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Abstract. In this paper we study the estimation of a multivariate normal mean under the balanced loss
function. We present here a class of shrinkage estimators which generalizes the James-Stein estimator
and we are interested to establish the asymptotic behaviour of risks ratios of these estimators to the
maximum likelihood estimators (MLE). Thus, in the case where the dimension of the parameter space and
the sample size are large, we determine the sufficient conditions for that the estimators cited previously

are minimax.
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Introduction

The multivariate analysis plays an essential role in statistical data analysis. Thus, the mean
parameters estimation of the multivariate Gaussian distribution is of interest to many users.
Stein [1] showed the inadmissibility of the usual estimator when the dimension of the parameter
space is greater than or equal to three by considering an alternative estimator with uniformly
smaller risk than the latter, the improvement being substantial for the mean close to the origin.
A central focus is on the general technique, namely, shrinkage estimation. This is systematically
applied to derive the MLE of the mean parameters. A large amount of research have been carried
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out to develop the properties of shrinkage estimators and to compare them with the MLE. For
a selected review of the subject matter of shrinkage estimation, interested readers may refer to
Stein [1], James and Stein [2] and Efron and Morris [3].

When the dimension of the parameter space and the sample size are large, Benmansour and
Hamdaoui [4] have taken the model X ~ N, (6,02I,) where the parameter 2 is unknown and
estimated by S? (5% ~ 02x2). The authors established the analogous results obtained by Casella
and Hwang [5]. Benkhaled and Hamdaoui [6], have considered the same model given by Benman-
sour and Hamdaoui [4], namely X ~ N, (9, O’ZIP) where o2 is unknown. They studied two differ-
ent forms of shrinkage estimators of 6: estimators of the form 6% = (1—4(S2, | X[|*)S2/ || X|*)X,
and estimators of Lindley-Type given by 6¥ = (1—¢(S?%,7?%)S5?/T?)(X — X)+ X, that shrink the
components of the MLE X to the random variable X. The authors showed that if the shrinkage
function ¢ (respectively ¢) satisfies the new conditions different from the known results in the
literature, then the estimator 6% (respectively §%) is minimax. When the sample size and the
dimension of parameters space tend to infinity, they studied the behaviour of risks ratio of these
estimators to the MLE. Hamdaoui et al. [7], have treated the minimaxity and limits of risks
ratios of shrinkage estimators of a multivariate normal mean in the Bayesian case. The authors
have considered the model X ~ N, (6,021,) where o2 is unknown and have taken the prior law
0 ~ N, (U,’Tz_[p). They constructed a modified Bayes estimator d3 and an empirical modified
Bayes estimator 0y 5. When n and p are finite, they showed that the estimators 63 and 6} 5
are minimax. The authors have also interested in studying the limits of risks ratios of these
estimators, to the MLE X, when n and p tend to infinity. The majority of these authors have
been considered the quadratic loss function for computing the risk.

Zellner [8] proposes a balanced loss function that takes error of estimation and goodness of fit
into account. This balanced loss function consists of weighting the predictive loss function and
the goodness of fit term. In addition for estimation under the balanced loss function we cite for
example, Guikai et al. [9], Karamikabir et al. [10]. Sanjari Farsipour and Asgharzadeh [11] have
considered the model: Xj,..., X, to be a random sample from N, (9, 02) with o2 known and
the aim is to estimate the parameter . They studied the admissibility of the estimator of the
form aX + b under the balanced loss function. Selahattin and Issam [12] introduced and derived
the optimal extended balanced loss function (EBLF) estimators and predictors and discussed
their performances. Under the balanced loss function, Hamdaoui et al. [13] studied the behavior
of risks ratios of James-Stein estimator and the positive-part of James-Stein estimator to the
MLE, when the dimension of the parameter space tends to infinity and the sample size is fixes
and when the dimension of the parameter space and the sample size tend simultaneously to the
infinity. They showed that these risks ratios tend to values less than 1. Thus, the authors have
assured the stability of minimaxity property of the James-Stein estimator and the positive-part
of James-Stein estimator in the large values of the dimension of the parameter space p and the
sample size n.

In this work, we deal with the model X ~ N, (9, 02Ip), where the parameter o2 is unknown
and estimated by S? (S? ~ 02x2). Our aim is to estimate the unknown parameter 6 by shrinkage
estimators deduced from the MLE. The adopted criterion to compare two estimators is the risk
associated to the balanced loss function. The paper is organized as follows. In Section 1, we
recall some preliminaries that are useful for our main results. In Section 2, we present the main
results. Under the balanced loss function, we consider the general class of shrinkage estimators
5o = (1 — p(S?, 1X1)S2/ ||X||*)X which containing the James-Stein estimator and we study
the behavior of risks ratio of these estimators to the MLE. Thus we generalized some obtained
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results in the our published papers for the case where the risks functions calculated relatively to
the quadratic loss function.

1. Preliminaries

x|I2
We recall that if X is a multivariate Gaussian random N, (6,0%I,,) in R?, then ” 2” ~x2 ()
o

where X% (M) denotes the non-central chi-square distribution with p degrees of freedom and non-
2
16]]
o2’
Arnold [14]. Tt will be used to calculate the expectation of functions of a non-central chi-square
law’s variable.

centrality parameter A = We also recall the following definition given in formula (1.2) by

Definition 1. Let U ~ X;Q; (M) be non-central chi-square with p degrees of freedom and non-
centrality parameter A. The density function of U is given by

X e (Q)k pp/Dh-1g-a/2

e
fz) = ;
1;) Kl T(E+ k)2(p/2)+k

0< < +oo.

The right hand side (RHS) of this equality is none other than the formula
+o0o A .
e 2 (%)k 2
Z TXP+2ka
where X?, Lok 18 the density of the central x? distribution with p + 2k degrees of freedom.

To this definition we deduce that if U ~ x2 (), then for any function f : Ry — R, x2 ()
integrable, we have

E[fU)] = EgwlfU)]=
= Fl@)xg (V) do =
R4

S (3)"

- Z l R, (m)X12)+2k (0) dx] e_% i —

k=0
(). o

“+ o0
= Z l/ f(x)X;Q)+2kd93
k=0 LB+
A . . . A 9 . .
where P (5; dk) being the Poisson distribution of parameter ) and x;,, o, is the central chi-square

distribution with p + 2k degrees of freedom.
Using the Definition 1 and the Lemma 1 in Benmansour and Hamdaoui [4], we deduce that
if X ~ N, (9,02119), then

1 1) 1 1 p
02(p—2+'6'2)<E<||X2> o? <P—2+2K><02(p—2)(p+'0'2)' (2)

o2 o2

We recall the following Lemma given by Stein [15], that we will use often in the next.
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Lemma 1. Let X be a N (’U7J2) real random variable and let f : R — R be an indefinite
integral of the Lebesgue measurable function, f' essentially the derivative of f. Suppose also that

E|f' (X)] < +oo, then
B|(F2) 10| = B x)

g

For the next, assume that X ~ N, (9,0’2Ip) where 02 is unknown and estimated by S2

(S? ~ 02x2). Our aim is to estimate the unknown parameter § under the balanced loss function
defined as, for any estimator 0 of 6:

Ly (8,0) = wl|d = dol|* + (1 — w)[|6 — 6],
where 0 < w < 1. We associate to this balanced loss function the risk function defined by
R, (6,0) = E(L,(6,0)).

In this model, it is clear that the MLE is 6y = X, its risk function is (1 — w)po?.
Indeed:
R, (X,0) =wE(|X — X|I*) + (1 - w) E(|X - 0]*).

X -0
o2 ~ Xp-

X -0
As X ~ N, (6,0%I,), then ~ N, (0, 1,), thus

ag
Hence

E(|X - 6]%) = B(e>2) = op.

It is well known that §p is minimax and inadmissible for p > 3, thus any estimator dominates it
is also minimax.
Now, we consider the shrinkage estimator
2 N
5o = (1= oS IXIP) ) X (3)

2

S
In the special case when ¢(S?, || X|?) = a, (i.e. 6, = (1 — GW)X) where a is a real constant

may depend on n and p. It is easy to show that a sufficient condition for that J, dominating the
MLE, thus it is minimax, is that

2p = 2)(1 - w)

0<a<
n+2

-2 -w)

For a = a , we obtain the estimator that minimizes the risk function of the

n—+
estimators d,, and its called the James-Sten estimator given by

S° (1-wp-2) s
5]52(55:(1—6))(:(1— X. (4)
X112 n+2 X[
Using the Definition 1 and the Lemma 1, one can prove that the risk function of ;g is
Rul615,0) = (1 —w)po® — (1 —w)2(p— 2 ——0?B [ —— (5)
’ n+t2 p—2+12K)’

where K ~ P ”0H2 .
202
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From the formula 5, it is trivial that the James-Stein estimator § ;5 dominate the MLE, thus
it is minimax. Furthermore, the Theorem 4.1 given in Hamdaoui et al [13] show that

lim Rw(6.7570) _ w+c
npstoo R (X,0)  1+c’

(6)

Then one can deduce that the James-Stein estimators dominates the MLE, for the large values
of n and p.

2. Main results

In the next we need the following Lemma that shows a explicit formula of the risk function
of the estimator d, given in (3), which helps us to compute the limit of risks ratio.

Lemma 2. Assume the estimator 6, given in (3). Then
A¢7JS = Rw((ip, 0) - Rw(d]s,&) =

= 1 (= o™, X1 s = 240 5%, X)) s ) +

121 -w) x E (<d — (5%, 1X )82 = Ad — so(cﬂxfm02x§+20>>>x3+f&)> ’

2 — — 2
where 655 = (1—dS)X, PR ) [Vt R Ll

BIE ot 2 p
Proof.
Rul3,.8) = B, — X|?) + (1~ ) B8, — 6]?) =
= B8, — 15+ 15— X|?) + (1~ (I8, — b5+ b5~ 0]) =
= w{E (10, = dssl? + 1655 — X|I* +2(5, — dss,d55 — X)) }+ -
+ (1= w){E (10, = s> + 1075 = 0> + 20, — b5,855 — 0))} =
= Ru,(0s5,0) + E(||6, — 615*) + 2E({8, — 645,615 — X))+
+2(1 —w)E((6p, — 15, X —0)).
As 2\2
BIS, ~ dsl) = B (@ o(S% XD s ) ®
BUS, —ds.ds = X)) = —B (dld— pl%, X[ (3 ) o)
and
BUS, 61X~ 0) = B (((d - o(8% X)) 3z X, X ) =

= B((d - (% IXIP)S) ~ B ((X.0)d — o(8™ 1X 1) 737z ) = "

| X |2
= B((d— o(S?,[|X]*))S%)—

—\E ((d—w(ozxi,azxﬁu()\))) Xa )

X?)Jrz()\)
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The last equality comes from the conditional expectation and the formula (2.7) given in Benman-
sour and Mourid Benmansour and Mourid [16]. Using the formulas (7-9) and (10), we deduce
the desired result. O

Theorem 1. Assume the estimator 6, given in (3), with ¢ satisfies the conditions

(H]) 0> \/(l_w)(p_2)

n+2 ’
1
(H2) |d — ¢| < g(S?) a.s., where E [(g*(S?))'T] = O (2(1-5-7)> for some v > 0, in the
n
neighborhood of +oo.
el
If pgr_ﬁl&ﬁ = ¢, then
. R,(0,,0) w+Hc
1 w (Y28} — .
n,p1—>n—1&-oo Rw(X; 0) ]_ + C
Proof. From (H2) we have
2 ayy2 (8%)? 2 2y (8%)?

o’x2
X B ]d—o(S% | X[*)|S% + Ald — 0(0x, 0%X5 1 2(N)| = S
Xp+2( )

(5%)?
112

+2(1 —w)AE (g(SZ) X2f2(>\)> .

From the independence between || X||? and S? and the holder inequality, we get

< B (515 ) + 248 (5550 ) +20 - ) Blo(s7)5+

1 = = !
Ay gs < BT+ ((9(52))2(1+7)> E1+ ((52)2( gl )> E <||)(|2) +

1 142y 4(14+~) 1

=) 21\2(1+7) A+ 2 -
+2dB70E ((g(5%)2040)) B0 ((87) 155 >E<HX||2>+
+2(1 - w)ETF ((9(52))2(1”)) e ((52)2&31)) T

+2(1 — w)AETT ((9(52))2<1+v>> okice=n) ((52)2&23’) E (21(”) _

Xp+2
1 1 1 1 1
E =SEBE(l——— )<= :
<||X||2) o? (p—2+2K> o?p—2

1 1 1
E|———|=F <
<X§+2(/\)> (p—|—2K> p—2

(1-w)(p-2)
d="—rs

and
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we obtain

~

Ay ss 4 . 2\ 2(14y F(2 +2(1::_7)> T+
60 S Tope T (0E) ( ey ¥

n (14+~) 2(1+7)

3 ) (% 4 234

I 5} ¢ =) 52 2(147) N2 142y 7 4
pn+2) R I'(3)

2

142~
n ) 2(1+7)
4 1 F(E + 21(14; )
i b-Tee=y 21)2(1+7) 2 42y
2B ((g(57)70) ( F) +

1+2~
n 2(147) 2(1+7)
4 ||9||2 2\\2(1+ F(5+ 1+2 )
E2(1 o) ) L . .
+ gy e B ((0(5)P0) (s

2

Now, from stirling’s formula which expresses that in the neighborhood of +o00, we have
D(y +1) = v2mytoe

and the fact that asn
lim (1 + —) =%,

n—-+oo n
we have
F(%"‘w) w n 2 2
(rm) ~(5+2+1)
1424
I'(%) T\2 142y
and

:§+1+2’y.

2(147) |\ 20D
<F(72L + 1+21 )) ! n 1

Then, in the neighborhood of 400 we have

mits <o () (545 41) +

8

1 2 2
__° pIzam 2\\2(1+7) n 1
Jrp(n—|—2) ((Q(S)) ) 2+1—|—27jL *

4 1 n 1
— 20+ 2\\2(1+7) _
to ((9(5)) ) 2 T 112y) "

e ) 3+ )

1
- s 20621)2(147)) —
Using the condition E((g*(S5%)) )=0 (n2(1+V)

), then it exists M > 0 such that

A Js 4 _1 1 n 2 2
lim —22% < i —  MT (4241
n.potoo Ry (X, 0) "-VPI—E&OO{ (1 —w)p(p —2) n? (2 N ) *
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p(n+2) 1+ 2y
4 1 1 (n
M =

+QU n<2+1—|—27)Jr

+ L ||60||2 2(1+'y) 1 n + 1 +
o?(p—2) p02 n \ 2 + 2y

2
—&-LMMM)I <Z+2+1> +
1

—_

from formula 6, we get

i el 0 o Rulis,l) _wie
np—too R,(X,0) ~ np—toe Ry(X,0) 1+c¢

In the other hand

Ru(5,,0) =B (P2 IXP) ) + (1 - ) (H (1- et X)) X -0

X112

2)
and

| (1- wts? 1x17) 75 ) X - {Z (1w X‘)H )
:E{i(l—ga(smxn)f”g) Z 23 (1- s ”X')nf:n?)”}:

=1 =1
2 2 SQ ? 2 2 2 2 52 .
=1

Using (b) of Lemma 3.1 in Hamdaoui and Benmansour [17], we obtain

B (1~ st 1P ) x -0

0.22

2 2
X
_ E{(1 N T .- I ) N
T Xp+2K

o’x?
12K — 4( G e xp+2K)22>} =
9 Xp+2K

2 2.2 2 2 X2 2K ? 2
=0 E{(QD(U Xn» O Xp+2K) 2 — =1+ 2 ) Xp+2K}+
Xp+2K Xp+2K

2 9K 2
+O’2E{p— —(XHH; ) }
Xp+2K

Using the conditional expectation we get

2 2
X - 2K 4K?
E{p(””;)} —E{E{p X2ioK — +4KK”

Xp+2K Xp+2K
4K?
—Elp—(p42K) - —27 L4kl =
{p w2 = sk }
4K?
=Ep—-2—-(p—2+42K)- —— +4K ; =
(p=2- =242 - o bar)
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E{p2p(—pzf)22[(}'

From the hypotheses (H1), we deduce that

R“’((S“"’e)>w[<1_w)7§p+_22>2n02E(p21+2K>} tl-wle ZE{p 2_(]92_5)22}(}'

Using the last formula and the formula (2), we have

R, (3,,0) S wip —2)%n 1
R,(X,0) ~ p(n+2) p—2+ IWII2

)

—we?El1 -2 (-2
+(1 ) E{l ’ (p—2) (p—2)(p+|3!2)}.

2
From the condition lim ” I

= ¢, we obtain
p—+00 pU

lim R, (8,,0) > w+c.

n,p—+oo R, (X,0) 1+c¢

The formulas 11 and 12 give the desired result. ([

The following Proposition gives the same result as Theorem 1 for a particular shrinkage

function ¢. Indeed, we will choose g in L? and note in L2('*7) but with the constraint that the
function g is monotone non-increasing.

(12)

Proposition 1. Assume the estimator 0, given in (3), with ¢ satisfies the condition

—V/2(p —

b

1
(H2) |d — | < g(S?) a.s., where g is monotone non-increasing and E ((gQ(SQ))) =0 <n2> in
the neighborhood of +o0.
[l
If p£+oo po? =c, then
. R,(0,,0) w+c
1 L .
npotoo Ry(X,0)  1+c

Proof. From (H2) we have

2 (5%)°
X112

Agss < ((d (52 1X12)2 B2 4 aad - o2, 1x) >|(S))+2<1—w>><

X112

*xa
B (10— pl8% IXI)IS? 4+ N - (i 0o 5205 ) <
Xp+2( )

< B((0(52)2 51z ) + 208 (95 5 ) + 201 - B (o(5%)5%)+

2
+2(1 —w)AE <g(52)xziw) .

As ¢ is monotone non-increasing, the covariance of two functions, one increasing and the other

1 1
decreasing is negative and the fact that E = —FE | ———— ], we obtain
|| H o2 \p—2+2K

Bpuss < B((a(8)Po%n(n+ 8 (55 ) + 20D g5y
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x n(n +2)E (p_QIHK) +2n(1 — w)E(g(5?) {02 LB (p +12K> } .

Then

Bods n(n+2)E((g(SQ))2)E( = >+ e 2)E(g(sg))E<1)+

R, (X,0) ~ p(1—w) X2 ok Xotork

2n 9 % 9 1
+ 2Bl + P E ()

1
From condition F((g(5%))?) = O <n2> and using the Schwarz inequality, when n is in the

neighbourhood of +00, we obtain
1
E(g(5%) < EY2((9(5%))) < VM-,

where M is a real strictly positive. Then, when n is in the neighbourhood of +o0o, we have

Ay 5s - M E( 1 >+2(p—2)\/ME( 1 )+

R,(X,0) " p(1—w) \p—2+2K P p—2+2K
M 2v/M |6 1
NV YR
p 0%  po p+ 2K
M p 1 2p—2)vVM [ p 1
== ) o |t ) T
p(l—w) \p p+ p p p+
N 2vVM N 2VM (11012 (p+2 1
p o2\ po? p ) \p+2+ 1)
2
As lim % = ¢, then
p—+o00 po
. Ay s
1 i L <0
prioo Ry(X,0)
thus
R, (d,,0) . R,(6s,0) w+ec

li — 2 1 = .
nptoo Ry (X, 0) S npoto Ry(X,0)  1+ec

The proof of
R, (64,0) L wte
n,p——+00 Rw(X,G) T 14c’

is the same given in the Theorem 1. a

Conclusion

In this work, we studied the estimation of the multivariate normal mean distribution X ~
N, (G,UZIp) under the balanced loss function. We considered the class of estimators defined
by 6, = (1—¢(S%[|X?)S?/||X|*) X which are not necessarily minimax, and containing the
James-Stein estimator ¢ ;5 and we interested to establish the sufficient conditions for that the
estimators ¢, dominates the MLE X in the case where the dimension of the parameter spaces p
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and the sample size n are large. If the limit of the ratio [|0]|> /po? is a constant ¢ > 0 when p tends
to infinity, we showed that the risks ratio R, (,,0)/R.(X,0) tends to (w+c)/(1+¢) (0 <w < 1)
when n and p tend simultaneously to infinity. Thus we ensured that the estimators §, which are
not necessarily minimax, dominate the MLE X, even if the dimension of the parameter spaces
p and the sample size n tend simultaneously to infinity. An extension of this work is to obtain
the similar results in the case where the model has a symmetrical spherical distribution.

The authors would like to thank the editor and the referees for their comments and insightful
suggestions, and careful reading of the manuscript. This work was supported by the Thematic
Research Agency in Science and Technology (ATRST-Algeria).
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IIpeaennl oTHOIIIEHWIT PUCKOB OIIEHIINKOB yCaaKM
npu cbaslaHCMPOBaHHOI (DYHKIIMN MOTEPh

Mekku Tepbeue

Yuuepcurer Hayk u TexHosoruit, Moxamen Bymunad, Opan

Jlaboparopust anaiau3a u npuMenenus: udaydenns, USTO-MB

Opan, Amxup

Aobnenbkanep Benxasen

Vuusepcurer Tymu, Mycrada Crambyan

JlabopaTopusi reoMaTUKH, IKOJIOITUU U OKpYyzKalomel cpeanl, YHuBepcurer Mackapa
Tymb, Amxup

Abnenyp Xamaayu

Yuupepcurer Hayk u Texuosoruii, Moxamen Byaunad, Opan

JlaGoparopusi cratTucTuky u ciayvainbix Mozgeseit (LSMA) Vausepcurera Tinemcena
Opan, Askup

Awnnoraiusi. B 370ii cTaThe MBI 3ydaeM OIEHKY MHOIOMEPHOI0 HOPMAJIBHOIO CPEIHEro Mpu cHaIaHCh-
poBaHHO# GyHKIMKE TOTEPh. MBI IpeicTaB/IsIeM 31eCh KJIaCC OIEHOK YCAIKU, KOTOPBIH 06001aeT OeHKY
Ixeiimca-CreiiHa, U Mbl 3aMHTEPECOBAHBI B YCTAHOBJIEHUU ACUMIITOTUYECKOTO MOBEJEHUsI OTHOIIEHUN
PHUCKOB 3THX OIEHOK K OIeHKaM MaKCUMaJIbHOrO npasionogobust (MLE). Takum o6pasom, B ciydae, KO-
T2 Pa3MEPHOCTD IIPOCTPAHCTBA MAPAMETPOB U pa3Mep BBIOOPKH BEJIMKH, MBI OIPEIesIseM JTOCTATOTHBIE
YCJIOBUS [JIsl TOTO, YTOOBI IIPUBE/IEHHbIE PAHEE OIEHKH OBLIIN MUHUMAKCHBIMU.

KuaroueBbie ciioBa: cbanaHcupoBaHHasi (DYHKIUsI TOTEPh, omeHka J[xkeitmca-CreitHa, MHOroMepHast
rayccosa CilydaiiHasl BEeJIUUIHHA, HEIEHTPAJIbHOE PACIPEIeIeHIe XIU-KBaPAT, OIEHKN YCaIKN.
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