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1. Introduction. Solvability of the boundary value problem

In recent years, there has been an increasing interest in the study of inverse and control
problems for models of heat and mass transfer, electromagnetism and acoustics. A number of
papers are devoted to the theoretical analysis of these problems, of which we note [1-16]. In
these papers, the solvability of boundary value problems, inverse and extremum problems for
the specified models was proved, and the questions of uniqueness and stability of their solutions
were studied. Related problems for models of complex heat transfer were studied in [17,18].

This paper which continues a series of papers by the authors [10-14] is devoted to the theo-
retical analysis of the boundary value and control problems for the nonlinear reaction—diffusion—
convection equation, considered under inhomogeneous mixed boundary conditions on the bound-
ary of the domain.

In bounded domain 2 C R? with boundary I, consisting of two parts I'p and Iy, the following
boundary value problem for nonlinear reaction—diffusion—convection equation is considered:

—div(A(x)Vy) +u- Vo + k(p,x)p = f in Q, (1.1)

=1 onTIp, A\(x)(0p/On+ a(x)p) =x on I'y. (1.2)

Here the function ¢ means the concentration of the substance, u is a given vector of velocity,
f is a volume density of external sources of substance, A(x) is a diffusion coefficient, function
k(p,x) is a reaction coefficient, x € §2. Below we will refer to the problem (1.1), (1.2) for the
given functions A, k, f,%, « and x as Problem 1.
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In this paper, we first prove the global solvability of Problem 1 and the nonlocal uniqueness
of its solution in the case, when the reaction coefficient k(¢, x) is sufficiently arbitrarily depends
on both the concentration ¢ and the spatial variable x, and the nonlinearity k(¢,x)y is mono-
tone. Under additional conditions on the functions A, f, x, , ¥ and the reaction coefficient k the
minimum and maximum principles are established for the concentration ¢. Further, a control
problem is formulated, in which the role of controls is played by the diffusion coefficient A, the
volume density of external sources of substance f and the density of boundary sources y and
its solvability is proved. For the mentioned problems, with specific reaction coefficients, an opti-
mality system is derived and, based on its analysis a theorem on the local stability estimates of
optimal solutions is formulated. This theorem can be proved according to the scheme described
in detail in [11-16].

When analyzing the problems under study, we will use the Sobolev functional spaces H*(D),
s € R. Here D means either a domain 2, or some subset Q) C 2, or part I'p of the boundary T'.
By || - ls.0:| - s, and (-, -)s,o we will denote the norm, seminorm and scalar product in H*(Q).
The norms and scalar products in L?(Q), L?(2) or in L?(T'y) will be denoted by ||| o and (-, -)g,
|- llo and (-,-) or || - [[ry and (-,-)ry, respectively. Let L% (D) = {k € LP(D) : k > 0}, p > 3/2,
Z ={velL*Q)?:divv=0inQ, v-nlp, =0}, H; (Q) = {h € H(Q) : h > X\ > 0 in O},
s>3/2, T ={p € H(Q) : ¢|r, = 0}. Here and below ¢|r, denotes the trace of a function
¢ € HY(Q) on the part I'g of the boundary I'. For any function ¢ € T the Friedrichs—Poincaré
inequality [[Vel|g > dol[¢]|F o holds, where positive constant d; does not depend on ¢.

Let the following conditions hold:

(i) © is a bounded domain in R?® with boundary I' € C%!, consisting of closures of two
non-intersecting open parts I'p and I'y (T =TpUTy, ['p NIy = 0), and meas I'p > 0;

(i) A € H (), s >3/2, f € L?(Q), x € L*(T'y);

(i) ue Z, v € HY*(I'p), a € L2 ('y).

(iv) The function k : R x © — R is nonnegative. In addition, for any function v € H!(f2)
the embedding k(v,-) € L% (Q2) holds for some p > 3/2, independent of v, and on any ball
B, ={ve H'(Q) : ||v|li,o < 7} of radius r the following inequality holds:

[k(v1,+) = k(ve, )l e(e) < Lrllvr — vallpae) Vvi,v2 € By (1.3)

Here the constant L,. depends on r but does not depend on vy, vy € By;

(v) (k(p1, )1 — k(p2,) 2,1 — p2) = 0 for all 1,2 € H'(Q);

(Vi) k(e Mze (o) < All@ll] o+ B for all o € H*(Q), where number p is defined in (iii), r > 0
is a fixed number, A and B are nonnegative constants.

Let us note that the condition (iv) describes an operator acting from H'(Q) to LP(Q), p > 3/2,
allowing to take into account the rather arbitrary dependence of the reaction coefficient & on
both the concentration ¢ and the spatial variable x. Condition (v) means that the nonlinearity
k(p, )¢ is monotone [19, p. 182], and condition (vi) restricts the growth in ¢ of the reaction
coefficient by a power function with exponent r.

The specified conditions will provide a proof of the solvability of Problem 1 considered under
the inhomogeneous Dirichlet condition on the part I'p of the boundary I'. As an example of the
function k(p, -) satisfying (iv)—(vi) we give the function k : R x Q — R, such that k(p,x) = ¢?
for x € @ where @ is a subdomain of domain §, k(p,x) = ko(x) € Li/Q(Q\@) for x € 0\ Q.

Let us also remind that, by the Sobolev embedding theorem, the space H'(f2) is embedded
into the space L?(2) continuously at s < 6 and compactly at s < 6 and, with a certain constant
Cs, depending on s and €2, we have the estimate

lelle) < Csllellha Vo € HY(Q). (1.4)

The following technical lemma holds (see details in [7]).
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Lemma 1.1. Let, in addition to condition (i)-(ii), uw € Z, ki(-) € L1(Q), p > 3/2. Then the
following relations hold:

AV, V)| < vslMls.ellellallnllie ¥Ve,n e HY(Q),
(AVh,Vh) = M J|hll3 o VR €T, A = Go)o,

(1.5)

[(u- Vo, )| < illullzs@ellelielnlie Veo,n e HY(Q), (a-Vhh)=0YheT,  (16)

| @)ra] < velixliey lelle Vx € L2 (Tw), ¢ € H(9Q), (L.7)
|(Aag, nry| <A sellalrgllellelnllie Ye,ne HY(Q), (1.8)
[(kro,n)| < wollka |l ey llellelinllie Veo,n € HY(RQ). (1.9)

Here X\, = 0pAo, constants y1 and o depend on Q, constants vs and 5 depend on §) and s, v,
depends on Q and p.

Let us multiply the equation (1.1) by h € T and integrate over {2 using Green’s formulae.
Taking into account (1.2), we obtain

()\V(,O, Vh)—i_(k((p, ')307 h)+(uv% h)+()\cup, h)FN = (fa h)+(X7 h)FN Vh e T’ QO|FD = w (110)

Definition 1.1. The function ¢ € H'(Q), which satisfies (1.10), will be called a weak solution
of Problem 1.

To prove the solvability of Problem 1, we need the following lemma [12].

Lemma 1.2. Let condition (i) holds. Then for any function ¢ € H'Y?(I'p) there exists a
function oo € HY(Q), such that o =1 on T'p and with some constant Cr, depending on 2 and
I'p, the estimate ||poll1,0 < Crl¥||1/2,r,, holds.

We represent the solution to Problem 1 as the sum ¢ = @ + ¢o where ¢ is a given function
from Lemma 1.2 and ¢ € T is unknown function. Substituting ¢ = @+ ¢¢ in (1.10) we will have

= (fa h) + (X7 h)FN - ()\VSD()v Vh) - (u ’ v5007 h’) - (Aaw(h h’)FN VheT. (111)
Adding the term —(k(wo, -)¢0, k) to both parts of (1.11), we obtain
()\V(ﬁ, Vh) + (k(<)5 + o, )(@ + <P0) - k(@07 ')@07 h) + (u ’ V(ﬁ, h) + (/\0“157 h)FN =

<lv h> = (f7 h)+(X’ h)FN *(AVQD(), Vh) - (U'VS%, h)i(k(w()a ')QDO, h)i()‘O“pOa h)FN VheT. (112)

Using the Holder inequality, Lemmas 1.1, 1.2, estimate (1.4) and condition (vi), it is easy to
show that [ € 7* and, moreover, the following estimate holds:

1]

7+ < Mi = ||flle +2lxXliry + Cr(vslAls.e +mllallza@p)l1dl 2.0, +

+Cr I (ACTH Y11 j2.r,, + B) + % lIAs.ellallox 9l /2,0, (1.13)

Let us introduce the nonlinear operator A : 7 — T* by

5,92

(A(@), h) = (AV@, Vh) + (E(@ + #0, ) (@ + ¢o) — k(o, )po, h) + (u- V@, h)+

+(Aag,h)ry V@, heT. (1.14)
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It is clear that the problem (1.12) is equivalent to the operator equation A(@) = I. According
to [19, p. 182], to prove the existence of a solution ¢ € T of problem (1.12) it suffices to show
that: 1) the operator A is monotone on 7, that is (A(u)—A(v),u—v)>0 for all u,v € T; 2) the
operator A : T—T* is continuous and bounded; 3) the operator A is coercive on 7.

To prove the monotonicity of the operator A we subtract the relation (1.14) for ¢ = @5 from
(1.14) for ¢ = ¢ where ¢ and @o € T are arbitrary elements. We obtain

(A(@1) = A(@2), h) = (AV(@1 — $2), VR) + (k(P1 + o, ) (1 + ¢o) — k(P2 + w0, ) (P2 + o), h)+

+(u- V(@1 — @2), h) + (Aa(@1 — B2), h)ry, VhET. (1.15)

For h = ¢1 — @9 all terms in the right-hand side of (1.15) are nonnegative due to the properties
of the functions A, o, u indicated in (ii), (iii) and monotonicity of nonlinearity k(p)p. Therefore

(A(P1) — A(P2),P1 — P2) 20 Vp1, 52 €T
To prove the continuity and boundedness of the operator A we rewrite (1.15) in the form
<A(¢1) - A(SZ’?)v h'> = (/\V((ﬁl - 4152)7 Vh) + (k((ﬁl =+ o, ) - k(¢2 + o, ')7 1 + ¥o, h)+

+(k(P2 + o, ) (@1 — P2), h) + (0- V(@1 — @2), h) + (Aa(P1 — @2), h)ry YheT. (1.16)

Using the estimates of Lemma 1.1, the estimates (1.4), (1.9), and condition (iii), from (1.16) we
deduce that

[(A(P1) = A(@2), )| < (3s[[Alls.0 + W LCallerllna)ller = Pallvallbllo+

+pllk(@2 + w0, )llLe ) + MllullLa@ys + 3l ellallex)lér = Galliallbllie YheT. (1.17)

The inequality (1.17) implies the continuity and boundedness of the operator A. Finally, setting
h = ¢ in (1.14) and using conditions (ii), (iv), and (1.6), we arrive at the following inequality
which implies the coercivity of the operator A:

(A(P), @) = (AV, V@) + (k(@ + o, ) (& + o) — k(wo, )0, P)+

+(Aa@, B)ry = MA@l VP ET. (1.18)

As a result we conclude that the solution ¢ € T of the problem (1.11) exists and the estimate
ll1.0 < Culll]l7+, Ce = A1 takes place. In this case, the function ¢ = g + @ is the desired
weak solution to Problem 1 and the following estimate holds:

lellie < My = My + Crllv 1o, (Co=A". (1.19)

Here the constant M; was defined in (1.13) and Cr is the constant from Lemma 1.2.
Let us show that the solution to Problem 1 is unique. Let 1 and py € H'(2) be any two
solutions to Problem 1. Then their difference ¢ = @1 — @y € T satisfies the identity

AV, Vh) + (k(p1,)p1 — k(p2, )p2, h) + (u- Vi, h) + (Aa(pr — p2),h)ry =0Vh e T.

Setting here h = ¢, by virtue of conditions (iii), (v) and (1.6) we arrive at the inequality
Aellell1,0 <0, from which it follows that @1 = 9 in Q. This proves the following theorem.

Theorem 1.1. Let conditions (i)—(vi) hold. Then there exists a unique weak solution p € H'(Q)
of Problem 1 and the estimate (1.19) holds.
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Within the framework of the approach of [20] we prove the maximum and minimum principles
for a weak solution ¢ to Problem 1. To this end, we assume, in addition to (i)—(vi), that the
following conditions are satisfied:

(vil) Ymin € ¥ € Ymax a-e. on p, fiin < f € foax and Apin < A < Apax a.e. in
Omin € & < Qmax and Xmin < X < Xmax @.€. Ol FN
Here wminv ’l/}maxv fminv fmaxa Xmin, Xmax are nonnegative numbers, while Omin, ®max and >\min7
Amax are positive numbers;

Besides, we will assume also that the reaction coefficient k satisfies the following conditions:

(viii) the reaction coefficient k has the form k = ky(¢) where k1(-) : R — R is a continuous
nonnegative function, satisfying conditions (iv)—(vi), in which one should set k(p,-) = k1(¢),
and every of functional with respect to M; and m; equations

kl(Ml)Ml = fmax and kl(ml)ml = fmin (120)
has at least one solution.
We set
M = max{wrnaxv XHI&X/AIninanlina Ml}a m = min{¢111i11, Xmin/>\maxarna}(7 m1}~ (121)

Theorem 1.2. Let conditions (i)-(iii), (vii), (viii) hold. Then for the solution ¢ € H'(Q) of
Problem 1 the following maximum and minimum principle holds:

m< o< M ae inf. (1.22)

Here the constants m and M are defined in (1.21) where My is a minimum root of the first
equation in (1.20) and my is a mazimum root of the second equation in (1.20).

Proof. Firstly, we prove the validity of the maximum principle in the form of the estimate
» < M in Q. For this purpose we introduce a nonnegative function v = max{p — M,0}. From
the definition of v it follows that the estimate ¢ < M holds if and only if v = 0 in 2. We denote
by Qur C Q a measurable subset of €2, at the points of which the inequality ¢ > M holds, by I'j,
we denote the measurable subset of the part I'y, at the points of which the condition v|p,, > 0 is
satisfied. Set Q1 = Q\ Qpr, 'y = Ty \T'py. From [21, p. 152] and [22] it follows by the definition
of the constant M in (1.21) that v € T, and the following relations hold:

v=p—M>0and Vo=Vein Qp; v=0and Vo=0in Qq;v|r, =0,

(AVe, Vo) = (AVu,Vo)q,, = (AVu,Vv), (u-Ve,v)=(u-Ve,v)q, = (u-Vo,v) =0.

We set h = v in (1.10) at k(p) = k1(¢) and add to both sides of the resulting equality the term
—(k1(M)M,v)q,, — (AaM,v)r,,. Taking into account the properties of v we obtain

(/\VU, V’U) + (kl (U + M)(U + M) - kl(M)M7 U)Qj\l + (/\Oﬂ}, v)FM =

=(f —ki(M)M,v)g,, + (x — AaM,v)r,,. (1.23)

From the definition of the constant M in (1.21), relations (1.20) and conditions (ii),(iii),
(vi) and (vii) it follows that the right-hand side in (1.23) is non-positive while the second and
third terms in the left-hand side are nonnegative. Taking into account this fact and the second
inequality in (1.5) from (1.23) we arrive at the estimate |[v[|] o < 0, from which it follows that
v = 0. This means the validity of the estimate of ¢ < M in Q.

To prove the minimum principle in the form of the estimate ¢ > m in Q we introduce a
non-positive function w = min{p — m, 0} and note that the validity of the minimum principle is
equivalent to the condition w = 0 in €. Let us denote by €2, a measurable subset of 2, at the
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points of which ¢ < m. By I'},, we denote a measurable subset of the part 'y, at the points of
which ¢|r,, < m. Set Qs = Q\ Q,,, T's =T x \ I'),. By definition of Q,, and T',,, we have

w=p—-m<0 and Vw=Vp in Q,,; w=0 and Vw=0 in Qy, w =0 on I's.

Setting h = w in (1.10) at k(v) = k1(p) we add to both sides of the resulting relation the term
—(k1(m)m,w)q,, — (Aam,w)r,, . Taking into account the properties of the function w we obtain

m*

(AVw, Vw) + (k1(w +m)(w + m) — ki (m)m,w)q,, + (Aaw,w)r,, =

= (f —ki(m)m,w)q,, + (x — Aam,w)r,,. (1.24)

From the definition of the constant m in (1.21), (1.20) and conditions (ii), (iii) (v), (vii) it follows
that the right-hand side in (1.24) is non-positive while the second and third terms in the left-hand
side are nonnegative. Taking into account this fact, from (1.24) we derive that w = 0. O

Remark 1.2. For power-law reaction coefficients, the parameters M; and m; are easily calcu-
lated. For example, for ki (¢) = ¢?, we easily deduce that M; = fél/ai, my = fl/3

min*

2. Formulation and solvability of control problem

To formulate the control problem we divide the set of initial data of Problem 1 into two
groups: a group of fixed data, to which we assign the functions u, k(p,+),« and 9, and the
control group, to which we assign the functions A, f and y, assuming that they can change in
some sets K1, Ko and K3 satisfying the condition

(j) K1 € H; (), K2 € L*(Q) and K3 C L*(T'y) are nonempty convex closed sets.

Define the space Y = T* x Hl/z(l“D). Setting u = (A, f, x), K = K7 x K3 x K3 we introduce
the operator F = (Fy, Fy) : HY(Q) x K — Y by formulae: Fy(p) = ¢|r,, — 1 and

<F1(§0’ u)7 h> = ()‘VQOv Vh) + (k(<p7 ')(,0, h) + (u : v‘ﬂv h) + ()\Oé(p, h)FN - (fv h) - (X7 h)FN

and rewrite (1.10) in the form F'(¢,u) = 0. Considering this equality as a conditional restriction
on the state ¢ € H'(2) and control u € K, we introduce the cost functional I and formulate the
following conditional minimization problem:

_ Mo H1 H2 M3 .
T(pw) = FI(0) + TN Z0 + G IR+ T HxIF, — in,

F(p,u) =0, (p,u) € H(Q) x K.

(2.1)

We denote by Z,q = {(p,u) € H'(Q) x K : F(p,u) =0, J(p,u) < oo} the set of admissible
pairs for the problem (2.1) and suppose that the following condition is satisfied:

(33) 1o >0, pu; 2 0,4=1,2,3, and K is a bounded set or u; > 0, 7 =0,1,2,3 and functional
I is bounded below.

We use the following cost functionals:

h(w)=|@—wdé=/Q<p—<p”dx, IL(e) = llo — &3 o (2.2)

Here p? € L2(Q) (or ¢ € H'(Q)) is a given function in some subdomain Q C €.

Theorem 2.1. Let, in addition to conditions (i), (iii)—-(vi), and (5), (jj), I : H*(Q) — R be a
weakly semicontinuous below functional and let Z,q # 0. Then there exists at least one solution
(p,u) € HY(Q) x K of the control problem (2.1).
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Proof. Let (pm, um) € Zaq be a minimizing sequence for which the following is true

lm J(pm,um)= inf J(p,u)=J".

m—oo (o u)EZaa

Condition (jj) and Theorem 1.1 yield the following estimates:

Amlls.e <en Ifmlle < ez IXmlry <es, llomllie < e (2.3)

where the constants ¢;, 1 = 1,2, 3,4 don’t depend on m.

From the estimates (2.3) and from the condition (j) it follows that there exist weak limits
N € Ky, f* € Ko, x* € K3 and ¢* € HL(Q) of some subsequences of sequences {\,}, {fm},
{xm} and {©, }, respectively. Corresponding subsequences will be also denoted by {A.}, {fm},
{Xm} and {¢y, }. Moreover, due to the compactness of the embeddings H'(Q) C LP(12) for p < 6,
HY?(Ty) C LA(Ty) for ¢ < 4, H*(Q) C L>=(Q) and H*~'/2(I'y) € L>®(T'y) for s > 3/2 we can
assume for m — oo, that

Om — ©* weakly in H(2), weakly in L5(2) and strongly in L*(Q2), s < 6,
Omlry — ©*|ry Weakly in HY/2(T'y), weakly in L*(I'y) and strongly in LY(Ty), ¢ < 4,
fm — f* weakly in L?(Q), Xm — X" weakly in L2(T'y), (2.4)
Am — A* weakly in H*(Q) and strongly in L>°(Q),

Anlry — A*|ry weakly in H*~Y/2(I'y) and strongly in L®(I'y), s> 3/2.
It is clear, that F5(¢*) = 0. Let us show that Fy(p*, u*) = 0, that is, that
(N'Ve*, Vh)+ (k(p*, )" h)+ (a- V™ h)+ (N ap*, h)ry = (f*,h)+ (X" h)ry Yh € T. (2.5)
To this end we note that the pair (¢, u,) satisfies the identity
(AmVom, Vh) + (E(em; )pm, h) + (0 Vo, h) + (Amaom, h)ry =

= (fmsh) + (Xms W)ry YR €T, (2.6)

Let us pass to the limit in (2.6) as m — oo. From (2.4) it follows that all linear terms in (2.6)
pass into corresponding ones in (2.5).

Let us study the behaviour of nonlinear terms for m — oo starting with (k(om,)¢m,h). To
prove the convergence

(k(@ms ) om, h) = (k(¢*, )", h) asm = oo VheT (2.7)

it is enough to show that k(¢m, )om — k(p*,-)¢* weakly in L5/5(Q) as m — co. From (1.3)
it follows that k(@m, ) — k(¢*,-) strongly in L?/%(Q), and from (2.4) it follows that ¢, — ¢*
weakly in L5(Q) as m — oo. We derive from these properties that k(¢m, )em — k(¢*,-)¢*
weakly in L9/°(Q) and therefore (2.7) also holds.

For the term (A, Vo, VR) the following equality holds:

AmV@m, VA) — (A*Ve*, VA) = (Am — A )Vom, VA) + (V(om — ¢*), \*Vh). (2.8)

Since \*Vh € L?(Q)3, then from (2.4) it follows that (V(¢n, — ¢*),A\*Vh) — 0 as m — oo for
all h € T. Using Holder’s inequality, (2.3) and (2.4) we easily deduce for the first term in the
right-hand side of (2.8) that

(A = A )V, VR < [Aem = Al oo [ Veemllal| Vil = 0 as m — 00 Yh € T.
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Then from (2.8) we obtain that (A, Vo, Vh) = (A*Ve*,Vh) asm - coVh e T.
Similarly, for the nonlinear term (A, @@, h)r, we have that

()‘ma@mv h‘)FN - ()\*agp*, h)FN = ((/\m - )‘*)a(pma h)FN + (/\*O‘(gpm - 90*)7 h’)FN' (29)

Since \*ah € L*3(Ty) then by virtue of (2.4) (¢ — ¢*, N*ah)r, — 0 for all h € T as m — oco.
Using Holder inequality, (2.4) and the uniform boundedness of the quantity |||/ z1(r,) for any
m, we deduce for the first term in the right-hand side of (2.9), that

(O = A2 W] < I = Xl ol Il 2oy ALz — 0 as m = oo,

To complete the proof notice that the fact J(p*,u*) = J* follows from aforesaid and from the
weakly continuity below on H'(Q) x H*(Q) x L*(2) x L*(T'y) of the functional J. ]

Remark 2.1. The functionals defined in (2.2) satisfy the conditions of Theorem 2.1.

3. Derivation of the optimality system and stability
estimates

The next stage in the study of the control problem (2.1) is the derivation of the optimality
system. It provides valuable information about additional properties of optimal solutions for
specific reaction coefficients, for example, in the case when k(g, -) = ¢©?|¢|. Based on its analysis,
one can establish, in particular, the uniqueness and stability of the optimal solutions More
details about the method for deriving estimates of local stability of optimal solutions can be
found in [11-16].

Based on the theory developed in [11-16] we introduce the space Y* = T x H'/?(I'p)* dual
of the space Y. It is easy to show that for the case k(ip, ) = ©?|¢| the Fréchet derivative of the
operator F = (Fy, Fy) : HY(Q) x K — Y with respect to ¢ at any point (¢, 4) = (@,X,f,)%) is
a linear continuous operator F/,(¢, ) : H'(€2) — Y that maps each element 7 € H'(f2) into an
element F/,($,@)(1) = (§1,92) € Y. Here the elements §; € 7* and g, € H'/?(I'p) are defined

by ¢, A and 7 with the help of the following relations:
(i1, h) = (AVT, Vh) + 4@ Q|7 h) + (Ao, )y + (0-V7,h) YheT, yo=7lrp.  (3.1)

By F/(¢,4)* : Y* — H'(Q)* we denote an operator adjoint of F/ (¢, ).

According to the general theory of smooth-convex extremum problems [23], we introduce an
element y* = (6,¢) € Y*, to which we will refer as to an adjoint state and we will define the
Lagrangian £ : H'(2) x K x Y* — R by

E(@auay*) = J(vau)+<y*aF(QPvu)>Y*XYEJ(907 u) + <F1(§07u)79>7—*><7’ + <<7F2(<p7u)>FD7

where <C, '>FD = <C, '>H1/2(FD)* xHY2(T'p)"
Since ¢2(4| € L2 (1) then from [12] it follows that for any f € T* and ¢ € HY/?(I'p) there
exists a unique solution 7 € H!(2) of the linear problem

(AVT, Vh) 4+ 4(¢%@|m, h) + (Aar, h)ry + (u- V7, h) = (f,R)Yh € T, 7|r,, = 9. (3.2)

Therefore the operator F(p,u) : H 1(Q) — Y is an isomorphism and from [23] the following
assertion follows.

Theorem 3.1. Let, under conditions (i), (iii)—(vi) and (7), (77), k(e,-) = ©*|¢l|, the functional
I: HY(Q) — R is continuously differentiable with respect to ¢ at the point ¢ and let an element
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(p,0) € HY(Q) x K be a local minimizer for the problem (2.1). Then there exists a unique
Lagrange multiplier (adjoint state) y* = (0,() € Y*, such that the Euler—Lagrange equation
FL(p,a)*y* = =J,(p,a) in H(Q)* takes place which is equivalent to the relation

(S\V’I} VG) + 4(952‘@“—7 9) + (S‘OZT’ G)FN + (11 : VT; 0) + <C7 T>FD =

= —(po/2)(I(), 7) V1€ H'(Q), (3:3)

and the minimum principle L(p,0,y*) < L(P,u,y*) Yu € K holds which is equivalent to the
inequalities

(A = Naa+ (A=AV@, V) + (A= Nag,0)r, > 0VA € Ky, (3.4)
pa(fs f = fla—(f = 1.0) >0 Vf € K, (3.5)
13(Xs X — X)ry — (X = X, 0)ry =0 Vx € Ks. (3.6)

The relations (3.3)—(3.6) together with the operator restriction F($,4) = 0 comprise an
optimality system for problem (2.1). It plays an important role in the study of uniqueness and
stability of its solutions.

In conclusion, we formulate a theorem on the local stability of optimal solutions of problem
(2.1) for I(¢) = |lp — <pd||2Q, which is proved according to the scheme proposed in [11].

Theorem 3.2. Assume that the conditions (i), (iii)—(vi) and (j), (jj) take place and k(yp, ) =
= ©?|p|. Let the quadruple (p;, \i, fi, xi) € X X K be a solution of the problem (2.1) at I(p) =
= |l — (|3, which corresponds to a specified function o € L*(2), i = 1,2. Let the data of the
problem (2.1) or parameters o, pi1, bo and pg be such that the following condition hold:

nipo < (1—e)pr, mypo < (1—&)pa, mipo < (1—¢)ps, (3.7)

where e€(0,1) is an arbitrary number, the parameters ni, k=1,2,3,4, monotonically depend on
the norms of the initial data of the problem (2.1). Then the following local stability estimates
hold:

A1 = Aolls.0 < Vio/ (1) (0.5 4+ na) |9 — 5]l 0; (3.8)
If1 = falle < Vio/(ep2)(0.5 +ma)|lef — ¢4lla, (3.9)
Ix1 = xellry < Vio/(en3)(0.5 + na) 0 — ¢hllq, (3.10)

1 — @ollne < (wivpo/(epn) +way/po/ (ep2) + wsv/ o/ (e13)) (0.5 + ma) o — ©3llq- (3.11)

Here wi = Cu(Villallry My + vsMy), wa = Cy, w3 = ¥2Cy, where Ay, ¥2,75,7s, C = 1/ Ay are
the constants from Lemma 1.1 and M, is defined in (1.19).

A similar theorem can be formulated and proved for the functional I5(¢) in (2.2). The authors
plan to devote a separate paper to a more detailed study of the issues of uniqueness and stability
of optimal solutions.

The work was carried out within the framework of the state assignment of the Institute of
Applied Mathematics, FEB RAS (Theme no. 075-01095-20-00).
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AHann3 KpaeBbIX 3a/a4 U 337249 YIIPABJIEHUS
JJIsi HEJIMHEHOTO ypaBHEHUS
peaknuu-a1ddy3nn-KOHBEKITNN

T'eunanuii B. AjiekceeB

Poman B. Bpusnnkwmii
UNucruryT npuxiaanoit maremaruku JIBO PAH
Biragusocrok, Poccuiickas Peniepariust

Awnnoranusi. /lokasbiBaercs ritobaabHas pa3perrmMoCTb HEOTHOPOIHON CMeNTaHHOM KPaeBoil 3a/adn u
3a71a4 yIpaBJIeHus JJjis YPaBHEHUs peaKInu-1uddy3un-KOHBEKIINN B CJIydae, KOTia KO3 UIMEHT peak-
MU HEJIMHEHHO 3aBUCUT OT KOHIIEHTparuu. [Ijis1 pereHust KpaeBoil 3a/a4u yCTAHABIUBAIOTCS [TPUHITUIIBI
MakKCcUMyMa U MuHUMyMa. 1 3a7a9 yrnpaB/ieHus ¢ KOHKPETHBIMU KOIMDMUIMEHTAMU PEAKIIUA BBIBO-
AATCA CACTEMbI ONITUMAJIBHOCTH U YCTaHABJIMBAIOTCA OIEHKU JIOKAJIbHON YCTONYMBOCTH ONTHUMAJIbHBIX
pelIeHuit.

KuroueBrbie cioBa: HelmHeEHOe ypaBHEHHE peakinnu-auddy3nn-KOHBEKITNN, CMEIIaHHbIe TPAHUIHbIE
YCJIOBUSI, IPHUHIUII MAaKCUMyMa, 3a/a4d YIpPaBJeHUsd, CUCTEeMbl ONTHUMAaJIbHOCTH, OIEHKHU JIOKAJbHOMN
YCTOUYUBOCTH.
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