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Introduction

We consider inverse problems with pointwise overdetermination for a parabolic system of the
form

Lu =u + A(t,z, D)u = f(z,t), (t,z) € Q=(0,T)xG, GCR", (1)

where
n

A(t,z,D)u = — Z aij(t, ) ug, o, + Zai(t,x)uzi + ao(t, x)u,

ij=1 i=1
G is a bounded domain with boundary I' € C?, a;;, a; are matrices of dimension h x h, and u is

a vector of length h. The system (1) is supplemented by the initial and boundary conditions

ule—o = up, Buls =g, 5=(0,T)xT, (2)

n
where Bu = Y v;(t, 2)us, + Yo(t, x)u. The overdetermination conditions are as follows:
i=1
<ulxg,t),e; >=(t), i=1,2,...,m (3)

where the symbol < -,- > stands for the inner product in C", {e;} is a collection of vectors of
unit length and among the points {z;} as well as the vectors {e;} can be coinciding points and
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vectors. The right-hand side is of the form f = Z filx,t)q;(t) + fo(z,t). The problems is to

find the unknowns ¢;(t) occurring into the right- hand side and the operator A as coefficients
and a solution u to the system (1) satisfying (2) and (3). The conditions (3) generalized the
conventional pointwise overdetermination conditions of the form w(z;,t) = 1;(¢). In particular,
it is possible that only part of the coordinates of the vector u at a point x; is given. These
problems arise of describing heat and mass transfer, diffusion, filtration, and in many other fields
(see [1-3]) and they are studied in many articles. First, we should refer to the fundamental ar-
ticles by A.I. Prilepko and his followers. In particular, an existence and uniqueness theorem for
solutions to the problem of recovering the source f(t,z)q(t) with the overdetermination condition
u(xzo,t) = ¥(t) (zo is a point in G) is established in [4,5]. Similar results are obtained in [6] for the
problem of recovering lower-order coefficient p(t) in the equation (1). The Holder spaces serve as
the basic spaces in these articles. The results were generalized in the book [7, Sec. 6.6, Sec. 9.4],
where the existence theory for the problems (1)—(3) was developed in an abstract form with the
operator A replaced with —L, L is generator of an analytic semigroup. The main results employ
the assumptions that the domain of L is independent of time and the unknown coefficients occur
into the lower part of the equation nonlinearly. Under certain conditions, existence and unique-
ness theorems were proven locally in time in the spaces of functions continuously differentiable
with respect to time. We note also the article [8], where an existence and uniqueness theorem
in the problem of recovering a lower-order coefficient and the right-hand was established with
the overdetermination condition u(x;,t) = ¢(t) (x; are interior points of G, i = 1,2). There are
many articles devoted to the problems (1)—(3) in model situations, especially in the case of n = 1
(see, for instance, [9-14]). In these articles different collections of coefficients are recovered with
the overdetermination conditions of the form (3), in particular, including boundary points z;. In
this case the boundary condition and the overdetermination condition define the Cauchy data at
a boundary point. Many results in the case of n = 1 are exhibited in [15]. Note the book [16],
where the solvability questions for inverse problems with the overdetermination conditions being
the values of a solution on some hyperplanes (sections of a space domain) are studied. The
problems (1)—(3) were considered in authors’ articles in [17,18], where conditions on the data
were weakened in contrast to those in [7, Sec.9.4] and the solvability questions were treated in
the Sobolev spaces. In contrast to the previous results, we examine the case of the points {x;}
lying on the boundary of G as well and the special overdetermination conditions (only some
combinations of the coordinate of a solution are given). These overdetermination conditions also
arise in applications (see [3]). Note that numerical methods for solving the problems (1)—(3)
have been developed in many articles (see [2,3,19]).

1. Preliminaries

First, we introduce some notations. Let E be a Banach space. Denote by L,(G;E) (G
is a domain in R™) the space of strongly measurable functions defined on G with values in
E and the finite norm |[|[|lu(x)|gl/z,(@) [20]. We employ conventional notations for the space
of continuously differentiable functions C*(G; E) and the Sobolev space Wi(Q; E), Wy (G; E),
etc. (see [20,21]). If E = C or E = C" then the latter space is denoted simply by W;(G).
Therefore, the membership u € W3 (G) (or u € C*(G)) or a € W3 (G) for a given vector-function
u = (u1,u2,...,u;) or a matrix function a = {aij}§,1:1 mean that every of the components w;
(respectively, an entry a;;) belongs to the space W3 (G) (or C*(G)). Given an interval J = (0,7,
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put W (Q) = W3 (J; Ly(G)) N Lyp(J; Wi (G)), Respectively, we have W (S) = W3 (J; Ly(I')) N
Ly(J; W} (I)). The anisotropic Holder spaces C*#(Q) and C*#(S) are defined by analogy.

The definition of the inclusion I" € C?® can be found in [22, Chapter 1]. In what follows we
assume that the parameter p > n + 2 is fixed. Let Bs(z;) be a the ball of radius ¢ centered at
x; (see (3)). The parameter § > 0 will be referred to as admissible if Bs(x;) C G for interior
points z; € G, Bs(x;) N Bs(x;) = 0 for x; # x;, i,j = 1,2,...,r, and, for every point z; € T,
there exists a neighborhood U (the coordinate neighborhood) about this point and a coordinate
system y (local coordinate system) obtained by rotation and translation of the origin from the
initial one such that the y,-axis is directed as the interior normal to I' at x; and the equation of
the boundary U NT is of the form y,, = w(y’), w(0) =0, |y'| < do, v = (Y1, - -, Yn_1); Moreover,
we have w € C3(Bj(0)) (B5(0) ={y': |y/| <d}) end GNU ={y : || < 36,0 < yp —w(y') < &1},
R"\G)NU ={y: |y| <d,—6 < yn —w(y') < 0}. The numbers §,d; for a given domain G are
fixed and without loss of generality we can assume that §; > (M + 1), with M the Lipschitz
constant of the function w. Assume that Q™ = (0,7) X G, Gs = U;(Bs(x;)NG), Qs = (0,T) x G,
Q5 =(0,7) x Gs, Ss = (0,T) x U;(Bs(z;) NT).

Consider the parabolic system

Lu=wu;+ A(t,z,D)u = f(t,z), (t,z) e Q= (0,T)xG, G CR", (4)

where
n

n
A(t,z,D)u = — Z aij(t, ) g, o, + Zai(t,x)uzi + ap(t, x)u,
i,j=1 i=1
a;j, a; are matrices of dimension h x h, and w is a vector of length h. The system (4) is supple-
mented with the initial and boundary conditions (2). We assume that there exists an admissible
number 6 > 0 such that

aij € C(@), ar € LP(Q)’ Vi € 01/2’1(5), a;; € LOO(O,T; W;O(Gg)), (5)
ar € Ly(0,T; W) (Gs)), i,j=1,2,....,n, k=0,1,...,n. (6)
The operator L is considered to be parabolic and the Lopatiskii condition holds. State these
n
conditions. Introduce the matrix Ao(t,z,§) = — > a;;(t,2)&E; (£ € R™), and assume that
ij=1

there exists a constant d; > 0 such that the roots p of the polynomial
det (Ao (t, z,i€) + pE) =0
(E is the identity matrix) meet the condition
Rep < —01[¢[* V€ €R™ V(a,t) € Q. (7)

The Lopatinskii condition can be stated as follows: for every point (g, xg) € S and the operators

n
Ao(z,t,D) and Bo(z,t,D) = > vi(t,x)0y,, written in the local coordinate system y at this
i=1

point (the axis 1y, is directed as the normal to S and the axes yi,...,y,—1 lie in the tangent
plane at (zo, o)), the system

()\E + Ao(l‘o, to, Zf/, 8 n))’l)(Z) =0, Bo(l‘o, to, Zf/, 8 n)U(O) = hj, (8)
where & = (£&1,...,€n-1), yn € RT, has a unique solution C(@W decreasing at infinity for all
¢ eR" L |arg \| < /2, and h; € C such that [£/| + |\ # 0.
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We also assume that there exists a constant €1 > 0 such that
Re (_Ao(taxag)’r]an) z 51‘€|2|77|2 vé. € Rn7 ne (Cha (9)

where the brackets (-,-) denote the inner product in C* (see [22, Definition 7, Sec. 8, Ch. 7|).

Let N
‘det(zwm > 20 > 0, (10)
=1

where v is the outward unit normal to I', gy is a positive constant, and
ug(z) € W;‘Q/p(G), gE W;O’%O (S), B(x,0)uo(z)|r = g(z,0) Vo € T, (11)

where ko = 1/2—1/2p. Fix an admissible § > 0. Construct functions ¢;(z) € C§°(R™) such that

T

@i(z) = 1in Bs/a(x;) and @;(x) = 0in R™\ Bss4(2;) and denote p(x) = > ¢;(x). Additionally
i=1
it is assumed that
p(a)uo(x) € Wy=2P(G), g € Wyt2H1(S) (k=1 1/2p), (12)
[eC? vy eCH(Ss) (k=0,1,2,...,n). (13)
The proof of the following theorem can be found in [18].

Theorem 1. Assume that the conditions (5)—(13) hold for some sufficiently small admissible
0 > 0 and the function ¢, f € L,(Q7), fy € L,(0,; Wpl(G)), and 7 € (0, T]. Then there exists
a unique solution u € WZ}’Q(QT) to the problem (4), (2). Moreover, pu; € L, (O,T; I/Vp1 (G)) and
ou € Ly(0,7W2(G)). If g=0 and ug = 0 then we have the estimates

||UHW;*2(QT) < C||fHLP(Q’)7 (14)
[ullwrz oy + leuel e, omwi@n+ leullz,omwz@) < [l flle,@n + lefllo,omwi@n]:

where the constant ¢ is independent of f, a solution u, and T € (0,T).

2. Main results

Consider the problem (1)—(3), where

T n n
A=1Ly— Z qrx(t) Ly, Lyu=— Z afj(t, T) Uy e, + Zaf(t, YUy, + ak(t, 2)u,
k=m+1 ij=1 i=1

and k =0,m+1,m+2,...,r. The unknowns ¢; are sought in the class C([0,T]). Construct a
matrix B(t) of dimension r X r with the rows

< fl(t,wj),ej >0, < fm(t,Ij),ej >, < Lm+1u0(t,xj),ej >0, < Lruo(t,xj),ej > .
We suppose that
¥y € CH[0,T)), <uolwy),e; >=1;(0)(j =1,2,...,7), m € CY/>(S)NC*(S;),  (15)

aj; € C(Q) N Loo (0, Ts W (Gs)), af € Lp(Q) N Loo(0, T3 W, (Gs)) (1,5 =1,...,n),  (16)
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fi € Lp(Q) N Lo (0, T; W(Gs)) (i =0,1,...,m), (17)

foe some admissible § >0, p>n+2,and k=0m+1,...,r, [ =0,1,...n;
af (t,z1), fi(t, 1) € C([0,T]) (18)

for all possible values of i, k,l. We also need the condition
(C) there exists a number §p > 0 such that

|det B(t)| > dp a.e. on (0,T).
Note that the entries of the matrix B belong to the class C([0,T]). Consider the system
¢jt(0)+ < LOuO(O,xj),ej > —< fO(O,xj),ej >=

m my
= Zq()k < fr(0,25),e; > + Z qor < Lipuo(0,z;),e; >, j=1,...,r, (19)

k=1 k=m+1
where the vector o = (qo1,go2; - - -, Gor-) is unknown. Under the condition (C), this system is
I
uniquely solvable. Let Ay = Lo — Y. qoxLi. Now we can state our main result.
k=m+1

Theorem 2. Let the conditions (9)—(13), (C), (15)—(18) hold. Moreover, we assume that the
conditions (7), (8) are fulfilled for the operator O, + Ay. Then there exists a number 7° € (0,T]
such that, on the interval (0,7Y), there exists a unique solution (u,q1,qz,-..,qr) to the problem
(1)-(3) such that u € L,(0, 7% W2(G)), us € LP(QTO), q;(t) € C([0,7°)), i = 1,...,r. Moreover,
ou € Ly(0,7% W2(Gs)), pur € Ly(0,7° W3 (Gy)).

Proof. First, we find a solution to the problem

m
O+ M@= fo+ Y quifi ((#,1) €Q), Plimo = uo(z), B®ls=g. (20)
k=1
By Theorem 1, ® € Wpl’Q(Q), 0P, € L,(0,T; Wp1 (@), @ € L,(0,T; WI;D’(G)) As a consequence
of Theorem III 4.10.2 in [24] and embedding theorems [20, Theorems 4.6.1,4.6.2.], we infer ¢® €
C([0,T7; WS_Q/”(G)) c C([0,T); C3-2/p=n/P(@)). Hence, o® € C([0,T]; C*(G)) after a possible
change on a set of zero measure. The equations (20) and (18) imply that ®.(¢,z;) € C([0,T]).
Note that this function is defined, since every summand in (20) with the weight ¢ belongs to
Ly(0,T; W) (G)) € C*(G; Ly(0,T)) (v < 1 —n/p) (see the embedding theorems in [25] and the
arguments below). Multiply the equation (20) scalarly by e; and take x = x;. We obtain the
equality

< ‘bt(O,xj),ej >+ < LQUQ(O,J?j),(fj > —< fO(O,xj),ej >=

= qor < ful0,25).e5 >+ > qor < Liuo(0,25),¢5 >, j=1,...,r. (21)
k=1 k=m+1

The relations (19) and (21) imply that < ®;(0,z;),e; >= 1;:(0). After the change of variables
d=qo+ ¢ and u = w+ ® in (1), we arrive at the problem

Lw=w+Aw— Y qulww=>Y_ figi+ Y quLi®=F, w0 =0, Bwls=0, (22)
k=m+1 i=1 i=m-+1
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< ’U)(t, xj)a €; >= 'J)j(t) = '(/}](t)_ < (I)(tvxj)?ej >€ Cl([O?T])v 1;](0) = &Jt(()) =0. (23)
Fixing the vector ¢ = (q11,.--,q1») € C([0,7]) and determining a solution w to the problem

(22) on (0, 7), we construct a mapping w = w(q;) = L~'F. Demonstrate that there exists Ry > 0
such that, for ¢; € Bpg,, the problem

Lv=yg, v[t=0=0, Bv|g=0 (24)

for every g € H; m 7 € (0,7] has a unique solution in the class v € W}2(Q"), pv, €
Ly(0,7; W) (G)), ev € Ly(0,7; W2(G)) satisfying the estimate
[ollw2(gry + levell, 0,mwien + vl omwse) < clglla, (25)

where the constant c is independent of T and the vector ¢; € Bpr, and the space H, is endowed
with the norm

[f e, = 1L,y + I f L, 0.mwi@)-
In accord with Theorem 1, the problem
Loiv =v+ Av =g, v|i=o =0, Bu|s =0
for every g € H, has a unique solution such that v € W,2(Q7), pvy € Ly(0,7; W, (G)), v €
Ly(0,7;W3(G)) and
lollwzr2gry + llevellz, o.mwien + vl orwpe) < eallgla,, (26)

where the constant c¢; is independent of 7. In this case the question of solvability of the problem
(24) is reduced to the same question for the equation

f— Z q1iLiLo)' f = g, (27)
i=m-+1
where f = Lgyv. We have the estimate

I
H - Z qiLiv

i=m+1

‘H <cH(leC'([O,T])(”U”WI}*Q(QT)+”‘PthLP(O,T;WI}(G))+||30U||LP(O,T;WS(G)))7 (28)

where the constant ¢ depends on the coeflicients of the operators Ly in @ and is independent of
7 and ¢1. Indeed, the following estimate is obvious

r

|- X aulw, <l@lewn Do ILevla,. (29)
k=m+1 T k=m+1

Estimate the quantity || Lxv|/z,. To this aim, we estimate the norms of every of the summands
in this quantity. For example, estimate the norm

n
||a§€j’uxixj ||H7— < CO(Ha?j’Uﬁfiﬂfg‘ ||LP(Q") + Z ||(p(a§jvﬂfi3?j )JUL ||LP(Q")) <
=1

<ca(lvllz,orwz@) + levle,orws@)) + > lleaki, Ve, L, (30)
=1
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where the constant ¢; depends on the norms ||ai?j|| L..(Q)- The last summand here is estimated
as follows:

n

k
Y leadia veiall,@n) < e2(levlli,omwz @) + 10l omwi @) <
=1

< a(levle,omwe@) + 1vlc,0mwz@y) (31)

where the constant ¢y depends on the norms ||Vafj Iz, 0,7 (Gs))- Thus, we infer

lafivz.a, |1, < ca(llvllL,0mw2iay + l0vlL,0mws@)): (32)

where the constant ¢4 is independent of 7. Similarly, we derive that

n
laFva, I, < co(llafvellL,@n) + D le(atve)allL, @) <
=1

< a(IVolloaer) + levll,omwzay)s (33)

where the constant ¢; depends on the norms of a¥,a¥, in L,(Q) and the norms of a¥ in L (Qj).
However (see Lemma 3.3 in [22]), we have

Vol @y < cllvllyrzgr,

where the embedding constant is independent of 7. Summing the estimates obtained we justify
(28). Using (28) and the estimate of Theorem 1, we conclude that

| > auratals||, < el@llogomfl., (34)

1=m-+1

where ¢ is independent of 7 and 1 € Bg,. Let Ry = 1/2c2. In this case cQ||Jl||C([0)T]) <1/2
and thereby the equation (27) has a unique solution satisfying the estimate ||f||m, < 2|gm,,
which along with Theorem 1 ensures (25).

Assume that w is a solution to the problem (22), (23). Take = z; in (22) and multiply the
equation scalarly by e;. The traces of all function occurring into the equation exist. First, our
conditions for coefficients and embedding theorems yield pw € C([0,7]; C%(G)) (see the above
arguments for the function ®). Second, as we have indicated above, every of the summands
in (22) with the weight ¢ belongs to L,(0,T; W} (G)) € C*(G; Ly(0,T)) (a < 1 —n/p) (see
embedding theorems in [25]). We arrive at the system

r
< ¢jt;ej >+ < Alw(t, a:j),ej > — Z q1i < Liw(t,xj),ej >=
1=m-+1

=Y < filtmy) e > qult) + D qu < Li®(tx;).e; > (j=1,2,...,7), (35)
1=1

1=m-+1

which can be rewritten in the form
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where coordinates of the vectors 1/7 and R(q1) agree with the functions < zzjt,ej > and <
Aow(t,xj),ej > —Zzzmﬂ qi < Liw(t,xzj),e; > (w = w(q1)); respectively, j-th row of the
matrix B(t) of dimension r X r is written as

< fl(t,xj),ej >0, < fm(t,.%'j),ej >, < Lm+1q)(t,l‘j),€j >0, < Lré(t,xj),ej >,

where j = 1,...,r. This matrix differs from B by the entries < L;®(t,z;),e; >. It is easy to
prove that this matrix is nondegenerate as well on some segment [0, 79]. Indeed, the embedding
theorems (see Lemma 3.3 of Chapter 1 in [22]) imply that V&, ®, .. € 05/2’[3(@) for f <
1—(n+2)/p and all i, j and, therefore,

n

| < Li®(t, ;) — Liuo(t, z;), 65 > [ < D S[up ] lafy (t, ) || Py, (£, 75) — oy, () 1+
el

+3° sup [laf(t,2;) 1 @x, (8 25) — uow, (25) + sup [lal(t,a)) 1@ (8, 25) — uo(as)| < et/
i—1 t€[0,T] t€(0,T]

on [0, 7], where, by the norm of a matrix (for example, ||a¥(t,z;)||), we mean the norm of the
7 J

corresponding linear operator a¥(t,x;) : C* — C". Taking the condition (C) into account, we

can say that there exists 7y > 0 such that

|det B(t)| > d0/2 Vt < 0. (36)
We thus obtain the integral equation
i =B+ Ro(@), Ro(di) =B 'R(@), (37)

where the operator Ry(q1) : C([0,7]) — C([0,7]) (7 < 7p) is bounded. Check the conditions of

the fixed point theorem. Denote Ry, = 2\|B_11;||C([07T]). Let o1, o2 be two vectors of length r
with coordinates ¢} (i =1,2,...,r, j =1,2) lying in the ball Br, = {7 : [|{ll¢(j0,-)) < Ro}. The
functions w; = w(go1), w2 = w(do2) are solutions to the equation (22) satisfying homogeneous
initial and boundary conditions. Let v = w; — wy. We infer

s

Luv=vi+Aw— Y ¢GLo=Y filgg—a)+ Y (¢ —g)Liwi, v=w—ws (38)
1=1

i=m+1 i=m+1

In view of (23) and the definition of Ry,, Ror — 0 as 7 — 0. Hence, there exists a parameter
71 < Tp such that, for 7 < 71, Ror < Ro. Let R = Ro,,. We now derive that there exists a
parameter 70 < 71 such that the equation (37) has a unique solution in the ball By of the space
C([0,79]). Take 7 < 7. Let Go1, oz € Br. We have

[ Ro(qo1) — Ro(qo2)llcpo,7) < c1llR(Go1) — R(Go2)llc o,y <

<2 Y (ILov(t,z)lleqoy + Y, g Liv(t,z))lcqo.r)) <

7=1 1=m-+1

<es Y (ILov(t,z)lleqorny + Y, ILvtz)lcqr)), (39)
j=1 i=m+1

where v is a solution to the problem (38). Note that

IZwv(t, 25)lleqom) < e (loVullwrzgry + Ivlwz2gn), (40)
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where the constant ¢ is independent of 7 € (0,7] and 8 > 0. Validate this inequality. In view of
the conditions on the coefficients a%, a%(t,z;) € C([0,T]). Fix an arbitrary s € (n/p,1 — 2/p).
The embedding W, (G5/2) C C(Gs/2) [20, Theorems 4.6.1,4.6.2.] yields

”ai'cl(t"rj)vxixz (tﬁxj)”C([O 7)) C”Uﬂc ) (t x])HC’( [0,7]) X 01”111%581( )”L (0,7W;3(Gs/2)) <

< e[ Vot ’z)||LOC(O,T;W;+S(G5/2))' (41)
Next, we employ the interpolation inequality (see [20])
||UHW;0(G c||v||W 1) ||UH sz(G) s1 < 80 < 82, Os1+ (1 —0)sa = s¢ (42)
and the inequality
HgHLM(O,T;E) < T(p_l)/p”gtHLp(O,T;E)? Vg € W;}(07T;E)7 g(O) = 07 (43)
resulting from the Newton-Leibnitz formula. Here E is a Banach space. We obtain that
1-6)
1902 ot (s < AVOEDIG_ o ryz-200, ) IV GO rit
< 017(1_9)(p_1)/p(||SDV”HW;Q(Q) + HU||Wp1’2(Q))7 (2-2/p) =1+s. (44)

Here we have used the inequality

||Vv(t7 x)”Loo(O,r;W,?*z/p(Gé/g)) < CHVU(t, x) ”Wplv?(cém)y (45)

where the constant c is independent of 7 (in the class of functions vanishing at ¢ = 0). Estimate
the lower-order summands of the form afv,, (¢, z;), afv(t,x;) in Lyu(t,z;). We conclude that
(se€(n/p,1=2/p), (2—2/p)01 =1+35)

Hal‘cvw» (t, xj)”C (0,7 S cl|ve, (t’xj)HC([Ofr]) < CIHU(tvx)”LOO(o W (G /2)) <

< oty x)HL 0w (G 5/2))Hv(t’x)HlL;e(lo,T;Lp(G(;/z)) < cpr(1—) (P 1/p||v|| 2oy (46)

We have used the estimate (45) applied to v rather than Vu. The second summand is estimated
similarly. The estimates (39)—(46) ensure that

[Ro(do1) — Ro(do2)llc(o,7)) < C4T6(”§va(tvm)||W£’2(QT) + [t x)HW,}’z(QT))’ (47)

where the constant ¢4 is independent of 7 and 8 = min(1 — 6, (1 — 61)(p — 1)/p). Since v is a
solution to the problem (38) and 7 < 71, we can employ (25) and obtain that

Zfz F—a7) Z (4 *qzz)Liwl‘ i

1=m-+1

, (48)

T

|V ot 2) 2 gry + 10t 2) 2 ory

where the constant ¢ is independent of 7. Every of the functions w;, ws is a solution to the
problem (22), where the right-hand side contains the components of the vector go; or ¢pe. The
estimate (25) yields

e (t,2) e gr) + st Dllwpaor <o Yo sl + 3 dlme| . @)
i=1 i=m+1 T
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The estimate (48), (49) and the conditions on the coefficients imply that
[V (8,2 a2 ry + 1t @)y 12y < €1 (). (50)

eVt z) w12 gry + vt 2) w2 gry < c2lldor — Gozlleo,n) (51)
where the constant ¢; are independent of 7. In turn, these estimates and those in (47) validate
the estimate

[ Ro(Go1) — Ro(do2)llc(po,1) < es7|1dor — Gozllcjo,m)) (52)
with a constant cs independent of 7. Choose a parameter 7° < 71 such that c5(7°)% < 1/2. The
fixed point theorem ensures solvability of the equation (37) in the ball Bg.

Show that w satisfies the overdetermination conditions (23). Multiply the equation (22)
scalarly by e; and take x = z; in the equation. We obtain the equality

I
<w(t,z;),e; > + < Low(t,z5),¢5 > — Y ¢i < Liw(t,z;), e; >=

1=m-+1
:Z<fi(taxj)vej >ql(t)+ Z qi <Li(I)(t,{Ej),€j >, j:1,2,...,7’, (53)
i=1 i=m+1

Subtracting this equality from (35), we obtain that 1/;jt— < w(t,z;),e; >= 0. Integrating this
equality from 0 to ¢, we derive that ¢;(t)— < w(t,z;),e; >= 0, since the agreement conditions
imply that 1;(0) = 0, < w(0,z;),e; >= 0. Thus, we infer ¢;(t) =< w(t,z;),e; > and the
equality (23) holds. a

In the case of the unknown lower-order coefficients, the results can be reformulated in a more
convenient form. In this case the operator A is assumed to be representable in the form

A=Ly— Z qi(t)l;, Lou = — Z aij(t, ) g, o, + Zai(t7x)uzi +ao(t, z)u,
i=mt1 =1 i=1

liu = Z bij (t, J])uwj + bio(t, ac)u (54)

j=1
Moreover, the rows of the matrix B(t) of dimension r X r are as follows:
< filt,zi)ei >, 00 < flt,@i) €0 >, < lppruo(t, i), € >, 00, < Lug(t, @), e >

We suppose that

¥; € Wp(0,T), <ug(zy),e; >=1;(0), j=1,2,...,m (55)
fivbkj € LOO(OaTv W;}(G(s)) N LOO(OvTaLP(G))ﬂ fO € LP(Q) N LP(OaT; W;}(GJ))v (56)
for some admissible § > 0, where i =1,...,m, j=0,1,...,n, k =m+1,...,r. The remaining

coefficients satisfy the conditions
aij € C(Q), ar € Ly(Q), 7 € CVAHE)NCYA(S5), aij € Loo(0,TsWo(Gy)): (57)
ar € Ly(Q) N Ly(0,T; W, (Gs)), 1,5 =1,2,...,n, k=0,1,...,n. (58)

The corresponding theorem is stated in the following form.
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Theorem 3. Assume that the parabolicity condition and the Lopatinskii condition (7), (8) for
the operator 0y + Lo, the conditions (9)—(13), (55)—(58), (C) for some admissible § > 0 and
p > n+ 2 hold. Then, for some vo € (0,T], on the interval (0,70), there exists a unique
solution (u,q1,q2, ..., q) to the problem (1)~(3) such that u € Ly(0,v0; W(G)), us € Ly(Q™),
ou € Ly(0,70; W2(Q)), wur € Lp(0,70; Wi (G)), ¢i(t) € Lp(0,%), i =1,...,7.

The proof is omitted, since it is quite similar to that of the previous theorem.
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O HEKOTOPbLIX KJIaCCaX Hapa6OJII/I‘{eCKI/IX 06paTHI>IX 3a1a4
C TOYEYHbIM IIepeolipeJes/ieHrneM

Cepreii I'. IIaTkoB
Baaaucnas A. Bapanuyk

FOropckuii rocyiapcTBeHHbBI yHUBEPCUTET

XanTel-Mancniick, Poccuiickas ®eneparnys

Awnnoranusi. B pabore paccMaTpuBaercst BOpoc 0 KOppeKTHOCTH B mpocTpancTBax CobosieBa obpart-
HBIX 337189 O BOCCTAHOBJICHUM KO3(hPUIMEHTOB HapaboJIudecKol CUCTEMbl, 3aBUCSINUX OT BpeMeHHu. B
Ka4eCcTBe YCJIOBHIA IIepeolpeIe/IeHus PACCMaTPUBAIOTC 3HAYEHHUS PEIICHUs B HEKOTOPOM Habope TOYeK
06J1aCTH, JIEKAIUX KAK BHYTPH OOJIACTH, TAK U HA €e TpaHulle. [IpuBeJeHbl yCI0BUs, rapaHTUPYIOIINEe

CyIIeCTBOBaHUE M €IMHCTBEHHOCTDH peleHnit 3amadn B Kiaaccax CobosieBa.

KurogeBsbie ciioBa: napabosimyeckasi cucreMa, obparHas 3a1a49a, KOHBEKIU-Tuddy3usi, TOYECIHOE I1e-

peolipe/esieHue.
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