuss the Monte
Carlo method of solving Eq. (13). It is easy to prove that
the Fokker-Planck equation [Eq. (13)] is equivalent to the
following Langevin equation:

iȧ = ∂H

∂a∗ − i
γ

2
a +

√
D

2
ξ (t ), (20)

where ξ (t ) = Re[ξ (t )] + iIm[ξ (t )] is the δ-correlated noise
with standard deviation equal to unity for both the real and
imaginary parts. Then the mean value of action in Eq. (18)
can be calculated as the average over different realizations
of the random process ξ (t ), namely, I (t ) = |a(t )|2. As an
example, the solid blue line in Fig. 1 shows the mean action
which is obtained by using 4000 realizations of the random
process. Increasing the number of realizations by one order of
magnitude makes the result practically indistinguishable from
the exact solution.

Importantly, the described stochastic approach allows us to
introduce the other important characteristic of the system—
the oscillator spectral density P(ν) [28,29],

P(ν) = |a(ν)|2, a(ν) = lim
T →∞

1

T

∫ T

0
a(t )eiνt dt . (21)

Here the limit T → ∞ ensures that P(ν) refers to the station-
ary regime. In practice this requires the evolution time T to
be larger than the relaxation time Tγ ∼ 1/γ . If this condition
is satisfied then the stationary action (19) is related to the
spectral density as

Ĩ =
∫ ∞

−∞
P(ν) dν. (22)

Notice that, unlike the stationary action Ĩ , the spectral density
P(ν) does depend on the oscillator nonlinearity. Different
curves in the inset in Fig. 1 show the spectral density of the
oscillator (14) for ω = 1 and increasing value of g. It is seen
that with increase of g the maximum of the spectral density
shifts to the higher (negative) frequencies. A qualitative ex-
planation for this shift is that for nonzero nonlinearity the
oscillator eigenfrequency 
 = ω + gI depends on the action
I which in the stationary regime is distributed according to the
exponential law f (I ) = σ−2 exp(−I/σ 2), σ 2 = D/γ . On the
quantitative level, calculation of the spectral density requires

sophisticated methods which involve continued fraction ex-
pansion [28]. The only exclusion is the case g = 0, where P(ν)
can be calculated exactly by using the formalism of the Green
function [29], which gives

P(ν) = D

2π

1

(ν + ω)2 + (γ /2)2
. (23)

III. CHAIN OF COUPLED OSCILLATORS

Now we are prepared to address the current in the BH chain
of length L connecting two reservoirs. Generalizing the results
of the previous section for system (2), the equation for the
distribution function f = f (a, a∗; t ), a = (a1, . . . , aL ), reads

∂ f

∂t
= {H, f } +

∑
l=1,L

D(l )( f ) +
∑

l=1,L

G (l )( f ), (24)

where

D(l )( f ) = Dl
∂2 f

∂al∂a∗
l

(25)

and

G (l )( f ) = γl

2

(
al

∂ f

∂al
+ 2 f + a∗

l

∂ f

∂a∗
l

)
. (26)

Thus, in the pseudoclassical approach the original quantum
problem corresponds to the system of L coupled nonlinear
oscillators,

H =
L∑

l=1

Hl − J

2

(∑
l

a∗
l+1al + c.c.

)
,

Hl = ωIl + g

2
I2
l , Il = |al |2, (27)

where the first and the last oscillators have nonzero friction
coefficients γ1 and γL and are driven by stochastic forces with
amplitudes

√
D1/2 and

√
DL/2, respectively:

iȧl = ∂H

∂a∗
l

− i
γl

2
(δ1,l + δL,l )al +

√
Dl

2
(δ1,l + δL,l )ξl (t ).

(28)
Two remarks are in turn. First, there is some freedom in

defining the effective Planck constant h̄′ for the considered
system. In what follows we use h̄′ = 1/n̄1 where, as before,
n̄1 is the particle density of the left reservoir. Then the
macroscopic interaction constant g in Eq. (27) is related to
the microscopic interaction constant U in Eq. (2) as g =
Un̄1. Notice that, since we assume n̄1 > n̄L, the above choice
ensures Il � 1 for every oscillator.

The second comment concerns the lower boundary for n̄1

where the pseudoclassical approach is still a good approxi-
mation. This is largely an open question because answering it
requires knowledge of the quantum dynamics. Unfortunately,
numerical solution of master equation (1) is feasible only
for a few-site system. In Fig. 2 we compare the exact and
pseudoclassical results for L = 3. (The quantities depicted in
the figure are discussed in the next section). A reasonable
agreement between the dash-dotted and solid lines indicates
that for this system size one can go down to n̄1 = 2. Although
the discussed lower boundary is not crucial for the results re-
ported below, it should be remembered that this boundary does
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FIG. 2. Comparison between the exact (dash-dotted lines) and
pseudoclassical (solid lines) results for L = 3, J = 1, n̄1 = 2, n̄L =
1, γ = 0.5 (D1 = γ , DL = γ n̄L/n̄1), and U = 0.5 (g = 1). In the
quantum case the Fock basis is truncated to

∑
l nl � 20, which

gives the total dimension of the Hilbert space, N = 1771. In the
pseudoclassical case the average is taken over 16 000 realizations
of the stochastic processes.

exist. We plan to quantify the error due to the pseudoclassical
approximation in a separate publication.

A. Single-particle density matrix

To calculate the current of the bosonic carriers in the open
BH chain it suffices to know the single-particle density matrix
(SPDM) whose elements are defined as

ρl,m(t ) = Tr[â†
l âmR(t )], 1 � l, m � L. (29)

In the pseudoclassical approach Eq. (29) obviously takes the
form

ρl,m(t ) =
∫

a∗
l am f (a, a∗; t ) da da∗ (30)

if we use the formalism of the Fokker-Planck equation (24),
or

ρl,m(t ) = a∗
l (t )am(t ) (31)

if we use the Langevin equation (28). Knowing the SPDM,
the current density j(t ) is then found as

j(t ) = J

L − 1

L−1∑
l=1

Im[ρl,l+1(t )]. (32)

If g = 0, matrix (30) can be found analytically. Taking the
time derivative from both sides of Eq. (30) and substituting
there Eq. (24) we obtain after integrating by parts the follow-
ing system of equations on the matrix elements:

d

dt
ρl,m = i

J

2
(ρl,m+1 + ρl,m−1 − ρl+1,m − ρl−1,m )

−
∑
j=1,L

γ j

2
(δl, j + δm, j )ρl,m +

∑
j=1,L

Djδl, jδm, j .

(33)
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FIG. 3. Comparison between the cases g = 0 and g = 2 where
the latter case is indicated by dashed lines. Left column, dynamics
of the mean actions Il (t ); upper right, dynamics of the mean current;
and lower right, stationary values of the actions Ĩl along the chain.
The other parameters are γ1 = γL = 0.5, D1 = 0.5, and DL = 0.25.
Average over 4000 runs.

This equation coincides with that obtained quantum mechani-
cally in Refs. [12,13]. Thus, in the case of vanishing interpar-
ticle interactions the pseudoclassical approach is exact. The
stationary solution of Eq. (33) is the three diagonal matrix
with pure imaginary off-diagonal elements which determine
the stationary current j̃. In what follows we consider the
case γ1 = γL ≡ γ where the analytical expression for the
stationary current is particularly simple:

j̃ = j0
Jγ

J2 + γ 2

D1 − DL

2γ
. (34)

Notice that the current is proportional to the difference of
diffusion coefficients. (In the quantum problem, it is pro-
portional to the difference n̄1 − n̄L). On the contrary, the
stationary actions Ĩl (i.e., the diagonal elements of the SPDM)
are proportional to the sum of diffusion coefficients,

Ĩl = D1 + DL

2γ
. (35)

Exclusions are the first (last) oscillator whose stationary ac-
tions are slightly above (below) the value indicated in Eq. (35).

B. Nonlinear versus linear chain

We proceed with the case of interacting particles. To test
our numerical code we first run it for g = 0. The upper-left
panel in Fig. 3 shows dynamics of the diagonal elements
ρl,l (t ) of the SPDM for L = 5, γ1 = γL = 0.5, D1 = 0.5,
DL = 0.25, and the initial conditions ρl,l (t = 0) = 0; i.e.,
initially all oscillators are at rest. It is seen that oscillators
rapidly approach the steady state with the stationary actions
Ĩl given by Eq. (35) (see the solid line in the lower-right
panel). The dynamics of the mean current j(t ) is depicted in
the upper-right panel by the solid blue line. Again, it is seen
that the current approaches the value given by Eq. (34). The
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FIG. 4. Oscillator spectral density for g = 0 (top) and g = 2 (bottom). The other parameters are the same as in Fig. 3.

dashed lines in Fig. 3 depict the case of interacting particles.
A drastic decrease of the stationary current is noticed.

One finds a qualitative explanation for the observed effects
by considering the oscillator spectral densities. Panels in the
upper row in Fig. 4 show the spectral densities of oscillators
in the chain for g = 0. It is easy to identify in this figure
frequencies ωk of the collective modes which are given by the
real part of complex poles of the Green function for the system
of linear differential equations (28) with omitted stochastic
terms. For moderate values of the decay constants they can be
approximated by eigenfrequencies of the linear chain,

ωk = −J cos(2πk/L), l = 1, . . . , L, (36)

which are located in the “conductance” band |ωk| � J . Thus,
the driving force acting on the first and last oscillator excites
the collective modes. This leads to an efficient transport of
excitations from the first to the last oscillator that quantum-
mechanically corresponds to the flow of bosonic particles
from the left to the right reservoir. Since the current is in-
dependent of the chain length L we refer to this dynamical
regime as the ballistic transport.

The lower panels in Fig. 4 show the spectral densities of
oscillators for g = 2. Now the system has no collective modes
and transmission of excitations is a diffusionlike process
[compare P(ν) in lower panels with P(ν) in the inset in
Fig. 1]. As a consequence, we observe considerable decrease
in the stationary current. Furthermore, contrary to the ballistic
regime, in the diffusive regime the current depends on the
chain length L. We discuss this dependence in the next section.

C. The limit L → ∞
We performed extensive numerical simulations of the sys-

tem dynamics for a large system size up to L = 100. The open

circles in the right-hand panel in Fig. 5 show the stationary
current j̃ as a function of 1/L. A linear dependence is noticed
that is consistent with the above conjecture about the diffusive
transport. We mention that the change of the transport regime
from ballistic to diffusive with increase of g is a crossover
rather than a phase transition. The necessary condition for
this crossover is that the nonlinear shift of the oscillator
frequencies, which is estimated as gĨl , exceeds the width of
the conductance band, i.e.,

Ĩl > J/g. (37)

We stress that condition (37) has to be satisfied for all os-
cillators to get the universal dependence j̃ ∼ 1/L. This, for
example, is not the case if we set DL to zero. (In the original
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FIG. 5. Left: The mean oscillator actions along the chain of
length L = 40 for DL = D1/2 (open circles) and DL = 0 (aster-
isks). The other parameters are g = 2, D1 = 0.5, and γ1 = γL = 0.5.
Average over 4000 realizations. Right: The stationary current as a
function of the inverse chain length for two considered cases DL =
0.25 (open circles) and DL = 0 (asterisks). The bars show statistical
error due to the finite number of realizations.
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quantum problem this corresponds to pure sink of particle at
the right edge of the chain.) Here condition (37) is satisfied
for oscillators in the left part of the chain but violated for
oscillators in the right part (see the left-hand panel in Fig. 5).
As a consequence, the spectral densities of oscillators in the
left and right parts of the chain resemble those for the diffusive
and ballistic transport, respectively. The dependence of the
stationary current on the system size for this mixed regime
is depicted by asterisks in the right-hand panel in Fig. 5. It is
seen that the presence of a “ballistic part” results in a larger
current as compared to the pure diffusive transport regime.
The depicted numerical data also indicate a highly nontrivial
dependence of the stationary current on the difference n̄1 − n̄L

which involves the chain length L as an additional parameter.

IV. CONCLUSION

We analyze stationary current of the bosonic carriers in
the Bose-Hubbard chain of length L where the first and the
last sites of the chain are attached to reservoirs of Bose
particles. The analysis is carried out by using the pseudoclas-
sical approach which reduces the original quantum problem
to the classical problem for L coupled oscillators where
the first and last oscillators are subject to both friction and
excitation. In the case of vanishing interparticle interactions
we analytically calculate elements ρl,m of the single-particle

density matrix which classically correspond to the correlation
functions between the lth and mth oscillators. It is shown
that the pseudoclassical approach reproduces the quantum-
mechanical results exactly. In particular, the stationary cur-
rent (which is determined by off-diagonal elements of the
stationary single-particle density matrix) is proportional to the
particle density difference �n̄ = n̄1 − n̄L of the reservoirs and
is independent of the chain length L.

Next we numerically address the case of finite interparticle
interactions which make the classical oscillators nonlinear.
A drastic reduction of the stationary current as compared to
the linear case is noticed. Furthermore, the current depends
on the chain length and in the case of small difference
�n̄ 	 n̄1 scales as 1/L. We give a qualitative explanation
for this change in the transport regime by introducing and
analyzing the spectral densities of oscillators. We stress that
the oscillator spectral density explicitly involves the notion
of trajectory and, hence, is meaningful only in the classical
approach. Nevertheless, we find this quantity quite helpful for
understanding different quantum transport regimes in the open
Bose-Hubbard chain.
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