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1. Introduction and motivation

Let (X4,...,Xy) be independent copies of a non-negative random variable (rv) X with
cumulative distribution (cdf) F, defined over some probability space (2,.4,P), suppose that
X is right truncated by sequences of independent copies (Y1,...,Yy) of (rv) Y with cdf G,
throughout the paper, we assume that F and G are heavy-tailed in other words that F=1—F
and G = 1 — G are regularly varying ( RV) at infinity with respective negative indices —1/v;
and —1/7v,; we will use the notation: F € RV(—1/7;) and G € RV(—1/72) that is for any = > 0.

im F;(ta:) =z % and lim (i(ta:) =g (1)

The statistical literature on such problems of extremes [4] and [13] events is very extensive, one of
those problems is for the estimation of the mean E(X), this problem was already treated by [11]
and [3] in the case of complete data, nevertheless in numerous survival practical applications,
it happens that one is not able to observe a subject entire lifetime. The subject may leave the
study may survive to the closing data, or may enter the study at some time after its lifetime has
started, the most current forms of such incomplete data are censorship and truncation. As we
mention our aim is to propose an asymptotically normal estimator for the mean of X:

p=EX)= /000 F(r)dx. (2)
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Whose existence requires that 77 < 1, The sample mean for censored data is obtained and equal

to: - 5
_ " i T n—j n]
= () e 3)

i=2 j=1

the asymptotic normality of fi, is established by [14]. The model studied here is based on the
random right truncated (RRT) data, in the sense that the rv of interest X; and the truncated
rv Y, are observable only when X; < Y, whereas nothing is observed if X; > Y,;. We denote
(X;,Y;), i = 1;n to be observed data as copies of a couple of rv’s (X,Y") corresponding to the
truncated sample (X;,Y;)1<i<n, where n = ny is a sequence of discrete rv’s by the weak law
of large numbers, we have

%—)p:P(XgY) as N — oc.

We shall assume that p > 0, otherwise nothing will be observed. The joint P-distribution of on
observed (X,Y) is given by:
Yy
H(z,y) =P(X <2,V <y)=PX <2, Y<y|X<Y=p! / F(min(z, 2))dG(z).
0

The marginal distributions of the rv’s X and Y respectively denoted by F' and G are defined by:

F(x):p_l/OmG(z)dF(z) and G(y):p_l/OyF(z)dG(z),

Fz) = —p~ / T G)dF(z) and Cly) = —p-! / TR (2)dG(2).

For randomly truncated data; the truncation product-limit estimate is the maximum likelihood
estimate (MLE) for non-parametric models the well-known non-parametric estimator of F in
RRT model, proposed by [10] :

FIB ()= [ ew (1 - cnl( Xi)). (4)

1:X;>x

Where Cp,(z) = n~ ! 3 1(X; < z < Y;) the empirical counterparts of C(z) = P(X < 2 <Y).
i=1

i=
Since F and G are heavy-tailed their right endpoints are infinite and thus are equal. As we
mentioned this problem has been studied by [11] in the case of sets of complete data from heavy-
tailed distributions with a range of 4, € (1/2,1) throughout this paper we restrict ourselves on
the case where v belongs to the following range:

V2
142y

R={vmz>0: <71<1}. (5)

To ensure that the mean is finite and since we have applied both conditions of [15] paper:
dF(x)

D ey, b= [ E@ (©)

=] aw G

We find those conditions may be infinite when we deal with heavy-tailed distributions. Assumed
that both of X and Y are Pareto(v,) and Pareto(vys) respectively:

1-F(x)=F(x) = af%, 1-G(z)=G(z) = 2”5 with 71 >0, %2>0 and z > 1.
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We figure out that the central limit theorem (CTL) established by [15] cannot be applied in
the previous range when I, = I, = co. It is worth to mention that in the case of non truncation
we have 73 = 7 and 2 = oo so R abbreviate to Peng’s range. To define our new estimator
we introduce an integer sequences k = k, representing a fraction of extreme order statistics
satisfying the following conditions:

1<k<n, k— oo and k/n— 0 as n — oo. (7)

So by decomposing u as the sum of two terms

= /0 F(z)dx + /too F(z)dr = p1 + po. (8)

Then we can estimate yu;, i = 1,2 separately, after integration p; by parts and after changing
variables in py we may write:

By replacing ¢t by X,,_j,, where X;, < --- < X, , denote the order statistics pertaining to
X1,...,X,;and F by F%LB) we get that:

——(LB)

Xn—k,n
l/zl = Xn—k,nFn (X7L—k,n)+/ xdF»(nLB)(x)v
0

hence from [16] we may write:

1 iy FgLLB)(Xz,n)

——(LB)
(ank,n)"'_n On(XLn)

///Zl = ank,nFn Xi,n- (9)

i=1
Back to o building on the Karamata Theorem [9, page 363] we may write:

V1
-N

H2 o~ g tF(t) as n—> 00, 0<7y <1 (10)

Notice to estimate (10) it is based on estimator of tail index ~q, in view of the history of
the estimation of ;. In [8] introduced an estimator of 7; under random truncation. In [1]
established the asymptotic normality of this estimator under the tail dependence and the second
order conditions of regular variation, throughout this paper we use the estimation of [1]. So that
yield us to an estimator to us :

~

~ ——(LB
M2 = 1 71/\ ank,nFn( )
-Nn

(ankr,n)7 (11)

finally with (9) and (11), we build our estimator i for the mean (2) as follow:

n—k
. 1 1 FLB(Xz' n)
0 = Xn— n Fn Xn— n 2 n ninn
H k, ( k, )1 - + n ; Cn(Xl,n) 7

The rest of this paper is organized as follows. In the second section, we state our main result.

This is followed by a simulation study of our proposed estimator where we discuss its behavior
with a finite sample.
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2. The main results

In extreme value analysis and in the second-order frame work (see, e.g. [9]), weak approxima-
tion are achieved. Consequently, it seems quite natural to suppose that df’s F and G satisfy the
well-known second-order condition of regular variation we express in terms of the tail quantile
functions. That is we assume that for z > 0. we have

i UR(t0)/Up(t) 2 o™ 1 (12)
e Ar(t) 1
and Ug(tz)/Ug(t) — 27 1
. c(te)/Ug(t) —a™ a7 —
Tim ye = —, (13)

where 71,75 < 0 are the second-order parameters and Ag, Ag are functions tending to zero and
not changing signs near infinity with regularly varying absolute values at infinity with indices
T1,To respectively.

Theorem 2.1. Assume that (12 and 13) hold and VEA,(n/k)= O(1) for vo/(1+27) <71 < 1.
Let k = k,, denote an intermediate integer sequences satisfying (7), then i — p in probability:
_ VE@E—p)
F(Xn—k,,n)Xn—k,n

1 271 ¥ nl
= C1W(1) + / {CQSiTJr@Jrl + C38771+ﬁ+1 +cy ]og(s) + (;5} 37%71W(3)d3+
0

(’71 + 71— 1)(1 — 'Yl) + (]_ . Tl)
A-—m)(n+mn—-1)1—-m) VEA(n/k).

Corollary 2.1. Under the assumptions of Theorem 2.1 we suppose that VEAo(n/k) — X,

+

_ V(i — p) —>/\/<)\(% + 71 —1)(1—71)+(1—T1)702) s 1 oo,
F(Xn—k,n)Xn—k,n (1 - Tl)(71 + 71— 1)(1 - ’Yl)
Where
2. p=p) [p(1 —p) + 23] N P71 2p*(1 - p)
' (1—m)? L=y (I=y)(-n+2)
+ —2p* " 3p° —271p°(1 — p)
(=2+p)(—=4+3p)  (—24+p)(—2+mp+3p) (—2+p) (-1 +2)
5 9,D 1 3 2 3p—2, p
+ 3p 71(5 - m) = 2p”7i(1—p) 6 (m) +
N p’ylp— 1)1 —m) —p*yi {71(—293 +4—6p) +p*(n1 —2) + 2]
(=14+p)(=2+p)(1 =) (=1=p)+n(-p—-2)
L= —2p°(1 — p)2(1 —71) +7ip
p? (I=y)n+2)(-m+p+1)2
2 _ o 2 2 2
+2p (1-p)(1 721)+%p ( 2p ) +( 1 )
(1-m) p?—1 1-p
and
p= 72 .
Y1+ 72
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3. Simulation study

The main purpose of this section is to study the execution of our new estimator ji for that
we generate the data as follows:

e The interset and the truncated variable: we generate two sets of truncated and truncation
data both pulled for the first hand from Fréchet model:

F(z)=1- exp(—x%), G(r)=1- exp(—:c%), x>0
and the other hand from Burr model:
Fz)=(1+z¥)"%, G@)=1+z5)"%, >0 and 67,7 > 0.

e The observed data: for the proportion of observed data is equal to p = v2 /71 + 72 we take
p="T0%, 80% and 90 % we fix 6 = 1/4 and choose the values 0.6, 0.7 and 0.8 for ;. For
each couple (vy1,p); we solve the equation p = v2/v1 + 72 to get the pertaining ~»-value.

e We vary the common size N of both samples (Xy,...,Xy) and (Y1,...,YnN) .

e We apply the algorithm of [12] page 137, to select the optimal numbers of upper order
statistics (k*) used in the computation of 4;.

The performance of this new estimator named by [ is evaluated in terms of absolute bias
(A-bias) root mean squared error (RMSE) which are summarized in tables for Burr model in
Tables: 1 for v = 0.6, 2 for v = 0.7, 3 for 73 = 0.8 and for Fréchet models Tables: 4 for
v1 = 0.6, 5 for vy = 0.7, 6 for 73 = 0.8 adding two forms of graphical representation; we
consider two truncated schema of Burr truncated by Burr the first for vy = 0.6 and the second
for 41 = 0.8 we represent the Biases and the RMSE of our estimator as functions of k& ( number
of the longest order statistics).

After examining all tables and figures, and as expected, the sample size affects the estimate in
the sense that a larger N gives a better estimate. It is noticeable that the estimation accuracy of
estimator decreases when the truncation percentage increase and it is quite expected. Moreover
the estimator performs best for the larger value of the tail index larger than 0.5 especially when
truncation proportion is high.

4. Appendix

4.1. Proof of Theorem 2.1
We begin by setting U; = F(X;) and define the corresponding uniform tail process by
an(8)=VE(Uy,(s) — 5), for 0<s <1 where Uy,(s) = 1/k 1<U4 < k%) The weighted weak
i=1 i

approximation to ay,(s) given in terms of either a sequence of wiener processes (see, eg., [6]
and [5] ) or a single Wienner process as in Proposition 3.1 of [7], will be very crucial to our proof
procedure.

In the sequel, we use the latter representation which says that: there exists a Wiener process
W, such that for every 0 <n <1

sup | an(s) — W(s) |= 0, as n — oo. (14)
0<s<1

Observe that 1 — p = (i1 — p1) + (12 — p2) and starting by:

ank:n - ti
1 — p1 :/ F,(z)dx —/ F(x)dx,
0 0
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Table 1. Bias and RMSE of the mean estimator Table 2. Bias and RMSE of the mean estimator

based on samples of Burr models with v = 0.6 based on samples of Burr models with v, = 0.7
1 =0.6 — p =2.371 1 =0.7T — p=3.218
p=0.7 p=0.7
N A-bias RMSE k* n n N A-bias RMSE k* m n
300 0.002 0.130 27 2374 198 300 0.016 0.634 25 3.234 215
400 0.069 0.858 31 2440 278 400 0.008 0.067 34 3.227 290
500 0.072 0.257 39 2300 355 500 0.008 0.063 58 3.226 3362
1000 | 0.001 0.048 40 2.372 681 1000 | 0.004 0.023 88 3.222 701
p=0.8 p=0.8
N A-bias RMSE k* m n N A-bias RMSE k* m n
300 0.008 0.180 10 2.380 244 300 0.021 0.178 18 3.239 246
400 0.008 0.119 16 2.379 318 400 0.002 0.306 23 3.221 319
500 0.001 0.174 27 2372 399 500 0.002 0.367 39 3.220 403
1000 | 0.001 0.106 25 2372 811 1000 | 0.001 0.193 52 3.219 788
p=0.9 p=0.9
N A-bias RMSE k* I n N A-bias RMSE k™ I n
300 0.005 0.040 4 2406 268 300 0.005 0.028 19 3.223 268
400 0.006 0.028 7 2406 361 400 0.000 0.134 21 3.218 368
500 0.003 0.067 8 2374 445 500 0.008 0.246 25 3.226 458
1000 | 0.003 0.097 12 2374 886 1000 | 0.002 0.049 37 3.220 896

Table 3. Bias and RMSE of the mean estimator Table 4. Bias and RMSE of the mean estimator

based on samples of Burr models with ;3 = 0.8 based on samples of Frechét models with v1 = 0.6
1 = 0.8 — u = 4.896 y1 =0.6 — p=2.218
p=0.7 p=0.7
N A-bias RMSE  k* o n N A-bias RMSE k* I n
300 0.000 0.152 73 4.896 207 300 0.155 0.537 28 2373 170
400 0.029 0.070 75 4.925 278 400 0.153 0.186 25 2.371 217
500 0.065 0.631 147 4.961 348 500 0.004 0.065 32 2222 284
1000 | 0.013 0.302 228 4.919 697 1000 | 0.002 0.010 43 2.220 568
p=0.8 p=20.8
N A-bias RMSE  k* o n N A-bias RMSE k* I n
300 0.106 0.613 55  5.002 239 300 0.259 0.263 17 2475 178
400 0.014 0.446 14 4910 315 400 0.031 0.598 40 2.249 241
500 0.001 0.321 146  4.897 404 500 0.066 0.222 33 2284 293
1000 | 0.030 0.039 173 4.926 810 1000 | 0.074 0.076 31 2.307 569
p=20.9 p=09
N A-bias RMSE k* m n N A-bias RMSE £k~ I n
300 0.094 0.962 67 4.990 275 300 0.010 0.084 5 2228 180
400 0.058 0.240 86  4.954 359 400 0.009 0.185 11 2218 231
500 0.029 0.171 67 4.925 451 500 0.004 0.052 19 2222 314
1000 | 0.006 0.041 187 4.902 894 1000 | 0.008 0.106 23 2.227 594

we consider the following decomposition:
fir — pa =T, (x) + T, ().
Where:
T, (z) = / (Fp(z) —F(z))dz and T,,(z) = / F(x)dx.
0

Xn—kin
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Table 5. Bias and RMSE of the mean estimator Table 6. Bias and RMSE of the mean estimator
based on samples of Frechét models with v4 = 0.7 based on samples of Frechét models with v; = 0.8

1 =07 — pu=2.992 1 =0.8 — pu=4.591
p=0.7 p=0.7
N A-bias RMSE k* i n N A-bias RMSE k* i n
300 0.085 0.213 23  3.076 168 300 0.084 0.720 15  4.675 164
400 0.080 0.356 57 3.072 227 400 0.185 0.604 42 4.776 225
500 0.025 0.365 49 3.016 278 500 0.001 0.037 52 4.591 297
1000 0.020 0.385 58 3.011 564 1000 0.063 0.674 109 4.654 540
p=0.8 p=0.238
N A-bias RMSE k* i n N A-bias RMSE k* I n
300 0.031 0.171 30 3.022 169 300 0.267 0.282 12 4857 173
400 0.000 0.063 26 2.992 250 400 0.131 0.147 29  4.722 222
500 0.016 0.352 44 3.007 274 500 0.044 0.045 41  4.635 306
1000 0.001 0.122 48 2,993 598 1000 0.011 0.331 68 4.690 597
p=0.9 p=09
N A-bias RMSE k™ I n N A-bias RMSE k* I n
300 0.001 0.213 22 2993 193 300 0.222 0.301 37  4.813 172
400 0.082 0.206 25 3.074 225 400 0.128 0.283 72 4719 256
500 0.086 0.189 29 3.078 306 500 0.057 0.576 70  4.648 302
1000 0.000 0.257 40 2.992 584 1000 0.001 0.382 133 4.592 604

It follows after changing variables that:

1=
F — _
Tn1 (fﬂ) = Xn—k,n/ 7(0’161') Fn(xXn—k,n) - F(I'Xn—k,n)dxa
o F(apz)
Xn—tk,m, —_
Tng (.f) - _Xn—k,n/ F($X7L—k,n)dx~
1

In order to established the result of theorem we apply the results of [2], we have:

Fo(2Xp_tn) — FxX,_kn _a FE 1
ViEnleXnckn) ZB@Xnoin) _ o2 3 gty — 2% [ s E W s)as.
F(apz) M Y1+ Y2 0

After some elementary but tedious manipulations of integral calculus (change of variables and
integration by parts) and by making use of the uniform inequality of the second-order regularly
varying functions F, to T,,, (z) becomes:

Ty, () ! _m M1 a2
\/%17*:/ —ysT T 4 sTa T4 15
Xn—knF(ar) 0 = (11 +72) (11 +1) (15)

sTTYW (s)ds + op(1).

YY1
(71 +72) (11 +1)

Next we move toT,, (z) which we may write it as follow after changing variables:

\/Ezm(x) _ /xk \/EleX”*’“»”)
Xn—k',nF(Xn—k,n) 1 F(Xn—k,n)

t

_ 1 Xn—/k,n _ 1
—x 71dm—|—/ z vndr=1; +1,.
1

For I; we apply the results of [2]

— T1

VR Enkn) o = o T L RA (nk) 4 o, (A HI0)
F(Xn—k,n) T
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Fig. 1. Absolute Bias (left panel) and RMSE (right panel ) of i based on samples of size 1000
and v; = 0.6

from Burr distribution truncated by another Burr model with p = 0.7 (top) and p = 0.9 (bottom)

This implies, almost surely, that

/ ank:,n \/%F(Z'ank,n
1

1 Xn—tk n 1 .’L'_%
) —z ndr = / Ta
F(Xn—k,n) 1

Y1

1
VEA,(n/k)dz.
M
Which is equal after simple calculus and by using the mean value theorem we get I; = op(1),
t

for the second step by similar argument and using the fact that from Theorem 2.1 of [1] we have
X’I’l— n .
Vk ( ko _ 1) —yYW(1) = op(1) we get Iy = —yW(1) + 0p(1), that yield to:

\/Eznz (x)

= —YW(1) + 0p(1).
Xn—k,nF(Xn—k,n) P
The two approximation 15 and 16 together give:
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Fig. 2. Absolute Bias (left panel) and RMSE (right panel ) of i based on samples of size 1000
from Burr distribution truncated by another Burr model with p = 0.7 (top) and p = 0.9 (bottom)
and v; = 0.8

~ 1
M1 — p1 _/ ( _2m YY1 _a_q
— = —7vs 7+ S 72 —+
Xk F(Xn-kn) Jo (1 +72) (n+1)

o n s)ds — op(1).
HRCES T )W( J =W Foell)

V(fiz = pa)

Let us now treat term =

(17)

. Consider the following forms of o and fis:

T ()
A2 - 1 71/\ Xn—k,nF (Xn—k,n) and K2 :/ F(!E)dl‘,
- n t
-~ M = e
M2 — H2 = 1—AXn—k,nFn(Xn—k,n) - / F(.’L’)d:l)
gt t

After changing variables we can obtain:

e — e [ EE)
W_[tmmd m@[ o

and

— 281 —



Ben Dahmane Khanssa. .. Estimating the Mean of Heavy-tailed Distribution under Random. ..

’a _ :Y\l =
2 — ~ 5 )
1-m

so the previous equation leads to

- g0 = F(Xnkn) = /°° F(tz)
H2 — M2 2 k, ( k, )F (t) . F(t)

if we devise this equation by tF(t) we can get:

\/El/b — U2 _ \/E M X, » Fn(Xn—k,n) F(Xn—k,n) _ \/E/OO F(tx) da
1_ Al n—k,n F . .

tF(t) tf(t) (anktn) F(t)
%(To —
So after adding and Subtract some terms we can decompose W into the sum of:
0 Fn an n F an n an n
Il = \/% ’yl/\ (7 k, )7( k, ) |: k, N 1:|
1-%  F(t) F(Xp—kn) ¢
12 — \/gfn(i(n—k,n) E(Xn—k,n) |: ?1/\ . Y1 ]
Ft) F(Xpkn) - 1-m

- gi! F(‘Xn*k,n) Fn(ank,n)_
R e 7y [F(Xnk,n) 1}

F();;n(t)k,n) B (Xntk,n)—wi}

1
X _L
I .= Vk n [( - k’") 71—1]
1—’}/1 t

IG:Z\/E[ n —/IOOF(m)da:].

L=m

For I, we have, A1 — v1 and X, /t — 1. Since Fjs regular variation we obtain F(Xn_km) =
= (14 op(1))F(¢). From remark 4.1 of [1|, we have F,,(X,,—gn)/F(Xn—kn) = 1. So,

Xn— n
VEL = (14 0p(1))VEk <t’“ - 1) .
From Theorem 2.1 of [1] we have

Vi (X";’“” - 1) —YW(1) = op(1),

then
VEL = (1 + op(1)) 1“1 W(1). (18)
-MN
For I, by using a similar way of I;, we prove that:
1 ~
VL = (1 +0p<1))ﬁ¢%m - ). (19)
-N

From Theorem 3.1 of [2] we have

VRG: ) = VA gy

1—-7 Y1+ Y2

1
/ (2 =71 — vlog 8)87%71W(s)d5 +op(1).
0
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For I5 we have

_ 1Y Fo(Xnkn)
VEI; = (1+0p(1)) 1—m vk < F(Xn—kn) 1> |

From Theorem 4.1 of [1] we have

@(FTL(XMU _ 1) __m w(1)+’“”2/013%1vv(s)ds+01)(1).

F(ank,n) B 7t e (’71 + 72)2
So,
VT =(1 + op(1)) — 2 W (1)+
(1+ op(1) W)
N3 s (20)
+ (14 o0p(1)) L / 5”72 "W (s)ds + op(1).
(11 +72)" Q=) Jo
For 14, after the second-order condition of regular variation
VEL = op(1). (21)
For Is, using the mean value theorem with X,,_x ,/t — 1, we get
1 Xn— n
\/%15:7(1+0P(1))1 5 \/%( tk’ 1). (22)
-MN

From Theorem 2.1 of [1] we have
XTL_ n
vk (tk - 1) —W(1) = op(1),

then

VEI; = —(1+ op(1))5 j%wu).

oo
/ o Vndy = ,
1 L—m

16:/ x_l/"“dx—/ F;(tw)dx
1 1 F(t)

Then, by applying the uniform inequality of regularly varying functions (see, e.g., Theorem 2.3.9
in [9, page 48]) together with the regular variation of |A,|, we show that

For Ig, we have

then

VEA(t)
ViIg ~ ° : 23
Tt n -1 -m) (23)
Summing up above equations, we get
= _9 2 Vo4
\/E(/ig ) = (%72 7’1 +72)) wW(1) - —L / s~ W (s) log sds+
tF(¢) (1=71) (n +2) Y1+ 72 Jo
2 - VoA kAo (n/k
Y172 (722 71) / s 73 1W(S)d$+ f (Tl/ )+ (24)
(1 +72)"(1=m) Jo 1-7n
VEA(t)

m+n—-1)00-m)

Finally, Summing up equations 17 and 24 achieves the proof.

- 283 —



Ben Dahmane Khanssa. .. Estimating the Mean of Heavy-tailed Distribution under Random. ..

4.2. Proof of Corollary 2.1
We set:

\/ﬁ(ﬁ—u) _ (m+n -1 —y)+(1—m) .
F(Xn—k,n)Xn—k,n =4 * (1 - 7—1)(71 + 71— 1)(1 - ’71) \/EAO( /k)’

where A = ClAl + CQAQ + CgAg + C4A4 + C5A5 with
1, 1
AL =W(1), Ag= / sT 7 W(s)ds, A= / sTTW(s)ds,
0 0

1 1
Ay = / P log(s)W(s)ds, As= / 3_%_1'W(s)ds.
0 0

After elementary but tedious computations, we find the following covariance as asymptotic vari-
ance: I'SI, where

p(l—p Ip
r:(( ),—ml,p(l—p),71p2(1—p)7p(1—p)+ n )
1771 ].*"}/1

and I'? is the transpose of ', ¥ is the variance-covariance matrix:

1 a2 a3 a4 o015
Q12 Q2 Q23 O24 Q25
YX=| a3 a3 @3 Q34 Q35 |,
14 Q24 Q34 Q4 Q45
Q15 Q25 Q35 Q45 Q5

2p?
BAD =1 o= BAS) = o i)

1 —2p)

as = E(A2) = (7u

3= BB = i)

1-2p 2vip 2(1—p)? 1
ay = E(A?) = - - + ’
4 (A3) Pr1—p2 (1—-p3 (-1—-p)  (1—p)2@2p—1)2
4p —3
(07 Z:E AQ = )
) S )
a1 2 1= E(AlAQ) = ﬁa
1
a13:=E(A1Az) = L
-N

1

Q.4 1= E(A1A4) = _F7
1

ars = E(AAs) = 7’

3p? p

g3 = E(A2A3) = 2(=2+p)(p— 1)(—2 + v1p + 3p) - (=24+p)(=m +2)’

3p2 D 1 2 3p—2 P 2
= E(AAy) = ~ — + —_—
02,4 (A284) 2(p—1) (2 4—p) 6 1+p/) "’
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—’m 1

a5 = B(A2ls) = T+ (24 (-l —ptm(—2+p)  —2+p’

1 1 » 2 1 \2
azy = E(A3Ay) = + 4+ — ,
st = BB = e o 2 Tt D (—1+p2) (1—19) ]
1 PPy
ass = E(A3As) = ++ :
s =B = T i+ ) D - P -t D)
(1-p)° l—p

ays = E(ALAs) =
o (A48s) (=n—-1)2p-1)  p?
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OneHKa cpe/iHero pacnpejesjieHnsl C TAXKeJbIMIA XBOCTaMU
Npu CIy4vYallHOM ycedeHUuu

Ben /JJaxman Xancca
Benatus Parex

Bbpaxumun Bpaxum
JlabopaTopust TPUKJIAIHON MaTeMATHKHI
Yuusepcurer Moxamesa Xujiepa
Buckpa, Amxup

Awnnoramusi. Bnoxuosnenusie paboroit JI. [IsHa mo orneHke cpe/iHero 3HaveHUsI paclupeieieHus C Tsi-
2KEeJIBIMH XBOCTaMHU B CJIydae IOJIHBIX JAHHBIX, MBI IIpeJJjlaraeM aJIbTePHATUBHYIO OLIEHKY U U3ydaeM ee
ACUMITOTUYIECKYIO HOPMAJILHOCTD, KOTJIa, JIEJI0 KACAeTCsl YCEeUeHHO! CclIpaBa CIydJaiiHONW BeJTMInHBI. VIMu-
TAIMOHHOE UCCJIEJIOBAHUE BBIMIOJIHAETCS I aHAJIN3a TTOBEJIEHUS KOHEYHOI BBIOOPKU Ha IIpeJIaraeMoit
OIIEHKE.

KurouyeBbie ciioBa: ciiydaiiHoe ycedeHue, olleHKa Xujuia, oneHka JIunmaena-Benna, pacrpenenenus c

TAXKEJIbIMUA XBOCTaMU.
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