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Abstract

Let G be a group, x, y ∈ G and H is a normal closure in G of the subgroup generated
by all commutators of x, y that include more than two occurrences of y. Our main result is a
parametrization of the uncollected part of Hall’s collection formula for (xy)n and two different
collection formulas modulo H in an explicit form. In particular, we found explicit expressions
for the exponents of the commutators in the Hall’s collection formula for both known cases and
some unknown cases. Also we give combinatorial identities, which simplify those expressions
and help to investigate their divisibility.

Keywords: collection process, binary weight of an integer, the method of coefficients.

1. Introduction and main results

In 1932, P. Hall proved a formula in [5] that expresses the product (xy)n in terms of xn,
yn and commutators of x and y. The formula, later called the Hall’s collection formula, led
to new directions of the study of p -groups. The subsets Ωi and 0j of the p -group G, formed
respectively by pi -th powers and elements whose orders divide pj, arose in a natural way and
became actively used. Investigation of conditions under which Ωi and 0j are subgroups of G
(if G is an abelian group, it is obvious) led, in particular, to the notion of regular p -groups.
The relations between Ωi, 0j and the subgroups generated by commutators are often used in
solving p -group theory problems and also became the basis of the notion of powerful p -groups.

Let us recall P. Hall’s result. For any two elements x, y of any group G let the formally
distinct complex commutators R1, R2, . . . , Ri, . . . of x, y be arranged in order of increasing
weights (the order among the commutators of the same weight is arbitrary). Then there exists
a series of integer-valued polynomials f1(n), f2(n), . . . , fi(n), . . . all vanishing for n = 0 and
such that

(xy)n = R
f1(n)
1 R

f2(n)
2 . . . R

fi(n)
i . . . , (1)

where f1(n) = f2(n) = n and the degree of fi(n) does not depend on n. It is a difficult problem
to find an explicit form of the polynomial fi(n) in general case.

It is noted in [4, p. 326] that the formula (1) includes the commutator [y, ux] to the power of(
n
u+1

)
. Here and below we denote by

(
m
k

)
the binomial coefficient (the number of combinations

of k items from a set of m items). By definition, we put [y, 0x] = y and [y, ux] = [[y, u−1x], x]
for integer u > 0. Also we put [y, ux, vy] = [[y, ux], vy] for integers u > 0, v > 0. In the article
[6] (see also [9]), devoted to the investigation of Burnside problem for exponent 8, the following
expressions for the exponents of the commutators [y, ux, vy] (u > 1, v > 0), [[y, ux, vy], [y, x]]
(u > 2 and v = 0, or u, v > 1), [[y, x, y], [y, x, x]] from (1), respectively, were found:

n−1∑
k=1

(
k

u

)(
k

v

)
,

n−1∑
k=1

(
k

v

)[(
k

2

)(
k

u

)
+

(
k

u+ 1

)]
,

n−1∑
k=0

k

[
2

(
k

2

)
+ (k + 2)

(
k

3

)]
.

On the other hand, it is possible to get the collection formulas in an explicit form by imposing
reasonable conditions on the group G. For example, if the commutator [y, x] belongs to the
center of G, then for any natural number n we have

(xy)n = xnyn[y, x](
n
2). (2)
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If the subgroup, generated by an element y and the commutator subgroup G′ = Γ2(G) = [G,G],
is abelian, then

(xy)n = xnyn[y, x](
n
2) [y, 2x](

n
3) . . . [y, n−1x](

n
n). (3)

Imposing weaker conditions than in (2) and (3), A.I. Skopin proved the following results in [8].
Suppose G is a group. If [Γ3(G),Γ3(G)] = 1 (here Γ3(G) = [Γ2(G), G]), then for any x ∈ G and
y ∈ G′

(xy)n = xnyn
n−1∏
i=1

n−1∏
j=0

[y, ix, jy]
∑n−1
k=1 (ki)(

k
j), (4)

and if [Γ2(G),Γ2(G),Γ2(G)] = 1, then

(xy)n = xnyn
n−1∏
i=1

[y, ix](
n
i+1)

n−2∏
i=0

n−1∏
j=i+1

[[y, ix], [y, jy]]c
n
ij , (5)

where the coefficients cnij are determined by recurrence relations (explicit expressions for cnij
were not found).

In this paper we propose a way to parametrize the uncollected part of the Hall’s collec-
tion formula. It helps to compute the exponents of the commutators in (1) for known cases
and for new ones and to get new collection formulas. Now we introduce the aforementioned
parametrization and consider our main results.

Let G be a group, x, y ∈ G. By collecting x and y in the product (xy)2, we have (xy)2 =
x2y2R2, where R2 = [y, x][y, x, y]. Further, we represent the product (xy)3 in the form (xy)3 =
xy(xy)2 = xyx2y2R2 and also collect x and y. After collecting x, we parametrize the occurrences
of x in the resulting commutators by the function ω with integral argument

(xy)3 = x3y[y, x][y, x][y, 2x]y2R2 = x3y

(
3∏
i=1

[y, ω(i)x]

)
y2R2,

where ω(1) = 1, ω(2) = 1, ω(3) = 2. Continuing this line of reasoning for y, we get

(xy)3 = x3y3

(
3∏
i=1

[y, ω(i)x]

(
3∏
j=1

[y, ω(i)x, ω(j)y]

))
R2. (6)

By putting ω(0) = 0 and recalling that [y, 0x] = y, we represent the formula (6) in a more
convenient form (where R2 is parametrized similarly)

(xy)3 = x3y3

(
3∏
i=1

(
3∏
j=0

[y, ω(i)x, ω(j)y]

))(
1∏
i=1

(
1∏
j=0

[y, ω(i)x, ω(j)y]

))
.

We note that the function ω(i) is equal to the binary weight of the number i. In the sequel,
we put that ω(i) is equal to the count of units in the binary representation of the non-negative
integer i. The following statement holds.

Theorem 1. Let G be a group, x, y ∈ G. Then for any n ∈ N we have

(xy)n = xnyn
n−1∏
k=1

2n−k−1∏
i=1

2n−k−1∏
j=0

[y, ω(i)x, ω(j)y]. (7)
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Remark 1. If we write n-multiple non-commutative product with variable indices i1, . . . , in,
then the multiplier corresponding to the set (i′1, . . . , i

′
n) follows after the multiplier that corre-

sponds to the set (i′′1, . . . , i
′′
n) if and only if (i′′1, . . . , i

′′
n) is less than (i′1, . . . , i

′
n) with respect to the

lexicographic order. Besides, if the upper bound of summation (multiplication) is less than the
lower bound, then we put the sum (product) is equal to zero (one).

For every n ∈ N, u ∈ N, v ∈ N0, the following lemma shows an explicit formula for the
number En(u, v) of the commutator [y, ux, vy], in the product

Pn =
n−1∏
k=1

2n−k−1∏
i=1

2n−k−1∏
j=0

[y, ω(i)x, ω(j)y].

Lemma 1. Suppose n, u ∈ N and v ∈ N0. Then

En(u, v) =
n−1∑
m=1

(
m

u

)(
m

v

)
.

Some collection formulas mentioned above follow easily from Theorem 1 and Lemma 1. In-
deed, if the subgroup 〈y,G′〉 of the group G is abelian, then, firstly, all commutators [y, ux, vy],
u > 1, v > 1, are equal to one, secondly, commutators of the form [y, ux], u > 1, commute with
each other, thirdly, by Lemma 1, the quantity of [y, ux] in the product Pn is equal to

En(u, 0) =
n−1∑
k=1

(
k

u

)(
k

0

)
=

n−1∑
k=1

(
k

u

)
=

(
n

u+ 1

)
. (8)

Thus, we get (3).
If x ∈ G, y ∈ Γ2(G) and [Γ3(G),Γ3(G)] = 1, then all commutators of the form [y, ux, vy],

u > 1, v > 0, commute with each other. Therefore,

(xy)n = xnyn
n−1∏
u=1

n−1∏
v=0

[y, ux, vy]En(u,v) = xnyn
n−1∏
u=1

n−1∏
v=0

[y, ux, vy]

n−1∑
k=1

(ku)(
k
v)
.

Let us return to the identity (7) and compute the number of the commutators [[y, ux], [y, vx]],
which arise in the process of collecting [y, vx] in Pn. It is clear that the commutator [[y, ux], [y, vx]]
arises every time when consecutive elements [y, ux][y, vx] change places. Suppose that the com-
mutator [y, vx] corresponds to the indices k = k0, i = i0, j = 0 in the product Pn, where
1 6 k0 6 n − 1, 1 6 i0 6 2n−k0 − 1, ω(i0) = v. Let us find the number of [y, ux] to the left of
[y, ω(i0)x]. By representing Pn in the form

Pn =

k0−1∏
k=1

2n−k−1∏
i=1

2n−k−1∏
j=0

[y, ω(i)x, ω(j)y]

i0−1∏
i=1

2n−k0−1∏
j=0

[y, ω(i)x, ω(j)y]

 [y, ω(i0)x] . . . ,

we see that the number of [y, ux] in the second product is equal to the number of solutions of
the equation ω(i) = u with respect to i, i ∈ [1, i0 − 1]. In the first product, it is equal to the
number of solutions of the equation ω(i) = u for i ∈ [1, 2n−k − 1] and for every k from 1 to
k0 − 1. In view of this, for any q, x ∈ Z, we put

W (q, x) = {i | ω(i) = x, 0 6 i 6 q}.
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Also, for any q,m ∈ N such that 1 6 m 6 ω(q), by L(q,m), we denote the position’s number
of the m-th unit in the base 2 representation of q (we count units from left to right and, as
usual, enumerate digit positions from right to left, starting from zero). For example, L(41, 1) =
L(1010012, 1) = 5, L(1010012, 2) = 3, L(1010012, 3) = 0.

In the following theorem we compute the cardinality of the set W (q, x) and necessary sums
of such cardinalities.

Theorem 2. Suppose m, q, x ∈ Z. 1) If q < 0 or x < 0, then |W (q, x)| = 0. 2) If m > 0,
x > 0, then |W (2m − 1, x)| =

(
m
x

)
. 3) If q > 0, x > 0, then

|W (q, x)| =
ω(q)∑
k=1

(
L(q, k)

x− k + 1

)
+ δω(q),x, (9)

where δi,j is the Kronecker delta. 4) If u, v ∈ Z and m > u > 0, m > v > 0, then

∑
j∈W (2m−1,v)

|W (j − 1, u)| =
v∑
k=1

m−k∑
i=v−k

(
i

u− k + 1

)(
m− i− 1

k − 1

)(
i

v − k

)
. (10)

Theorem 2 helps us to compute the exponents of the commutators [[y, ux, ], [y, vx]], 1 6 v <
u 6 n− 1, in the Hall’s collection formula and find an explicit form of this formula modulo H,
where H is a normal closure of the subgroup generated by all commutators of x, y that includes
more than two occurrences of y.

Theorem 3. Suppose G is a group, x, y ∈ G, the subgroup H is defined as above. Then for
any n ∈ N we have

(xy)n = xnyn
n−1∏
u=1

[y, ux](
n
u+1)

n−1∏
u=1

[y, ux, y]n(
n
u+1)−(n+1

u+2)
∏

n−1>u>v>1

[[y, ux], [y, vx]]fn(u,v) (mod H),

(11)
where

fn(u, v) =
n−1∑
m=1

v∑
k=1

n−m−k∑
i=v−k

(
i

u− k + 1

)(
n−m− i− 1

k − 1

)(
i

v − k

)
+

n−2∑
m=1

n−1∑
k=m+1

(
m

v

)(
k

u

)
.

In the following theorem we obtain the formula for (xy)n by recursive collection process
under the condition H = 1. The recursion means that we apply the collection process to
(xy)k = (xy)k−1xy after the end of the collection process for (xy)k−1 (as, for example, in the
proofs of (2) and (3)).

Theorem 4. Suppose G is a group, x, y ∈ G, H is defined as above. If H = 1, then, for
any n ∈ N, we have

(xy)n = xnyn
∏
i>0

[y, ix]αn(i)
∏

i>0,j>0

[y, ix, y,jx]βn(i,j)
∏

i>0,k>0

[ [y, i+1x], [y, ix], kx]µn(i,k). (12)

Here αn(i) =
(
n
i+1

)
, βn(1, j) =

(
n
j+3

)
+
(
n+1
j+3

)
and βn(i, j) =

(
n+1
i+j+2

)
, when i > 1. And, finally,

µn(i, 0) = θn(i) =
n−1∑
m=1

(
αm(i)

2

)
, µn(i, k) =

n−k−1∑
sk=1

sk∑
sk−1=1

. . .

s2∑
s1=1

s1∑
m=1

(
αm(i)

2

)
, k > 1.
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Remark 2. In the formula (12), the multipliers’ order in the first product is important.
The order in other products can be arbitrary because all commutators in these products commute
with each other.

Further, we use the Egorychev method of coefficients ([1]-[2]), some well-known facts from
the theory of residues in complex analysis and elementary properties of binomial coefficient to
reduce to a 1-multiple sum the following r-multiple combinatorial sum with linear constrains
on the summation indices (Theorem 5):

n∑
sr−1=1

sr−1∑
sr−2=1

. . .

s2∑
s1=1

s1∑
s=1

(
s

i+ 1

)m
, r, n,m ∈ N, i ∈ N0.

As a consequence, the numbers µn(t, k) are expressed as a 1-multiple sum.
Let us note that Theorems 3-5 were announced in [3]. The results in Theorems 1 and 2

were presented at the August Möbius Contest in 2016 [7].

2. Proofs

The sequence {ω(i)}∞i=0 satisfies the recurrence relations: ω(0) = 0, ω(2i) = ω(i), ω(2i+1) =
ω(i) + 1. So, for any non-negative integer m we have(

2m−1∏
i=0

[r, ω(i)z]

)
z = z

2m−1∏
i=0

[r, ω(i)z][r, ω(i)+1z] =

= z
2m−1∏
i=0

[r, ω(2i)z][r, ω(2i+1)z] = z
2m+1−1∏
i=0

[r, ω(i)z].

Using 2n times the identity(
2m−1∏
i=0

[r, ω(i)z]

)
z = z

2m+1−1∏
i=0

[r, ω(i)z],

we collect x and y in xyxnyn as follows:

xyxnyn = x

(
20−1∏
i=0

[y, ω(i)x]

)
xnyn = xn+1

(
2n−1∏
i=0

[y, ω(i)x]

)
yn =

= xn+1y

(
2n−1∏
i=1

20−1∏
j=0

[y, ω(i)x, ω(j)y]

)
yn = xn+1yn+1

2n−1∏
i=1

2n−1∏
j=0

[y, ω(i)x, ω(j)y].

Thus,

xyxnyn = xn+1yn+1

2n−1∏
i=1

2n−1∏
j=0

[y, ω(i)x, ω(j)y]. (13)
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Using induction on n and the identity (13), we have

(xy)n+1 = xy(xy)n = xyxnyn
n−1∏
k=1

2n−k−1∏
i=1

2n−k−1∏
j=0

[y, ω(i)x, ω(j)y] =

= xn+1yn+1

(
2n−1∏
i=1

2n−1∏
j=0

[y, ω(i)x, ω(j)y]

)
n−1∏
k=1

2n−k−1∏
i=1

2n−k−1∏
j=0

[y, ω(i)x, ω(j)y] =

= xn+1yn+1

n−1∏
k=0

2n−k−1∏
i=1

2n−k−1∏
j=0

[y, ω(i)x, ω(j)y] =

= xn+1yn+1

n∏
k=1

2n−k+1−1∏
i=1

2n−k+1−1∏
j=0

[y, ω(i)x, ω(j)y].

Theorem 1 is proved.

For proving Lemma 1, we fix n, u, v and denote by En,k(u, v) the number of the commutators
[y, ux, vy] in the product

Pn,k(x, y) =
2n−k−1∏
i=1

2n−k−1∏
j=0

[y, ω(i)x, ω(j)y], (14)

where k is fixed, 1 6 k 6 n − 1. It is easy to see that En,k(u, v) is equal to the number of
such integers i that 1 6 i 6 2n−k − 1, ω(i) = u, multiplied by the number of such integers j
that 0 6 j 6 2n−k − 1, ω(j) = v. Since we need no more than n − k digit positions for the
binary representation of integer i ∈ [1, 2n−k−1], the number of such integers with the condition
ω(i) = u is equal to the number of ways to place u units in n−k positions, i.e.

(
n−k
u

)
. Similarly,

the number of such integers j that j ∈ [0, 2n−k − 1], ω(j) = v is equal to
(
n−k
v

)
(for j = 0 we

have ω(0) = 0 and the number of integers with zero units is equal to 1 =
(
n−k
0

)
). Therefore,

En,k(u, v) =

(
n− k
u

)(
n− k
v

)
. (15)

Note that if u > n−k or v > n−k, then Pn,k(u, v) does not contain the commutator [y, ux, vy]
and at the same time

(
n−k
u

)
= 0 or

(
n−k
v

)
= 0. Hence, the equality (15) holds for any integers

u > 1 and v > 0. To conclude the proof, it remains to note that

En(u, v) =
n−1∑
k=1

En,k(u, v) =
n−1∑
k=1

(
n− k
u

)(
n− k
v

)
=

n−1∑
k=1

(
k

u

)(
k

v

)
.

Lemma 1 is proved.

Let us prove Theorem 2. It is clear that the set W (q, x) is empty when q < 0 or x < 0.
Furthermore, the cardinality of the set W (2m−1, x), when m > 0, x > 0, is equal to the number
of ways to place x units in m positions (we need no more than m digit positions for the binary
representation of integer i ∈ [0, 2m − 1]), therefore,

|W (2m − 1, x)| =
∑

j∈W (2m−1,x)

1 =

(
m

x

)
. (16)
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Finally, if q ∈ W (q, x), then |W (q−1, x)| = |W (q, x)|−1, and if q /∈ W (q, x), then |W (q−1, x)| =
|W (q, x)|. So, for any non-negative integers q and x we have

|W (q − 1, x)| = |W (q, x)| − δω(q),x. (17)

Further, when q = 0 and x > 0, we have

|W (0, x)| =
0∑

k=1

(
L(q, k)

x− k + 1

)
+ δ0,x = δ0,x.

Now suppose q > 1, x > 0. For the binary representation of q we need L(q, 1)+1 digit positions.
Moreover, the j-th digit of q is one if and only if j = L(q, t) for some t, 1 6 t 6 ω(q). Therefore,
|W (q, x)| is equal to the number of ways to place x units in L(q, 1) + 1 positions under the
condition that resulting numbers do not exceed q. We can get any non-negative integer that
does not exceed q − 1 and has x units in its binary representation by changing the L(q, t)-th
unit of q, 1 6 t 6 ω(q), by zero and placing x − t + 1 units in the lower positions in any way.
Thus, the number of integers from 0 to q− 1 with x units in the binary representation is equal
to the sum

ω(q)∑
k=1

(
L(q, k)

x− k + 1

)
.

Adding the number δω(q),x, which is equal to one if ω(q) = x and zero otherwise, we get (9).

Note the following obvious equality:

L(q,m) =

⌊
log2

(
q −

m−1∑
k=1

2L(q,k)

)⌋
,

here b·c is the floor function.
Let us prove assertion 4) of Theorem 2. To transform the left-hand side of (10), we use the

formula (17), assertion 3) of the theorem, and then we change the order of summation,

∑
j∈W (2m−1,v)

|W (j − 1, u)| =
∑

j∈W (2m−1,v)

ω(j)∑
k=1

(
L(j, k)

u− k + 1

)
=

v∑
k=1

∑
j∈W (2m−1,v)

(
L(j, k)

u− k + 1

)
.

Suppose v > 1. We fix the index k and collect terms with equal values of L(j, k) in the sum∑
j∈W (2m−1,v)

(
L(j, k)

u− k + 1

)
.

For the binary representation of any integer from 0 to 2m − 1 we need no more than m digit
positions. So, the k-th unit in the binary representation of any j ∈ W (2m − 1, v) can not be
placed, firstly, to the left of the (m − k)-th position (otherwise we need more than m digit
positions for the binary representation of j), secondly, to the right of the (v − k)-th position
(otherwise the number of units in the binary representation of j is less than v). Thus, for any
j ∈ W (2m−1, v) we have v−k 6 L(j, k) 6 m−k. Furthermore, for any i ∈ [v−k,m−k] there
exists a number j ∈ W (2m−1, v), for example, j = 0 . . . 01i+k−1 . . . 1i . . . 1i−v+k0 . . . 0, such that
L(j, k) = i. The number of all j such that L(j, k) = i is equal to the product of the number of
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ways to place k − 1 units in m− 1− i positions to the left of i-th position and the number of
ways to place v − k units in i positions to the right of i-th position, i.e.

(
m−i−1
k−1

)(
i

v−k

)
. Thus,

v∑
k=1

∑
j∈W (2m−1,v)

(
L(j, k)

u− k + 1

)
=

v∑
k=1

m−k∑
i=v−k

(
i

u− k + 1

)(
m− i− 1

k − 1

)(
i

v − k

)
.

Theorem 2 is proved.

Proving Theorem 3. By Lemma 1, the number of the commutators [y, ux], u > 1, in the
identity (7) is equal to En(u, 0) =

(
n
u+1

)
, and the number of [y, ux, y], u > 1, is equal to

En(u, 1) =
n−1∑
k=1

(
k

u

)(
k

1

)
=

n−1∑
k=1

k

(
k

u

)
= n

(
n

u+ 1

)
−
(
n+ 1

u+ 2

)
.

We collect commutators in the identity (7) as follows: first we collect [y, x], then [y, 2x], . . .,
after all commutators of the form [y, ix] are collected we collect [y, x, y], [y, 2x, y],. . . and so
on. From definition of the subgroup H it follows that all commutators arising in the collection
process belong to H except [[y,ux], [y, vx]], n−1 > u > v > 1 (because [y, vx] is collected before
[y, ux]). Thus we have

(xy)n = xnyn
n−1∏
u=1

[y, ux](
n
u+1)

n−1∏
u=1

[y, ux, y]n(
n
u+1)−(n+1

u+2)
∏

n−1>u>v>1

[[y, ux], [y, vx]]fn(u,v) (mod H).

To conclude the proof, it remains to find fn(u, v).
It is clear that the commutator [[y, ux], [y, vx]] arises every time when consecutive elements

[y, ux][y, vx] change places. So, let us fix u and v such that n − 1 > u > v > 1 and consider
in detail the process of collecting the commutators [y, vx] in the product Pn. Suppose that the
commutator [y, vx] corresponds to the indices k = k0, i = i0, j = 0 in Pn, where 1 6 k0 6 n−1,
i0 ∈ W (2n−k0 − 1, v). Let us find the number of [y, ux] to the left of [y, ω(i0)x]. By representing
Pn in the form

Pn =

k0−1∏
k=1

2n−k−1∏
i=1

2n−k−1∏
j=0

[y, ω(i)x, ω(j)y]

i0−1∏
i=1

2n−k0−1∏
j=0

[y, ω(i)x, ω(j)y]

 [y, ω(i0)x] . . . ,

we see that the number of the commutators [y, ux] in the second product is equal to |W (i0−1, u)|,
in the first product it is equal to

k0−1∑
k=1

En,k(u, 0) =

k0−1∑
k=1

(
n− k
u

)
.

Summing the number of the commutators [y, ux] to the left of [y, vx] for every [y, vx] in Pn, we
obtain

fn(u, v) =
n−1∑
k0=1

∑
i0∈W (2n−k0−1,v)

(
|W (i0 − 1, u)|+

k0−1∑
k=1

(
n− k
u

))
.

Further we use assertion 4) of Theorem 2 and change the indices of summation k0 and i0 to m
and i respectively

n−1∑
m=1

∑
i∈W (2n−m−1,v)

|W (i− 1, u)| =
n−1∑
m=1

v∑
k=1

n−m−k∑
i=v−k

(
i

u− k + 1

)(
n−m− i− 1

k − 1

)(
i

v − k

)
.
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Finally, using (16), we obtain

n−1∑
m=1

∑
i∈W (2n−m−1,v)

m−1∑
k=1

(
n− k
u

)
=

n−1∑
m=1

m−1∑
k=1

(
n−m
v

)(
n− k
u

)
=

n−2∑
m=1

n−1∑
k=m+1

(
m

v

)(
k

u

)
.

Thus,

fn(u, v) =
n−1∑
m=1

v∑
k=1

n−m−k∑
i=v−k

(
i

u− k + 1

)(
n−m− i− 1

k − 1

)(
i

v − k

)
+

n−2∑
m=1

n−1∑
k=m+1

(
m

v

)(
k

u

)
.

Theorem 3 is proved.

Let us note that for any i > 0, k > 0, 1 6 n 6 3 the functions θn(i), µn(i, k), µ4(i, k) are
equal to zero, since

(
αm(i)

2

)
= 0 if i > 1 and 1 6 m 6 2.

We have the following obvious lemma.

Lemma 2. Suppose i, k, n ∈ N. Then the following relations hold

1) αn(i− 1) + αn(i) = αn+1(i);

2) θn(i) +
(
αn(i)
2

)
= θn+1(i);

3) µn(i, k − 1) + µn(i, k) = µn+1(i, k).

Let us prove Theorem 4. Collecting x and then y in xyxy, we obtain

(xy)2 = x2y2[y, x][y, x, y]. (18)

In the identity (xy)3 = (xy)2(xy), we replace (xy)2 by the right-hand side of (18) and then
collect x, y and commutators with weight > 2. So, we have

(xy)3 = x3y3[y, x]3[y, x, x][y, x, y]5[y, x, x, y][y, x, y, x]. (19)

It can easily be checked that we get the equalities (18) and (19) by putting n = 2 and n = 3
respectively in the formula (12).

Further proof is by induction on n. We put hi = [y, ix], i = 1, 2, . . . . From the conditions of
the theorem it follows that for any natural numbers i, j the commutators [hi, y], [hj, y], [hi, hj]
commute with each other and the element y.

Let us fix n > 3 and move x, y through every multiplier from (12). We have

xnynxy = xn+1(yh1)
ny = xn+1ynhn1 [h1, y](

n
2)y = xn+1yn+1hn1 [h1, y]n+(n2). (20)

Further, since for every natural numbers i and m the following equalities hold:

hmi x = x(hihi+1)
m = xhmi h

m
i+1[hi+1, hi]

(m2 ), hmi y = y(hi[hi, y])m = yhmi [hi, y]m,

we obtain
hmi xy = xyhmi h

m
i+1[hi, y]m[hi+1, y]m[hi+1, hi]

(m2 ). (21)

Using relation 1) from Lemma 4, we get∏
i>0

h
αn(i)
i h

αn(i)
i+1 = h−n1

∏
i>0

h
αn(i−1)+αn(i)
i = h−n1

∏
i>0

h
αn+1(i)
i (22)
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and ∏
i>0

[hi, y]αn(i)[hi+1, y]αn(i) = [h1, y]−n
∏
i>0

[hi, y]αn+1(i). (23)

From (20)–(23) it follows that

xnyn
∏
i>0

h
αn(i)
i ·xy = xn+1yn+1

∏
i>0

[y, ix]αn+1(i) · [h1, y](
n
2)
∏
i>0

[hi, y]αn+1(i) ·
∏
i>0

[hi+1, hi]
(αn(i)

2 ). (24)

Suppose n > 3 is fixed as above. From definition of the function βn(i, j) it follows that∏
i>1,j>0

[y, ix, y, jx]βn(i,j) =
∏
j>0

[h1, y, jx](
n
j+3)+(n+1

j+3) ·
∏

i>1,j>0

[hi, y, jx](
n+1
i+j+2).

Since∏
j>0

[h1, y, jx](
n
j+3)+(n+1

j+3) · xy = xy
∏
j>0

[h1, y, jx](
n
j+3)+(n+1

j+3)[h1, y, j+1x](
n
j+3)+(n+1

j+3) =

= xy [h1, y]−(n2)−(n+1
2 )
∏
j>0

[h1, y, jx](
n
j+3)+(n+1

j+3)+( n
j+2)+(n+1

j+2) =

= xy [h1, y]−(n2)−(n+1
2 )
∏
j>0

[h1, y, jx](
n+1
j+3)+(n+2

j+3)

and ∏
i>1,j>0

[hi, y, jx](
n+1
i+j+2) · xy = xy

∏
i>1,j>0

[hi, y, jx](
n+1
i+j+2)[hi, y, j+1x](

n+1
i+j+2) =

= xy
∏
i>1

[hi, y]−(n+1
i+1) ·

∏
i>1,j>0

[hi, y, jx](
n+1
i+j+2)+( n+1

i+j+1) =

= xy
∏
i>1

[hi, y]−(n+1
i+1) ·

∏
i>1,j>0

[hi, y, jx](
n+2
i+j+2),

we obtain∏
i>1,j>0

[hi, y, jx]βn(i,j) · xy = xy [h1, y]−(n2)
∏
i>0

[hi, y]−αn+1(i) ·
∏

i>1,j>0

[y, ix, y, jx]βn+1(i,j). (25)

Finally, suppose n > 4 is fixed. From the definition of the function µn(i, k) it follows that∏
i,k>0

[[y, i+1x], [y, ix], kx]µn(i,k) =
∏
i>0

[hi+1, hi]
θn(i) ·

∏
i,k>0

[hi+1, hi, kx]µn(i,k).

It is easy to see that for any natural numbers i,m and integer k > 0 we have the equality

[hi+1, hi, kx]m xy = xy [hi+1, hi, kx]m[hi+1, hi, k+1x]m.

Combining that equality and relation 3) from Lemma 2, we obtain∏
i>0

[hi+1, hi]
θn(i) xy = xy

∏
i>0

[hi+1, hi]
θn(i) ·

∏
i>0

[hi+1, hi, x]θn(i) (26)
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and ∏
i,k>0

[hi, y, kx]µn(i,k) · xy = xy
∏
i,k>0

[hi, y, kx]µn(i,k) ·
∏
i,k>0

[hi, y, k+1x]µn(i,k) =

= xy
∏
i>0

[hi, y, x]−µn(i,0) ·
∏
i,k>0

[hi, y, kx]µn(i,k−1)+µn(i,k) =

= xy
∏
i>0

[hi, y, x]−θn(i) ·
∏
i,k>0

[hi, y, kx]µn+1(i,k). (27)

From (26),(27) it follows that∏
i>0,k>0

[[y, i+1x], [y, ix], kx]γn(i,k) · xy = xy
∏
i>0

[hi+1, hi]
θn(i) ·

∏
i,k>0

[hi+1, hi, kx]µn+1(i,k). (28)

To conclude the proof, it remains to use the formulas (24), (25), (28) and relation 2) from
Lemma 2. Theorem 4 is proved.

3. Simplifying the multiple combinatorial sums

We will compute (multiple) combinatorial sums using mainly the method of coefficients. A
brief introduction to the method is set out below, its detailed description can be found in [1].

Let L be the set of a Laurent formal power series over a field C containing only finitely
many terms with negative powers. The order of the monomial ckw

k is k. The order of series
C(w) =

∑
l clw

l from L is the minimal order of monomials with nonzero coefficient. Let Lk
denotes a set of series of order k. We can introduce in L operations of addition, multiplication,
substitution, inversion and differentiation. For C(w) ∈ L define the operator of formal residue
as

res
w
C(w) = c−1.

IfA(w) =
∑∞

k akw
k be the generating function for the sequence {ak}, then ak = res w A(w)w−k−1

for k = 0, 1, . . . . For example, the binomial coefficients
(
n
k

)
, n, k = 0, 1, . . . :(

n

k

)
= res

w

{
(1 + w)n

wk+1

}
=

1

2πi

∫
|w|=%

(1 + w)n

wk+1
dw, % > 0, (29)

(
−n
k

)
=

(
n+ k − 1

k

)
= res

w

{
(1− w)−n

wk+1

}
=

1

2πi

∫
|w|=%

(1− w)−n

wk+1
dw, 0 < % < 1. (30)

There are several properties for the residue operator res ([1]-[2]). We list only a two of
them, which are used in this article.

Rule 1 (linearity). For any A(w), B(w) ∈ L and α, β ∈ C

α res
w
A(w) + β res

w
B(w) = res

w
(αA(w) + βB(w)).

Rule 2 (substitution). a) For f(w) ∈ Lk (k ≥ 1) and A(w) any element of L, or b) for
A(w) polynomial and f(w) any element of L including a constant∑

k

f(w)k res
z

(
A(z)z−k−1

)
= A(f(w)).
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Theorem 5. Suppose r, n,m ∈ N and i ∈ N0. Then we have the r-multiple formula of
summation

Sr,m(n, i) =
n∑

sr−1=1

sr−1∑
sr−2=1

. . .

s2∑
s1=1

s1∑
s=1

(
s

i+ 1

)m
=


(
n+r
i+r+1

)
, if m = 1;

n−i−1∑
s=0

(
r+n−i−s−2

r−1

)(
i+s+1
s

)m
, if m > 1.

(31)

Combining the formula
(
αs(i)
2

)
= 1

2

[(
s
i+1

)2 − ( s
i+1

)]
and (31), we get

Corollary 1. The following equality holds:

µn(i, k) =
1

2

[
−
(

n

i+ k + 2

)
+

n−k−i−2∑
s=0

(
n− i− s− 2

k

)(
i+ s+ 1

i+ 1

)2
]
. (32)

Proof of the theorem. First let us show that for any q, i, r ∈ N0 we have

q∑
s=1

(
s+ r

i+ r + 1

)
=

(
q + r + 1

i+ r + 2

)
. (33)

Indeed, using the representation (29), we obtain

q∑
s=1

(
s+ r

i+ r + 1

)
=

q∑
s=1

res
w

{
(1 + w)s+r

wi+r+2

}
= res

w

{
(1 + w)r+1

wi+r+2
·
q−1∑
s=0

(1 + w)s

}
=

= res
w

{
(1 + w)r+1

wi+r+2
· (1 + w)q − 1

w

}
=

(
q + r + 1

i+ r + 2

)
−
(

r + 1

i+ r + 2

)
=

(
q + r + 1

i+ r + 2

)
.

By induction on r and the formula (33), we obtain

Sr,1(n, i) =
n∑

sr−1=1

sr−1∑
sr−2=1

. . .

s2∑
s1=1

s1∑
s=1

(
s

i+ 1

)
=

n∑
sr−1=1

(
sr−1 + r − 1

i+ r

)
=

(
n+ r

i+ r + 1

)
.

Suppose m > 1. If we replace the index s by s1 − s and sum over s and s1, we obtain
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Sr,m(n, i) =
n∑

sr−1=1

. . .

s1∑
s=1

(
s

i+ 1

)m
=

=
n∑

sr−1=1

. . .

s1−1∑
s=0

(
s1 − s
i+ 1

)m
=

=
n∑

sr−1=1

. . .
∞∑
s=0

res
x1,...,xm

{
m∏
j=1

(1− xj)−i−2

xs1−s−ij

}
=

=
n∑

sr−1=1

. . .

s2∑
s1=1

res
x1,...,xm

{
m∏
j=1

(1− xj)−i−2

xs1−ij

∞∑
s=0

(x1 . . . xm)s

}
=

=
n∑

sr−1=1

. . .

s2∑
s1=1

res
x1,...,xm

{
1

1− x1 . . . xm

m∏
j=1

(1− xj)−i−2

xs1−ij

}
=

=
n∑

sr−1=1

. . .

s2−1∑
s1=0

res
x1,...,xm

{
1

1− x1 . . . xm

m∏
j=1

(1− xj)−i−2

xs2−s1−ij

}
=

=
n∑

sr−1=1

. . .

s3∑
s2=1

res
x1,...,xm

{
1

1− x1 . . . xm

m∏
j=1

(1− xj)−i−2

xs2−ij

∞∑
s1=0

(x1 . . . xm)s1

}
=

=
n∑

sr−1=1

. . .

s3∑
s2=1

res
x1,...,xm

{
1

(1− x1 . . . xm)2

m∏
j=1

(1− xj)−i−2

xs2−ij

}
.

Summing similarly r − 2 more times, we obtain the formula

Sr,m(n, i) = res
x1,...,xm

{
(1− x1 . . . xm)−r

(x1 . . . xm)n−i

m∏
j=1

(1− xj)−i−2
}
.

Furthermore, since

(1− x)−m =
∞∑
s=0

(
m+ s− 1

m− 1

)
xs, |x| < 1,

we have

Sr,m(n, i) = res
x1,...,xm

{
(1− x1 . . . xm)−r

(x1 . . . xm)n−i

m∏
j=1

(1− xj)−i−2
}

=

= res
x1,...,xm

{
1

(x1 . . . xm)n−i

[
∞∑
s=0

(
r + s− 1

s

)
(x1 . . . xm)s

]
m∏
j=1

[
∞∑
s=0

(
i+ s+ 1

s

)
xsj

]}
=

= res
x1,...,xm

{
1

(x1 . . . xm)n−i

[
∞∑
s=0

(
r + s− 1

s

)
(x1 . . . xm)s

][
∞∑
s=0

(
i+ s+ 1

s

)m
(x1 . . . xm)s

]}
=

= res
z

{
1

zn−i

[
∞∑
s=0

(
r + s− 1

s

)
zs

][
∞∑
s=0

(
i+ s+ 1

i+ 1

)m
zs

]}
=

=
n−i−1∑
s=0

(
r + n− i− s− 2

n− i− s− 1

)(
i+ s+ 1

i+ 1

)m
=

n−i−1∑
s=0

(
r + n− i− s− 2

r − 1

)(
i+ s+ 1

s

)m
.
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Theorem 5 is proved.

In the following lemma, we show that if 2i+ k+ 3 < n, and n is prime, then the exponents
µn(i, k) of the commutators [ [y, i+1x], [y, ix], kx] in (12) are divisible by n.

Lemma 5. If n, k, i ∈ N and n > k + i+ 1, then the following identity holds:

n−k−i−2∑
s=0

(
n− i− s− 2

k

)(
i+ s+ 1

i+ 1

)2

=

=

min(i+1,n−k−i−2)∑
s=0

(−1)s
(
k + s

s

)(
n− k − s− 1

i− s+ 1

)(
n

k + i+ s+ 2

)
. (34)

Proof. We have

Sn,k,i =
n−k−i−2∑
s=0

(
n− i− s− 2

k

)(
i+ s+ 1

s

)2

= res
x,y

{
(1− xy)−k−1(1− x)−i−2(1− y)−i−2

(xy)n−k−i−1

}
.

Changing the variables x = w/(1 + w), y = z/(1 + z), we obtain

1− x =
1

1 + w
, 1− y =

1

1 + z
,

1

1− xy
=

(1 + w)(1 + z)

1 + w + z

and

dx =
dw

(1 + w)2
, dy =

dz

(1 + z)2
.

Therefore,

Sn,k,i = res
x,y

{
(1 + w)k+i+3(1 + z)k+i+3

(1 + w + z)k+1

(
(1 + w)(1 + z)

wz

)n−k−i−1
1

(1 + w)2(1 + z)2

}
=

= res
w,z

{
(1 + w + z)−k−1(1 + w)n(1 + z)n

(wz)n−k−i−1

}
=

= res
w,z

{(
1 +

z

1 + w

)−k−1
(1 + w)n−k−1(1 + z)n

(wz)n−k−i−1

}
=

= res
w,z

{
∞∑
s=0

(−1)s
(
k + s

s

)(
z

1 + w

)s
× (1 + w)n−k−1(1 + z)n

(wz)n−k−i−1

}
=

=
n−k−i−2∑
s=0

(−1)s
(
k + s

s

)
× res

w

{
(1 + w)n−k−s−1

w(n−k−i−2)+1

}
× res

z

{
(1 + z)n

z(n−k−i−2−s)+1

}
=

=
n−k−i−2∑
s=0

(−1)s
(
k + s

s

)(
n− k − s− 1

n− k − i− 2

)(
n

(n− k − i− 2)− s

)
=

=

min(i+1,n−k−i−2)∑
s=0

(−1)s
(
k + s

s

)(
n− k − s− 1

i− s+ 1

)(
n

k + i+ s+ 2

)
.

The lemma is proved.
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