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1. Introduction. Solvability of the boundary value problem

In recent years, there has been an increasing interest in the study of inverse and control
problems for models of heat and mass transfer, electromagnetism and acoustics. A number of
papers are devoted to the theoretical analysis of these problems, of which we note [1–16]. In
these papers, the solvability of boundary value problems, inverse and extremum problems for
the specified models was proved, and the questions of uniqueness and stability of their solutions
were studied. Related problems for models of complex heat transfer were studied in [17,18].

This paper which continues a series of papers by the authors [10–14] is devoted to the theo-
retical analysis of the boundary value and control problems for the nonlinear reaction–diffusion–
convection equation, considered under inhomogeneous mixed boundary conditions on the bound-
ary of the domain.

In bounded domain Ω ⊂ R3 with boundary Γ, consisting of two parts ΓD and ΓN , the following
boundary value problem for nonlinear reaction–diffusion–convection equation is considered:

−div(λ(x)∇φ) + u · ∇φ+ k(φ,x)φ = f in Ω, (1.1)

φ = ψ on ΓD, λ(x)(∂φ/∂n+ α(x)φ) = χ on ΓN . (1.2)

Here the function φ means the concentration of the substance, u is a given vector of velocity,
f is a volume density of external sources of substance, λ(x) is a diffusion coefficient, function
k(φ,x) is a reaction coefficient, x ∈ Ω. Below we will refer to the problem (1.1), (1.2) for the
given functions λ, k, f, ψ, α and χ as Problem 1.
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In this paper, we first prove the global solvability of Problem 1 and the nonlocal uniqueness
of its solution in the case, when the reaction coefficient k(φ,x) is sufficiently arbitrarily depends
on both the concentration φ and the spatial variable x, and the nonlinearity k(φ,x)φ is mono-
tone. Under additional conditions on the functions λ, f, χ, α, ψ and the reaction coefficient k the
minimum and maximum principles are established for the concentration φ. Further, a control
problem is formulated, in which the role of controls is played by the diffusion coefficient λ, the
volume density of external sources of substance f and the density of boundary sources χ and
its solvability is proved. For the mentioned problems, with specific reaction coefficients, an opti-
mality system is derived and, based on its analysis a theorem on the local stability estimates of
optimal solutions is formulated. This theorem can be proved according to the scheme described
in detail in [11–16].

When analyzing the problems under study, we will use the Sobolev functional spaces Hs(D),
s ∈ R. Here D means either a domain Ω, or some subset Q ⊂ Ω, or part ΓD of the boundary Γ.
By ∥ · ∥s,Q, | · |s,Q and (·, ·)s,Q we will denote the norm, seminorm and scalar product in Hs(Q).
The norms and scalar products in L2(Q), L2(Ω) or in L2(ΓN ) will be denoted by ∥·∥Q and (·, ·)Q,
∥ · ∥Ω and (·, ·) or ∥ · ∥ΓN

and (·, ·)ΓN
, respectively. Let Lp

+(D) = {k ∈ Lp(D) : k > 0}, p > 3/2,
Z = {v ∈ L4(Ω)3 : divv = 0 in Ω, v · n|ΓN

= 0}, Hs
λ0
(Ω) = {h ∈ Hs(Ω) : h > λ0 > 0 in Ω},

s > 3/2, T = {φ ∈ H1(Ω) : φ|ΓD
= 0}. Here and below φ|Γ0

denotes the trace of a function
φ ∈ H1(Ω) on the part Γ0 of the boundary Γ. For any function φ ∈ T the Friedrichs–Poincaré
inequality ∥∇φ∥2Ω > δ0∥φ∥21,Ω holds, where positive constant δ0 does not depend on φ.

Let the following conditions hold:
(i) Ω is a bounded domain in R3 with boundary Γ ∈ C0,1, consisting of closures of two

non-intersecting open parts ΓD and ΓN (Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅), and meas ΓD > 0;
(ii) λ ∈ Hs

λ0
(Ω), s > 3/2, f ∈ L2(Ω), χ ∈ L2(ΓN );

(iii) u ∈ Z, ψ ∈ H1/2(ΓD), α ∈ L2
+(ΓN ).

(iv) The function k : R × Ω → R is nonnegative. In addition, for any function v ∈ H1(Ω)
the embedding k(v, ·) ∈ Lp

+(Ω) holds for some p > 3/2, independent of v, and on any ball
Br = {v ∈ H1(Ω) : ∥v∥1,Ω 6 r} of radius r the following inequality holds:

∥k(v1, ·)− k(v2, ·)∥Lp(Ω) 6 Lr∥v1 − v2∥L4(Ω) ∀v1, v2 ∈ Br. (1.3)

Here the constant Lr depends on r but does not depend on v1, v2 ∈ Br;
(v) (k(φ1, ·)φ1 − k(φ2, ·)φ2, φ1 − φ2) > 0 for all φ1, φ2 ∈ H1(Ω);
(vi) ∥k(φ, ·)∥Lp(Ω) 6 A∥φ∥r1,Ω+B for all φ ∈ H1(Ω), where number p is defined in (iii), r > 0

is a fixed number, A and B are nonnegative constants.
Let us note that the condition (iv) describes an operator acting fromH1(Ω) to Lp(Ω), p > 3/2,

allowing to take into account the rather arbitrary dependence of the reaction coefficient k on
both the concentration φ and the spatial variable x. Condition (v) means that the nonlinearity
k(φ, ·)φ is monotone [19, p. 182], and condition (vi) restricts the growth in φ of the reaction
coefficient by a power function with exponent r.

The specified conditions will provide a proof of the solvability of Problem 1 considered under
the inhomogeneous Dirichlet condition on the part ΓD of the boundary Γ. As an example of the
function k(φ, ·) satisfying (iv)–(vi) we give the function k : R × Ω → R, such that k(φ,x) = φ2

for x ∈ Q where Q is a subdomain of domain Ω, k(φ,x) = k0(x) ∈ L
3/2
+ (Ω \Q) for x ∈ Ω \Q.

Let us also remind that, by the Sobolev embedding theorem, the space H1(Ω) is embedded
into the space Ls(Ω) continuously at s 6 6 and compactly at s < 6 and, with a certain constant
Cs, depending on s and Ω, we have the estimate

∥φ∥Ls(Ω) 6 Cs∥φ∥1,Ω ∀φ ∈ H1(Ω). (1.4)

The following technical lemma holds (see details in [7]).
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Lemma 1.1. Let, in addition to condition (i)–(iii), u ∈ Z, k1(·) ∈ Lp
+(Ω), p > 3/2. Then the

following relations hold:

|(λ∇φ,∇η)| 6 γs∥λ∥s,Ω∥φ∥1,Ω∥η∥1,Ω ∀φ, η ∈ H1(Ω),

(λ∇h,∇h) > λ∗∥h∥21,Ω ∀h ∈ T , λ∗ ≡ δ0λ0,
(1.5)

|(u · ∇φ, η)| 6 γ1∥u∥L4(Ω)3∥φ∥1,Ω∥η∥1,Ω ∀φ, η ∈ H1(Ω), (u · ∇h, h) = 0 ∀h ∈ T , (1.6)

|(χ, φ)ΓN
| 6 γ2∥χ∥ΓN

∥φ∥1,Ω ∀χ ∈ L2(ΓN ), φ ∈ H1(Ω), (1.7)

|(λαφ, η)ΓN
| 6 γs3∥λ∥s,Ω∥α∥ΓN

∥φ∥1,Ω∥η∥1,Ω ∀φ, η ∈ H1(Ω), (1.8)

|(k1φ, η)| 6 γp∥k1∥Lp(Ω)∥φ∥1,Ω∥η∥1,Ω ∀φ, η ∈ H1(Ω). (1.9)

Here λ∗ = δ0λ0, constants γ1 and γ2 depend on Ω, constants γs and γs3 depend on Ω and s, γp
depends on Ω and p.

Let us multiply the equation (1.1) by h ∈ T and integrate over Ω using Green’s formulae.
Taking into account (1.2), we obtain

(λ∇φ,∇h)+(k(φ, ·)φ, h)+(u·∇φ, h)+(λαφ, h)ΓN
= (f, h)+(χ, h)ΓN

∀h ∈ T , φ|ΓD
= ψ. (1.10)

Definition 1.1. The function φ ∈ H1(Ω), which satisfies (1.10), will be called a weak solution
of Problem 1.

To prove the solvability of Problem 1, we need the following lemma [12].

Lemma 1.2. Let condition (i) holds. Then for any function ψ ∈ H1/2(ΓD) there exists a
function φ0 ∈ H1(Ω), such that φ0 = ψ on ΓD and with some constant CΓ, depending on Ω and
ΓD, the estimate ∥φ0∥1,Ω 6 CΓ∥ψ∥1/2,ΓD

holds.

We represent the solution to Problem 1 as the sum φ = φ̃+ φ0 where φ0 is a given function
from Lemma 1.2 and φ̃ ∈ T is unknown function. Substituting φ = φ̃+φ0 in (1.10) we will have

(λ∇φ̃,∇h) + (k(φ̃+ φ0, ·)(φ̃+ φ0), h) + (u · ∇φ̃, h) + (λαφ̃, h)ΓN
=

= (f, h) + (χ, h)ΓN
− (λ∇φ0,∇h)− (u · ∇φ0, h)− (λαφ0, h)ΓN

∀h ∈ T . (1.11)

Adding the term −(k(φ0, ·)φ0, h) to both parts of (1.11), we obtain

(λ∇φ̃,∇h) + (k(φ̃+ φ0, ·)(φ̃+ φ0)− k(φ0, ·)φ0, h) + (u · ∇φ̃, h) + (λαφ̃, h)ΓN
=

⟨l, h⟩≡(f, h)+(χ, h)ΓN
−(λ∇φ0,∇h)−(u·∇φ0, h)−(k(φ0, ·)φ0, h)−(λαφ0, h)ΓN

∀h∈T . (1.12)

Using the Holder inequality, Lemmas 1.1, 1.2, estimate (1.4) and condition (vi), it is easy to
show that l ∈ T ∗ and, moreover, the following estimate holds:

∥l∥T ∗ 6Ml ≡ ∥f∥Ω + γ2∥χ∥ΓN
+ CΓ(γs∥λ∥s,Ω + γ1∥u∥L4(Ω)3)∥ψ∥1/2,ΓD

+

+CΓ[γp(AC
r
Γ∥ψ∥r1/2,ΓD

+B) + γs3∥λ∥s,Ω∥α∥ΓN
]∥ψ∥1/2,ΓD

. (1.13)

Let us introduce the nonlinear operator A : T → T ∗ by

⟨A(φ̃), h⟩ ≡ (λ∇φ̃,∇h) + (k(φ̃+ φ0, ·)(φ̃+ φ0)− k(φ0, ·)φ0, h) + (u · ∇φ̃, h)+

+(λαφ̃, h)ΓN
∀ φ̃, h ∈ T . (1.14)
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It is clear that the problem (1.12) is equivalent to the operator equation A(φ̃) = l. According
to [19, p. 182], to prove the existence of a solution φ̃ ∈ T of problem (1.12) it suffices to show
that: 1) the operator A is monotone on T , that is ⟨A(u)−A(v), u−v⟩>0 for all u, v ∈ T ; 2) the
operator A : T →T ∗ is continuous and bounded; 3) the operator A is coercive on T .

To prove the monotonicity of the operator A we subtract the relation (1.14) for φ̃ = φ̃2 from
(1.14) for φ̃ = φ̃1 where φ̃1 and φ̃2 ∈ T are arbitrary elements. We obtain

⟨A(φ̃1)−A(φ̃2), h⟩ = (λ∇(φ̃1 − φ̃2),∇h) + (k(φ̃1 +φ0, ·)(φ̃1 +φ0)− k(φ̃2 +φ0, ·)(φ̃2 +φ0), h)+

+(u · ∇(φ̃1 − φ̃2), h) + (λα(φ̃1 − φ̃2), h)ΓN
∀h ∈ T . (1.15)

For h = φ̃1 − φ̃2 all terms in the right-hand side of (1.15) are nonnegative due to the properties
of the functions λ, α,u indicated in (ii), (iii) and monotonicity of nonlinearity k(φ)φ. Therefore

⟨A(φ̃1)−A(φ̃2), φ̃1 − φ̃2⟩ > 0 ∀φ̃1, φ̃2 ∈ T .

To prove the continuity and boundedness of the operator A we rewrite (1.15) in the form

⟨A(φ̃1)−A(φ̃2), h⟩ = (λ∇(φ̃1 − φ̃2),∇h) + (k(φ̃1 + φ0, ·)− k(φ̃2 + φ0, ·), φ̃1 + φ0, h)+

+(k(φ̃2 + φ0, ·)(φ̃1 − φ̃2), h) + (u · ∇(φ̃1 − φ̃2), h) + (λα(φ̃1 − φ̃2), h)ΓN
∀h ∈ T . (1.16)

Using the estimates of Lemma 1.1, the estimates (1.4), (1.9), and condition (iii), from (1.16) we
deduce that

|⟨A(φ̃1)−A(φ̃2), h⟩| 6 (γs∥λ∥s,Ω + γpLC4∥φ1∥1,Ω)∥φ̃1 − φ̃2∥1,Ω∥h∥1,Ω+

+(γp∥k(φ̃2 + φ0, ·)∥Lp(Ω) + γ1∥u∥L4(Ω)3 + γs3∥λ∥s,Ω∥α∥ΓN
)∥φ̃1 − φ̃2∥1,Ω∥h∥1,Ω ∀h ∈ T . (1.17)

The inequality (1.17) implies the continuity and boundedness of the operator A. Finally, setting
h = φ̃ in (1.14) and using conditions (ii), (iv), and (1.6), we arrive at the following inequality
which implies the coercivity of the operator A:

⟨A(φ̃), φ̃⟩ = (λ∇φ̃,∇φ̃) + (k(φ̃+ φ0, ·)(φ̃+ φ0)− k(φ0, ·)φ0, φ̃)+

+(λαφ̃, φ̃)ΓN
> λ∗∥φ̃∥21,Ω ∀φ̃ ∈ T . (1.18)

As a result we conclude that the solution φ̃ ∈ T of the problem (1.11) exists and the estimate
∥φ̃∥1,Ω 6 C∗∥l∥T ∗ , C∗ = λ−1

∗ takes place. In this case, the function φ = φ0 + φ̃ is the desired
weak solution to Problem 1 and the following estimate holds:

∥φ∥1,Ω 6Mφ ≡ C∗Ml + CΓ∥ψ∥1/2,ΓD
(C∗ = λ−1

∗ ). (1.19)

Here the constant Ml was defined in (1.13) and CΓ is the constant from Lemma 1.2.
Let us show that the solution to Problem 1 is unique. Let φ1 and φ2 ∈ H1(Ω) be any two

solutions to Problem 1. Then their difference φ = φ1 − φ2 ∈ T satisfies the identity

(λ∇φ,∇h) + (k(φ1, ·)φ1 − k(φ2, ·)φ2, h) + (u · ∇φ, h) + (λα(φ1 − φ2), h)ΓN
= 0 ∀h ∈ T .

Setting here h = φ, by virtue of conditions (iii), (v) and (1.6) we arrive at the inequality
λ∗∥φ∥1,Ω 6 0, from which it follows that φ1 = φ2 in Ω. This proves the following theorem.

Theorem 1.1. Let conditions (i)–(vi) hold. Then there exists a unique weak solution φ ∈ H1(Ω)
of Problem 1 and the estimate (1.19) holds.
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Within the framework of the approach of [20] we prove the maximum and minimum principles
for a weak solution φ to Problem 1. To this end, we assume, in addition to (i)–(vi), that the
following conditions are satisfied:

(vii) ψmin 6 ψ 6 ψmax a.e. on ΓD, fmin 6 f 6 fmax and λmin 6 λ 6 λmax a.e. in Ω,
αmin 6 α 6 αmax and χmin 6 χ 6 χmax a.e. on ΓN .
Here ψmin, ψmax, fmin, fmax, χmin, χmax are nonnegative numbers, while αmin, αmax and λmin,
λmax are positive numbers;

Besides, we will assume also that the reaction coefficient k satisfies the following conditions:
(viii) the reaction coefficient k has the form k = k1(φ) where k1(·) : R → R is a continuous

nonnegative function, satisfying conditions (iv)–(vi), in which one should set k(φ, ·) = k1(φ),
and every of functional with respect to M1 and m1 equations

k1(M1)M1 = fmax and k1(m1)m1 = fmin (1.20)

has at least one solution.
We set

M = max{ψmax, χmax/λminαmin,M1}, m = min{ψmin, χmin/λmaxαmax,m1}. (1.21)

Theorem 1.2. Let conditions (i)–(iii), (vii), (viii) hold. Then for the solution φ ∈ H1(Ω) of
Problem 1 the following maximum and minimum principle holds:

m 6 φ 6M a.e. in Ω. (1.22)

Here the constants m and M are defined in (1.21) where M1 is a minimum root of the first
equation in (1.20) and m1 is a maximum root of the second equation in (1.20).

Proof. Firstly, we prove the validity of the maximum principle in the form of the estimate
φ 6 M in Ω. For this purpose we introduce a nonnegative function v = max{φ −M, 0}. From
the definition of v it follows that the estimate φ 6M holds if and only if v = 0 in Ω. We denote
by ΩM ⊂ Ω a measurable subset of Ω, at the points of which the inequality φ > M holds, by ΓM

we denote the measurable subset of the part ΓN , at the points of which the condition v|ΓM
> 0 is

satisfied. Set Ω1 = Ω \ΩM , Γ1 = ΓN \ΓM . From [21, p. 152] and [22] it follows by the definition
of the constant M in (1.21) that v ∈ T , and the following relations hold:

v = φ−M > 0 and ∇v = ∇φ in ΩM ; v = 0 and ∇v = 0 in Ω1; v|Γ1 = 0,

(λ∇φ,∇v) = (λ∇v,∇v)ΩM
= (λ∇v,∇v), (u · ∇φ, v) = (u · ∇φ, v)ΩM

= (u · ∇v, v) = 0.

We set h = v in (1.10) at k(φ) = k1(φ) and add to both sides of the resulting equality the term
−(k1(M)M, v)QM

− (λαM, v)ΓM
. Taking into account the properties of v we obtain

(λ∇v,∇v) + (k1(v +M)(v +M)− k1(M)M, v)QM
+ (λαv, v)ΓM

=

= (f − k1(M)M, v)QM
+ (χ− λαM, v)ΓM

. (1.23)

From the definition of the constant M in (1.21), relations (1.20) and conditions (ii),(iii),
(vi) and (vii) it follows that the right-hand side in (1.23) is non-positive while the second and
third terms in the left-hand side are nonnegative. Taking into account this fact and the second
inequality in (1.5) from (1.23) we arrive at the estimate ∥v∥21,Ω 6 0, from which it follows that
v = 0. This means the validity of the estimate of φ 6M in Ω.

To prove the minimum principle in the form of the estimate φ > m in Ω we introduce a
non-positive function w = min{φ−m, 0} and note that the validity of the minimum principle is
equivalent to the condition w = 0 in Ω. Let us denote by Ωm a measurable subset of Ω, at the
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points of which φ < m. By Γm we denote a measurable subset of the part ΓN , at the points of
which φ|Γm < m. Set Ω2 = Ω \ Ωm, Γ2 = ΓN \ Γm. By definition of Ωm and Γm we have

w = φ−m < 0 and ∇w = ∇φ in Ωm; w = 0 and ∇w = 0 in Ω2, w = 0 on Γ2.

Setting h = w in (1.10) at k(φ) = k1(φ) we add to both sides of the resulting relation the term
−(k1(m)m,w)Qm

− (λαm,w)Γm
. Taking into account the properties of the function w we obtain

(λ∇w,∇w) + (k1(w +m)(w +m)− k1(m)m,w)Qm
+ (λαw,w)Γm

=

= (f − k1(m)m,w)Qm
+ (χ− λαm,w)Γm

. (1.24)

From the definition of the constant m in (1.21), (1.20) and conditions (ii), (iii) (v), (vii) it follows
that the right-hand side in (1.24) is non-positive while the second and third terms in the left-hand
side are nonnegative. Taking into account this fact, from (1.24) we derive that w = 0. 2

Remark 1.2. For power-law reaction coefficients, the parameters M1 and m1 are easily calcu-
lated. For example, for k1(φ) = φ2, we easily deduce that M1 = f

1/3
max, m1 = f

1/3
min.

2. Formulation and solvability of control problem

To formulate the control problem we divide the set of initial data of Problem 1 into two
groups: a group of fixed data, to which we assign the functions u, k(φ, ·), α and ψ, and the
control group, to which we assign the functions λ, f and χ, assuming that they can change in
some sets K1,K2 and K3 satisfying the condition

(j) K1 ⊂ Hs
λ0
(Ω), K2 ⊂ L2(Ω) and K3 ⊂ L2(ΓN ) are nonempty convex closed sets.

Define the space Y = T ∗×H1/2(ΓD). Setting u = (λ, f, χ), K = K1×K2×K3 we introduce
the operator F = (F1, F2) : H

1(Ω)×K → Y by formulae: F2(φ) = φ|ΓD
− ψ and

⟨F1(φ, u), h⟩ = (λ∇φ,∇h) + (k(φ, ·)φ, h) + (u · ∇φ, h) + (λαφ, h)ΓN
− (f, h)− (χ, h)ΓN

and rewrite (1.10) in the form F (φ, u) = 0. Considering this equality as a conditional restriction
on the state φ ∈ H1(Ω) and control u ∈ K, we introduce the cost functional I and formulate the
following conditional minimization problem:

J(φ, u) ≡ µ0

2
I(φ) +

µ1

2
∥λ∥2s,Ω +

µ2

2
∥f∥2Ω +

µ3

2
∥χ∥2ΓN

→ inf,

F (φ, u) = 0, (φ, u) ∈ H1(Ω)×K.
(2.1)

We denote by Zad = {(φ, u) ∈ H1(Ω)×K : F (φ, u) = 0, J(φ, u) < ∞} the set of admissible
pairs for the problem (2.1) and suppose that the following condition is satisfied:

(jj) µ0 > 0, µi > 0, i = 1, 2, 3, and K is a bounded set or µi > 0, i = 0, 1, 2, 3 and functional
I is bounded below.

We use the following cost functionals:

I1(φ) = ∥φ− φd∥2Q =

∫
Q

|φ− φd|2dx, I2(φ) = ∥φ− φd∥21,Q. (2.2)

Here φd ∈ L2(Q) (or φd ∈ H1(Q)) is a given function in some subdomain Q ⊂ Ω.

Theorem 2.1. Let, in addition to conditions (i), (iii)–(vi), and (j), (jj), I : H1(Ω) → R be a
weakly semicontinuous below functional and let Zad ̸= ∅. Then there exists at least one solution
(φ, u) ∈ H1(Ω)×K of the control problem (2.1).
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Proof. Let (φm, um) ∈ Zad be a minimizing sequence for which the following is true

lim
m→∞

J(φm, um) = inf
(φ,u)∈Zad

J(φ, u) ≡ J∗.

Condition (jj) and Theorem 1.1 yield the following estimates:

∥λm∥s,Ω 6 c1, ∥fm∥Ω 6 c2, ∥χm∥ΓN
6 c3, ∥φm∥1,Ω 6 c4 (2.3)

where the constants ci, i = 1, 2, 3, 4 don’t depend on m.
From the estimates (2.3) and from the condition (j) it follows that there exist weak limits

λ∗ ∈ K1, f∗ ∈ K2, χ∗ ∈ K3 and φ∗ ∈ H1(Ω) of some subsequences of sequences {λm}, {fm},
{χm} and {φm}, respectively. Corresponding subsequences will be also denoted by {λm}, {fm},
{χm} and {φm}. Moreover, due to the compactness of the embeddings H1(Ω) ⊂ Lp(Ω) for p < 6,
H1/2(ΓN ) ⊂ Lq(ΓN ) for q < 4, Hs(Ω) ⊂ L∞(Ω) and Hs−1/2(ΓN ) ⊂ L∞(ΓN ) for s > 3/2 we can
assume for m→ ∞, that

φm → φ∗ weakly in H1(Ω), weakly in L6(Ω) and strongly in Ls(Ω), s < 6,

φm|ΓN
→ φ∗|ΓN

weakly in H1/2(ΓN ), weakly in L4(ΓN ) and strongly in Lq(ΓN ), q < 4,

fm → f∗ weakly in L2(Ω), χm → χ∗ weakly in L2(ΓN ),

λm → λ∗ weakly in Hs(Ω) and strongly in L∞(Ω),

λm|ΓN
→ λ∗|ΓN

weakly in Hs−1/2(ΓN ) and strongly in L∞(ΓN ), s > 3/2.

(2.4)

It is clear, that F2(φ
∗) = 0. Let us show that F1(φ

∗, u∗) = 0, that is, that

(λ∗∇φ∗,∇h)+(k(φ∗, ·)φ∗, h)+(u ·∇φ∗, h)+(λ∗αφ∗, h)ΓN
= (f∗, h)+(χ∗, h)ΓN

∀h ∈ T . (2.5)

To this end we note that the pair (φm, um) satisfies the identity

(λm∇φm,∇h) + (k(φm, ·)φm, h) + (u · ∇φm, h) + (λmαφm, h)ΓN
=

= (fm, h) + (χm, h)ΓN
∀h ∈ T . (2.6)

Let us pass to the limit in (2.6) as m → ∞. From (2.4) it follows that all linear terms in (2.6)
pass into corresponding ones in (2.5).

Let us study the behaviour of nonlinear terms for m→ ∞ starting with (k(φm, ·)φm, h). To
prove the convergence

(k(φm, ·)φm, h) → (k(φ∗, ·)φ∗, h) as m→ ∞ ∀h ∈ T (2.7)

it is enough to show that k(φm, ·)φm → k(φ∗, ·)φ∗ weakly in L6/5(Ω) as m → ∞. From (1.3)
it follows that k(φm, ·) → k(φ∗, ·) strongly in L3/2(Ω), and from (2.4) it follows that φm → φ∗

weakly in L6(Ω) as m → ∞. We derive from these properties that k(φm, ·)φm → k(φ∗, ·)φ∗

weakly in L6/5(Ω) and therefore (2.7) also holds.
For the term (λm∇φm,∇h) the following equality holds:

(λm∇φm,∇h)− (λ∗∇φ∗,∇h) = ((λm − λ∗)∇φm,∇h) + (∇(φm − φ∗), λ∗∇h). (2.8)

Since λ∗∇h ∈ L2(Ω)3, then from (2.4) it follows that (∇(φm − φ∗), λ∗∇h) → 0 as m → ∞ for
all h ∈ T . Using Holder’s inequality, (2.3) and (2.4) we easily deduce for the first term in the
right-hand side of (2.8) that

|((λm − λ∗)∇φm,∇h)| 6 ∥λm − λ∗∥L∞(Ω)∥∇φm∥Ω∥∇h∥Ω → 0 as m→ ∞ ∀h ∈ T .
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Then from (2.8) we obtain that (λm∇φm,∇h) → (λ∗∇φ∗,∇h) as m→ ∞ ∀h ∈ T .
Similarly, for the nonlinear term (λmαφm, h)ΓN

we have that

(λmαφm, h)ΓN
− (λ∗αφ∗, h)ΓN

= ((λm − λ∗)αφm, h)ΓN
+ (λ∗α(φm − φ∗), h)ΓN

. (2.9)

Since λ∗αh ∈ L4/3(ΓN ) then by virtue of (2.4) (φm −φ∗, λ∗αh)ΓN
→ 0 for all h ∈ T as m→ ∞.

Using Holder inequality, (2.4) and the uniform boundedness of the quantity ∥φm∥L4(ΓN ) for any
m, we deduce for the first term in the right-hand side of (2.9), that

|((λm − λ∗)αφm, h)ΓN
| 6 ∥λm − λ∗∥L∞(ΓN )∥α∥ΓN

∥φm∥L4(ΓN )∥h∥L4(ΓN ) → 0 as m→ ∞.

To complete the proof notice that the fact J(φ∗, u∗) = J∗ follows from aforesaid and from the
weakly continuity below on H1(Ω)×Hs(Ω)× L2(Ω)× L2(ΓN ) of the functional J . 2

Remark 2.1. The functionals defined in (2.2) satisfy the conditions of Theorem 2.1.

3. Derivation of the optimality system and stability
estimates

The next stage in the study of the control problem (2.1) is the derivation of the optimality
system. It provides valuable information about additional properties of optimal solutions for
specific reaction coefficients, for example, in the case when k(φ, ·) = φ2|φ|. Based on its analysis,
one can establish, in particular, the uniqueness and stability of the optimal solutions More
details about the method for deriving estimates of local stability of optimal solutions can be
found in [11–16].

Based on the theory developed in [11–16] we introduce the space Y ∗ = T ×H1/2(ΓD)∗ dual
of the space Y . It is easy to show that for the case k(φ, ·) = φ2|φ| the Fréchet derivative of the
operator F = (F1, F2) : H

1(Ω) ×K → Y with respect to φ at any point (φ̂, û) = (φ̂, λ̂, f̂ , χ̂) is
a linear continuous operator F ′

φ(φ̂, û) : H
1(Ω) → Y that maps each element τ ∈ H1(Ω) into an

element F ′
φ(φ̂, û)(τ) = (ŷ1, ŷ2) ∈ Y . Here the elements ŷ1 ∈ T ∗ and ŷ2 ∈ H1/2(ΓD) are defined

by φ̂, λ̂ and τ with the help of the following relations:

⟨ŷ1, h⟩ = (λ̂∇τ,∇h) + 4(φ̂2|φ̂|τ, h) + (λ̂ατ, h)ΓN
+ (u · ∇τ, h) ∀h ∈ T , y2 = τ |ΓD

. (3.1)

By F ′
φ(φ̂, û)

∗ : Y ∗ → H1(Ω)∗ we denote an operator adjoint of F ′
φ(φ̂, û).

According to the general theory of smooth-convex extremum problems [23], we introduce an
element y∗ = (θ, ζ) ∈ Y ∗, to which we will refer as to an adjoint state and we will define the
Lagrangian L : H1(Ω)×K × Y ∗ → R by

L(φ, u,y∗) = J(φ, u)+⟨y∗, F (φ, u)⟩Y ∗×Y ≡J(φ, u) + ⟨F1(φ, u), θ⟩T ∗×T + ⟨ζ, F2(φ, u)⟩ΓD
,

where ⟨ζ, ·⟩ΓD
= ⟨ζ, ·⟩H1/2(ΓD)∗×H1/2(ΓD).

Since φ̂2|φ̂| ∈ L2
+(Ω) then from [12] it follows that for any f ∈ T ∗ and ψ ∈ H1/2(ΓD) there

exists a unique solution τ ∈ H1(Ω) of the linear problem

(λ̂∇τ,∇h) + 4(φ̂2|φ̂|τ, h) + (λ̂ατ, h)ΓN
+ (u · ∇τ, h) = ⟨f, h⟩ ∀h ∈ T , τ |ΓD

= ψ. (3.2)

Therefore the operator F ′
φ(φ̂, û) : H1(Ω) → Y is an isomorphism and from [23] the following

assertion follows.

Theorem 3.1. Let, under conditions (i), (iii)–(vi) and (j), (jj), k(φ, ·) = φ2|φ|, the functional
I : H1(Ω) → R is continuously differentiable with respect to φ at the point φ̂ and let an element
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(φ̂, û) ∈ H1(Ω) × K be a local minimizer for the problem (2.1). Then there exists a unique
Lagrange multiplier (adjoint state) y∗ = (θ, ζ) ∈ Y ∗, such that the Euler–Lagrange equation
F ′
φ(φ̂, û)

∗y∗ = −J ′
φ(φ̂, û) in H1(Ω)∗ takes place which is equivalent to the relation

(λ̂∇τ,∇θ) + 4(φ̂2|φ̂|τ, θ) + (λ̂ατ, θ)ΓN
+ (u · ∇τ, θ) + ⟨ζ, τ⟩ΓD

=

= −(µ0/2)⟨I ′φ(φ̂), τ⟩ ∀τ ∈ H1(Ω), (3.3)

and the minimum principle L(φ̂, û,y∗) 6 L(φ̂, u,y∗) ∀u ∈ K holds which is equivalent to the
inequalities

µ1(λ̂, λ− λ̂)s,Ω + ((λ− λ̂)∇φ̂,∇θ) + ((λ− λ̂)αφ̂, θ)ΓN
> 0 ∀λ ∈ K1, (3.4)

µ2(f̂ , f − f̂)Ω − (f − f̂ , θ) > 0 ∀f ∈ K2, (3.5)

µ3(χ̂, χ− χ̂)ΓN
− (χ− χ̂, θ)ΓN

> 0 ∀χ ∈ K3. (3.6)

The relations (3.3)–(3.6) together with the operator restriction F (φ̂, û) = 0 comprise an
optimality system for problem (2.1). It plays an important role in the study of uniqueness and
stability of its solutions.

In conclusion, we formulate a theorem on the local stability of optimal solutions of problem
(2.1) for I(φ) = ∥φ− φd∥2Q, which is proved according to the scheme proposed in [11].

Theorem 3.2. Assume that the conditions (i), (iii)–(vi) and (j), (jj) take place and k(φ, ·) =
= φ2|φ|. Let the quadruple (φi, λi, fi, χi) ∈ X ×K be a solution of the problem (2.1) at I(φ) =
= ∥φ−φd

i ∥2Q, which corresponds to a specified function φd
i ∈ L2(Ω), i = 1, 2. Let the data of the

problem (2.1) or parameters µ0, µ1, µ2 and µ3 be such that the following condition hold:

η21µ0 6 (1− ε)µ1, η22µ0 6 (1− ε)µ2, η23µ0 6 (1− ε)µ3, (3.7)

where ε∈(0, 1) is an arbitrary number, the parameters ηk, k=1, 2, 3, 4, monotonically depend on
the norms of the initial data of the problem (2.1). Then the following local stability estimates
hold:

∥λ1 − λ2∥s,Ω 6
√
µ0/(εµ1)(0.5 + η4)∥φd

1 − φd
2∥Q, (3.8)

∥f1 − f2∥Ω 6
√
µ0/(εµ2)(0.5 + η4)∥φd

1 − φd
2∥Q, (3.9)

∥χ1 − χ2∥ΓN
6

√
µ0/(εµ3)(0.5 + η4)∥φd

1 − φd
2∥Q, (3.10)

∥φ1 − φ2∥1,Ω 6 (ω1

√
µ0/(εµ1) + ω2

√
µ0/(εµ2) + ω3

√
µ0/(εµ3))(0.5 + η4)∥φd

1 − φd
2∥Q. (3.11)

Here ω1 = C∗(γ
s
3∥α∥ΓN

Mφ + γsMφ), ω2 = C∗, ω3 = γ2C∗, where λ∗, γ2, γs3 , γs, C∗ = 1/λ∗ are
the constants from Lemma 1.1 and Mφ is defined in (1.19).

A similar theorem can be formulated and proved for the functional I2(φ) in (2.2). The authors
plan to devote a separate paper to a more detailed study of the issues of uniqueness and stability
of optimal solutions.

The work was carried out within the framework of the state assignment of the Institute of
Applied Mathematics, FEB RAS (Theme no. 075-01095-20-00).
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Анализ краевых задач и задач управления
для нелинейного уравнения
реакции-диффузии-конвекции

Геннадий В.Алексеев
Роман В. Бризицкий

Институт прикладной математики ДВО РАН
Владивосток, Российская Федерация

Аннотация. Доказывается глобальная разрешимость неоднородной смешанной краевой задачи и
задач управления для уравнения реакции-диффузии-конвекции в случае, когда коэффициент реак-
ции нелинейно зависит от концентрации. Для решения краевой задачи устанавливаются принципы
максимума и минимума. Для задач управления с конкретными коэффициентами реакции выво-
дятся системы оптимальности и устанавливаются оценки локальной устойчивости оптимальных
решений.

Ключевые слова: нелинейное уравнение реакции-диффузии-конвекции, смешанные граничные
условия, принцип максимума, задачи управления, системы оптимальности, оценки локальной
устойчивости.
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