Fixed Points of Set-valued F-contraction Operators in Quasi-ordered Metric Spaces with an Application to Integral Equations

Ehsan Lotfali Ghasab*
Hamid Majani ${ }^{\dagger}$
Department of Mathematics
Shahid Chamran University of Ahvaz
Ahvaz, Iran
Ghasem Soleimani Rad ${ }^{\ddagger}$
Young Researchers and Elite club, West Tehran Branch Islamic Azad University
Tehran, Iran

Received 01.01.2020, received in revised form 22.09.2020, accepted 20.11.2020

Abstract

In this paper, we prove some new fixed point theorems involving set-valued F-contractions in the setting of quasi-ordered metric spaces. Our results are significant since we present Banach contraction principle in a different manner from that which is known in the present literature. Some examples and an application to existence of solution of Volterra-type integral equation are given to support the obtained results.

Keywords: fixed point, sequentially complete metric spaces, F-contraction, ordered-close operator.
Citation: E.L. Ghasab, H. Majani, G.S.Rad, Fixed Points of Set-valued F-contraction Operators in Quasi-ordered Metric Spaces with an Application to Integral Equations, J. Sib. Fed. Univ. Math. Phys., 2021, 14(2), 150-158. DOI: 10.17516/1997-1397-2021-14-2-150-158.

1. Introduction and preliminaries

It is well known that the Banach contraction principle is a very useful and classical tool in nonlinear analysis [3]. After that, the generalization of this principle has been a heavily investigated. For example, in 1969, Nadler [10] extended the Banach contraction principle for set-valued mapping as follows:

Theorem 1.1. Let (X, d) be a complete metric space and $T: X \rightarrow C B(X)$ be a set-valued operator. Also, let $H: N(X)^{2} \rightarrow[0,+\infty]$ be the Hausdorff metric on $N(X)$ which defined by

$$
H(A, B)=\max \left\{\sup _{a \in A} D(a, B), \sup _{b \in B} D(b, A)\right\}
$$

where $D(a, B)=D(B, a)=\inf _{b \in B} d(a, b)$. Assume that there exists $\alpha \in[0,1)$ such that $H(T x, T y) \leqslant \alpha d(x, y)$ for all $x, y \in X$. Then T has a fixed point in X.

[^0]Then Ćirić [6] extended Nadler's result as follows:
Theorem 1.2. Let (X, d) be a complete metric space and $T: X \rightarrow C B(X)$ be a set-valued operator. Assume that there exists $\alpha \in[0,1)$ such that $H(T x, T y) \leqslant \alpha M(x, y)$ for all $x, y \in X$, where

$$
M(x, y)=\max \left\{d(x, y), D(x, T x), D(y, T y), \frac{1}{2}[D(x, T y)+D(y, T x)]\right\}
$$

Then T has a fixed point in X.
In 2011, Amini-Harandi [2] considered some fixed point theorem for set-valued quasicontraction mappings in metric spaces.

Theorem 1.3 ([2]). Let (X, d) be a complete metric space and $T: X \rightarrow C B(X)$ be a k-set-valued quasi-contraction with $k \in\left[0, \frac{1}{2}\right)$; that is,

$$
H(T x, T y) \leqslant k \max \{d(x, y), D(x, T x), D(y, T y), D(x, T y), D(y, T x)\}
$$

for all $x, y \in X$. Then T has a fixed point in X.
On the other hands, Ran and Reurings [12], and Nieto and Rodríguez-López [11] studied the Banach contraction principle distinctly from another point of view. They imposed a partial order to the metric space (X, d) and discussed on the existence and uniqueness of fixed points for contractive conditions and for the comparable elements of X (also, see [1, 4, 6-8, 13, 15]). Moreover, in 2012, Wardowski [14] obtained a new fixed point theorem concerning F-contraction for single-valued mapping.

Theorem $1.4([14])$. Let (X, d) be a complete metric space and $T: X \rightarrow X$ be an F-contraction. Then T has an unique fixed point $x^{*} \in X$ and for every $x_{0} \in X$ a sequence $\left\{T^{n} x_{0}\right\}_{n \in \mathbb{N}}$ is convergent to x^{*}.

In this paper, we obtain several fixed point results for set-valued F-contraction mappings in quasi-ordered metric spaces. Also, we prepare some examples and an application to the existence of a solution for Volterra-type integral equation. Throughout this paper, the family of all nonempty closed and bounded subsets of X is denoted by $C B(X)$, and the family of all nonempty subsets of X by $N(X)$.

Definition $1.1([9])$. Let (X, d) be a metric space with a quasi-order " \preceq " (pre-order or pseudoorder; that is, a reflexive and transitive relation). We say that X is sequentially complete if every Cauchy sequence whose consecutive terms are comparable in X converges.

Definition $1.2([9])$. Let (X, d) be a metric space with a quasi-order " \preceq ". For two subsets A, B of X, we say that $A \sqsubseteq B$ if each $a \in A$ and each $b \in B$ imply that $a \preceq b$.

Definition $1.3([9])$. Let (X, d) be a metric space with a quasi-order " \preceq ".
(i) A subset $D \subset X$ is said to be approximative, if the set-valued mapping $P_{D}(x)=\{p \in D$: $d(x, D)=d(p, x)\}$ for all $x \in X$ has nonempty value.
(ii) The set-valued mapping $G: X \longrightarrow N(X)$ is said to be have approximative values (for short, AV), if $G x$ is approximative for each $x \in X$.
(iii) The set-valued mapping $G: X \longrightarrow N(X)$ is said to be have comparable approximative values (for short, CAV), if $G x$ has approximative values for each $x \in X$ and for each $z \in X$, there exists $y \in P_{G z}(x)$ such that y is comparable to z.
(iv) The set-valued mapping $G: X \longrightarrow N(X)$ is said to be have upper comparable approximative values (for short, UCAV), if $G x$ has approximative values and for each $z \in X$, there exists $y \in P_{G z}(x)$ such that $y \succeq z$.
(v) The set-valued mapping $G: X \longrightarrow N(X)$ is said to be have lower comparable approximative values (for short, LCAV), if $G x$ has approximative values and for each $z \in X$, there exists $y \in P_{G z}(x)$ such that $y \preceq z$.

Definition 1.4 ([9]). The set-valued mapping G is said to has a fixed point if there exists $x \in X$ such that $x \in G x$.

2. Main result

From the idea of Wardowski [14], we consider a new type of F-contraction for set-valued operator in quasi-ordered metric spaces as follows.

Definition 2.1. Let $H: N(X)^{2} \rightarrow[0,+\infty]$ be the Hausdorff metric on $N(X)$ and $F: \mathbb{R}^{+} \longrightarrow \mathbb{R}$ be a mapping satisfying the following conditions:
(F1) F is increasing, i.e., for all $a, b \in \mathbb{R}^{+}$such that $a \leqslant b$, then $F(a) \leqslant F(b)$;
(F2) for each sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ of positive numbers $\lim _{n \rightarrow \infty} a_{n}=0$ if and only if $\lim _{n \rightarrow \infty} F\left(a_{n}\right)=-\infty$;
(F3) there exists $k \in(0,1)$ such that $\lim _{\alpha \rightarrow 0^{+}} \alpha^{k} F(\alpha)=0$.
A mapping $G: X \longrightarrow C B(X)$ is said to be an F-contraction if there exists $\tau>0$ such that

$$
\begin{equation*}
H(G x, G y)>0 \Longrightarrow \tau+F(H(G x, G y)) \leqslant F(d(x, y)) \tag{1}
\end{equation*}
$$

for all $x, y \in X$.
Example 2.1. If $F(a)=\ln a+a$ for all $a>0$ and $H: N(X)^{2} \rightarrow[0,+\infty]$ is the Hausdorff metric on $N(X)$, then F satisfies (F1)-(F3) and each mapping $G: X \longrightarrow C B(X)$ is an F-contraction such that $H(G x, G y) e^{H(G x, G y)-d(x, y)} \leqslant e^{-\tau} d(x, y)$ for all $x, y \in X$.
Example 2.2. If $F(a)=\ln a$ for all $a>0$ and $H: N(X)^{2} \rightarrow[0,+\infty]$ is the Hausdorff metric on $N(X)$, then F satisfies (F1)-(F3) and each mapping $G: X \longrightarrow C B(X)$ is an F-contraction such that $H(G x, G y) \leqslant e^{-\tau} d(x, y)$ for all $x, y \in X$.

Definition 2.2. Ordered-close operator is set-valued operator $G: X \rightarrow C B(X)$ if for two monotone sequences $\left\{x_{n}\right\},\left\{y_{n}\right\} \subset X$ and $x_{0}, y_{0} \in X ; x_{n} \rightarrow x_{0}, y_{n} \rightarrow y_{0}$ and $y_{n} \in G\left(x_{n}\right)$ imply $y_{0} \in G\left(x_{0}\right)$.

Theorem 2.1. Let (X, d, \preceq) be a sequentially complete metric space. Also, let the mapping $G: X \longrightarrow C B(X)$ be an ordered-close set-valued F-contraction and has UCAV. Then G has a fixed point $x^{*} \in X$.

Proof. Let $x_{0} \in X$. If $x_{0} \in G x_{0}$, then our proof is complete. Otherwise, since G has UCAV, there exists $x_{1} \in G x_{0}$ with $x_{0} \neq x_{1}$ and $x_{0} \preceq x_{1}$ such that $d\left(x_{0}, x_{1}\right)=\inf _{x \in G x_{0}} d\left(x_{0}, x\right)=D\left(x_{0}, G x_{0}\right)$. Continue this procedure, we obtain a non-decreasing sequence $\left\{x_{n}\right\}$, where $x_{n} \in G x_{n-1}$ with $x_{n-1} \preceq x_{n}$ and $x_{n-1} \neq x_{n}$ such that $d\left(x_{n}, x_{n+1}\right)=\inf _{x \in G x_{n}} d\left(x_{n}, x\right)=D\left(x_{n}, G x_{n}\right)$. On the other hand,

$$
D\left(x_{n}, G x_{n}\right) \leqslant \sup _{x \in G x_{n-1}} D\left(x, G x_{n}\right) \leqslant H\left(G x_{n}, G x_{n-1}\right) .
$$

Therefore, $d\left(x_{n}, x_{n+1}\right) \leqslant H\left(G x_{n}, G x_{n-1}\right)$. From (F1), we have $F\left(d\left(x_{n}, x_{n+1}\right)\right) \leqslant$ $F\left(H\left(G x_{n}, G x_{n-1}\right)\right)$. In addition, G is F-contraction. Thus,

$$
\begin{align*}
& F\left(d\left(x_{n}, x_{n+1}\right)\right) \leqslant F\left(H\left(G x_{n}, G x_{n-1}\right)\right) \\
& \leqslant F\left(d\left(x_{n}, x_{n-1}\right)\right)-\tau \\
& \leqslant F\left(d\left(x_{n-2}, x_{n-1}\right)\right)-2 \tau \\
& \leqslant \tag{2}\\
& \vdots \\
& \leqslant F\left(d\left(x_{0}, x_{1}\right)\right)-n \tau
\end{align*}
$$

We obtain $\lim _{n \rightarrow \infty} F\left(d\left(x_{n}, x_{n+1}\right)\right)=-\infty$ that together with (F2) gives

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 \tag{3}
\end{equation*}
$$

Denote $\gamma_{n}=d\left(x_{n}, x_{n+1}\right)$. By (F3), there exists $k \in(0,1)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \gamma_{n}^{k} F\left(\gamma_{n}\right)=0 \tag{4}
\end{equation*}
$$

By (2), we have

$$
\begin{equation*}
\gamma_{n}^{k} F\left(\gamma_{n}\right)-\gamma_{n}^{k} F\left(\gamma_{0}\right) \leqslant \gamma_{n}^{k}\left(F\left(\gamma_{0}\right)-n \tau\right)-\gamma_{n}^{k} F\left(\gamma_{0}\right)=-\gamma_{n}^{k} n \tau \leqslant 0 \tag{5}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Letting $n \rightarrow \infty$ in (5), and applying (3) and (4), we obtain $\lim _{n \rightarrow \infty} n \gamma_{n}^{k}=0$. Hence, there exists $n_{1} \in \mathbb{N}$ such that $n \gamma_{n}^{k} \leqslant 1$ for each $n \geqslant n_{1}$. Consequently, we have

$$
\begin{equation*}
\gamma_{n} \leqslant \frac{1}{\sqrt[k]{n}}<1 \tag{6}
\end{equation*}
$$

for all $n \geqslant n_{1}$. In order to show that $\left\{x_{n}\right\}$ is a Cauchy sequence, let $m, n \in \mathbb{N}$ with $m>n \geqslant n_{1}$. From the definition of the metric and (6), we obtain

$$
\begin{equation*}
d\left(x_{n}, x_{m}\right) \leqslant \gamma_{m-1}+\gamma_{m-2}+\cdots+\gamma_{n}<\sum_{i=n}^{\infty} \gamma_{i} \leqslant \sum_{i=n}^{\infty} \frac{1}{\sqrt[k]{i}} \tag{7}
\end{equation*}
$$

From (7) and the convergence of the series $\sum_{i=n}^{\infty} \frac{1}{\sqrt[k]{i}}$, we conclude that $\left\{x_{n}\right\}$ is Cauchy sequence. From the completeness of X, there exists $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} x_{n} \rightarrow x^{*}$. Since G is orderedclose operator, $\left\{x_{n}\right\}$ is monotone and $x_{n+1} \in G\left(x_{n}\right)$, we deduce $x^{*} \in G\left(x^{*}\right)$ and x^{*} is a fixed point of G.

Theorem 2.2. Let (X, d, \preceq) be a sequentially complete metric space. Also, let the mapping $G: X \rightarrow C B(X)$ be an ordered-close set-valued F-contraction and has LCAV. Then G has a fixed point $x^{*} \in X$.

Proof. The proof is similar to Theorem 2.1.
Example 2.3. Consider the sequence $\left\{S_{n}\right\}_{n \in \mathbb{N}}$ by $S_{1}=1$ and $S_{n}=1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$. Let $X=\left\{S_{n}: n \in \mathbb{N}\right\}$ and $d(x, y)=|x-y|$ for all $x, y \in X$. Also, we define the relation " \preceq " on X by $x \preceq y \Leftrightarrow S_{p} \leqslant S_{q}$ for all $x=S_{p}, y=S_{q} \in X$. Then (X, d, \preceq) is a sequentially complete metric space. Also, let the mapping $G: X \rightarrow C B(X)$ be a ordered-close
set-valued mapping and has LCAV defined by $G\left(S_{1}\right)=\left\{S_{1}\right\}$ and $G\left(S_{n}\right)=\left[1, S_{n-1}\right]$ for all $n>1$. Then G is an F-contraction with F as in Example 2.1 and $\tau=1$. To see this, let us consider the following calculations:

For each $m, n \in \mathbb{N}$ with $m>2$ and $n=1$, we have

$$
H\left(G\left(S_{m}\right), G\left(S_{1}\right)\right)=\max \left\{\sup _{a \in G\left(S_{m}\right)} D\left(a, G\left(S_{1}\right)\right), \sup _{b \in G\left(S_{1}\right)} D\left(b, G\left(S_{m}\right)\right)\right\}=d\left(S_{m-1}, S_{1}\right)
$$

and

$$
\begin{aligned}
\frac{H\left(G\left(S_{m}\right), G\left(S_{1}\right)\right)}{d\left(S_{m}, S_{1}\right)} e^{H\left(G\left(S_{m}\right), G\left(S_{1}\right)\right)-d\left(S_{m}, S_{1}\right)} & =\frac{d\left(S_{m-1}, S_{1}\right)}{d\left(S_{m}, S_{1}\right)} e^{d\left(S_{m-1}, S_{1}\right)-d\left(S_{m}, S_{1}\right)}= \\
& =\frac{S_{m-1}-1}{S_{m}-1} e^{S_{m-1}-S_{m}}= \\
& =\frac{m^{2}-m-2}{m^{2}+m-2} e^{-m}<e^{-m}<e^{-1} .
\end{aligned}
$$

Now, for each $m, n \in \mathbb{N}$ with $m>n>1$, we have

$$
H\left(G\left(S_{m}\right), G\left(S_{n}\right)\right)=\max \left\{\sup _{a \in G\left(S_{m}\right)} D\left(a, G\left(S_{n}\right)\right), \sup _{b \in G\left(S_{n}\right)} D\left(b, G\left(S_{m}\right)\right)\right\}=d\left(S_{m-1}, S_{n-1}\right)
$$

and

$$
\begin{aligned}
\frac{H\left(G\left(S_{m}\right), G\left(S_{n}\right)\right)}{d\left(S_{m}, S_{n}\right)} e^{H\left(G\left(S_{m}\right), G\left(S_{n}\right)\right)-d\left(S_{m}, S_{n}\right)} & =\frac{d\left(S_{m-1}, S_{n-1}\right)}{d\left(S_{m}, S_{n}\right)} e^{d\left(S_{m-1}, S_{n-1}\right)-d\left(S_{m}, S_{n}\right)}= \\
& =\frac{S_{m-1}-S_{n-1}}{S_{m}-S_{n}} e^{S_{n}-S_{n-1}+S_{m-1}-S_{m}}= \\
& =\frac{m+n-1}{m+n+1} e^{n-m}<e^{n-m}<e^{-1} .
\end{aligned}
$$

Therefore, by Theorem $2.2, S_{1}$ is a fixed point of G.
Theorem 2.3. Let (X, d, \preceq) be a sequentially complete metric space. Suppose that the mapping $G: X \rightarrow C B(X)$ is an ordered-close set-valued F-contraction and has $A V$. If there exists $x_{0} \in X$ such that $\left\{x_{0}\right\} \sqsubseteq G x_{0}$, then G has a fixed point $x^{*} \in X$.

Proof. If $x_{0} \in G x_{0}$, then the proof is finished. Otherwise, by Definition 1.2, we have $x \succeq x_{0}$ for any $x \in G x_{0}$. Since G has approximative values, there exists $x_{1} \in G x_{0}$ with $x_{1} \succeq x_{0}$ and $x_{0} \neq x_{1}$ such that $d\left(x_{0}, x_{1}\right)=D\left(x_{0}, G x_{0}\right)$. Continue this procedure, we have a non-decreasing sequence $\left\{x_{n}\right\}$ with $x_{n-1} \preceq x_{n}$, where $x_{n} \in G x_{n-1}$ and $x_{n} \neq x_{n-1}$ such that $d\left(x_{n}, x_{n+1}\right)=$ $=\inf _{x \in G x_{n}} d\left(x_{n}, x\right)=D\left(x_{n}, G x_{n}\right)$. The rest of this proof is the same as that of Theorem 2.1.

Theorem 2.4. Let (X, d, \preceq) be a sequentially complete metric space. Suppose that the mapping $G: X \rightarrow C B(X)$ be an ordered-close set-valued F-contraction and has AV. If there exists $x_{0} \in X$ such that $G x_{0} \sqsubseteq\left\{x_{0}\right\}$, then G has a fixed point $x^{*} \in X$.

Proof. The proof is similar to Theorem 2.2.
Theorem 2.5. Let (X, d, \preceq) be a sequentially complete metric space. Also, let the mapping $G: X \longrightarrow C B(X)$ be an ordered-close set-valued and has UCAV. If we have

$$
\begin{equation*}
F(H(G x, G y)) \leqslant F(M(x, y))-\tau \tag{8}
\end{equation*}
$$

for all $x, y \in X$, where

$$
M(x, y)=\max \left\{d(x, y), D(x, G x), D(y, G y), \frac{1}{2}[D(x, G y)+D(y, G x)]\right\}
$$

then G has a fixed point $x^{*} \in X$.
Proof. Let $x_{0} \in X$. If $x_{0} \in G x_{0}$, then the proof is complete. Otherwise, Since G has UCAV, there exists $x_{1} \in G x_{0}$ with $x_{0} \neq x_{1}$ and $x_{0} \preceq x_{1}$ such that $d\left(x_{0}, x_{1}\right)=\inf _{x \in G x_{0}} d\left(x_{0}, x\right)=D\left(x_{0}, G x_{0}\right)$. Continue this procedure, we obtain a non-decreasing sequence $\left\{x_{n}\right\}$ with $x_{n-1} \preceq x_{n}$, where $x_{n} \in G x_{n-1}$ and $x_{n} \neq x_{n-1}$ such that $d\left(x_{n}, x_{n+1}\right)=\inf _{x \in G x_{n}} d\left(x_{n}, x\right)=D\left(x_{n}, G x_{n}\right)$. On the other hand,

$$
D\left(x_{n}, G x_{n}\right) \leqslant \sup _{x \in G x_{n-1}} D\left(x, G x_{n}\right) \leqslant H\left(G x_{n}, G x_{n-1}\right)
$$

Therefore, $d\left(x_{n}, x_{n+1}\right) \leqslant H\left(G x_{n}, G x_{n-1}\right)$. Now, from (F1) and (8) we have

$$
F\left(d\left(x_{n}, x_{n+1}\right)\right) \leqslant F\left(H\left(G x_{n}, G x_{n-1}\right)\right) \leqslant F\left(M\left(x_{n}, x_{n-1}\right)\right)-\tau
$$

for all $n \in \mathbb{N}$, where

$$
\begin{aligned}
& M\left(x_{n}, x_{n-1}\right)= \\
& \quad=\max \left\{d\left(x_{n}, x_{n-1}\right), D\left(x_{n}, G x_{n}\right), D\left(x_{n-1}, G x_{n-1}\right), \frac{1}{2}\left[D\left(x_{n}, G x_{n-1}\right)+D\left(x_{n-1}, G x_{n}\right)\right]\right\}
\end{aligned}
$$

Once more, note that $x_{n+1} \in G x_{n}$ and $D\left(x_{n}, G x_{n}\right)=d\left(x_{n}, x_{n+1}\right)$. Hence, we have

$$
\begin{aligned}
M\left(x_{n}, x_{n-1}\right) & \leqslant \max \left\{d\left(x_{n}, x_{n-1}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right), \frac{1}{2}\left[d\left(x_{n}, x_{n}\right)+d\left(x_{n-1}, x_{n+1}\right)\right]\right\} \leqslant \\
& \leqslant \max \left\{d\left(x_{n}, x_{n-1}\right), d\left(x_{n}, x_{n+1}\right), \frac{1}{2}\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right]\right\} \leqslant \\
& \leqslant \max \left\{d\left(x_{n}, x_{n-1}\right), d\left(x_{n}, x_{n+1}\right)\right\}
\end{aligned}
$$

If $\max \left\{d\left(x_{n}, x_{n-1}\right), d\left(x_{n}, x_{n+1}\right)\right\}=d\left(x_{n}, x_{n+1}\right)$, then $F\left(d\left(x_{n}, x_{n+1}\right)\right) \leqslant F\left(d\left(x_{n}, x_{n+1}\right)\right)-\tau$, which contradicts with $\tau>0$. Thus, we have $F\left(d\left(x_{n}, x_{n+1}\right)\right) \leqslant F\left(d\left(x_{n}, x_{n-1}\right)\right)-\tau$. The rest of the proof is in the similar manner given in Theorem 2.1.

Theorem 2.6. Let (X, d, \preceq) be a sequentially complete metric space. Assume that the mapping $G: X \longrightarrow C B(X)$ is an ordered-close set-valued and has LCAV, and $F(H(G x, G y)) \leqslant$ $F(M(x, y))-\tau$ for all $x, y \in X$, where

$$
M(x, y)=\max \left\{d(x, y), D(x, G x), D(y, G y), \frac{1}{2}[D(x, G y)+D(y, G x)]\right\}
$$

Then G has a fixed point $x^{*} \in X$.
Proof. Let $x_{0} \in X$. If $x_{0} \in G x_{0}$, then the proof is complete. Otherwise, Since G has LCAV, there exists $x_{1} \in G x_{0}$ with $x_{0} \neq x_{1}$ and $x_{1} \preceq x_{0}$ such that $d\left(x_{0}, x_{1}\right)=\inf _{x \in G x_{0}} d\left(x_{0}, x\right)=D\left(x_{0}, G x_{0}\right)$. Continue this procedure, we obtain a non-increasing sequence $\left\{x_{n}\right\}$ with $x_{n} \preceq x_{n-1}$, where $x_{n} \in G x_{n-1}$ and $x_{n} \neq x_{n-1}$ such that $d\left(x_{n}, x_{n+1}\right)=\inf _{x \in G x_{n}} d\left(x_{n}, x\right)=D\left(x_{n}, G x_{n}\right)$. The rest of this proof is the same as that of Theorem 2.5.

Theorem 2.7. Let (X, d, \preceq) be a sequentially complete metric space. Assume that the mapping $G: X \rightarrow C B(X)$ is an ordered-close set-valued and has $A V$, and $F(H(G x, G y)) \leqslant F(M(x, y))-\tau$ for all $x, y \in X$, where

$$
M(x, y)=\max \left\{d(x, y), D(x, G x), D(y, G y), \frac{1}{2}[D(x, G y)+D(y, G x)]\right\}
$$

If there exists $x_{0} \in X$ such that $\left\{x_{0}\right\} \sqsubseteq G x_{0}$, then G has a fixed point $x^{*} \in X$.
Proof. If $x_{0} \in G x_{0}$, then the proof is finished. Otherwise, by Definition 1.2, we have $x \succeq x_{0}$ for any $x \in G x_{0}$. Since G has approximative values, there exists $x_{1} \in G x_{0}$ with $x_{1} \succeq x_{0}$ and $x_{0} \neq x_{1}$ such that $d\left(x_{0}, x_{1}\right)=D\left(x_{0}, G x_{0}\right)$. Continue this procedure, we have a non-decreasing sequence $\left\{x_{n}\right\}$ with $x_{n-1} \preceq x_{n}$, where $x_{n} \in G x_{n-1}$ and $x_{n} \neq x_{n-1}$ such that $d\left(x_{n}, x_{n+1}\right)=$ $=\inf _{x \in G x_{n}} d\left(x_{n}, x\right)=D\left(x_{n}, G x_{n}\right)$. The rest of this proof is the same as that of Theorem 2.5.

Theorem 2.8. Let (X, d, \preceq) be a sequentially complete metric space. Assume that the mapping $G: X \rightarrow C B(X)$ is an ordered-close set-valued and has $A V$, and $F(H(G x, G y)) \leqslant F(M(x, y))-\tau$ for all $x, y \in X$, where

$$
M(x, y)=\max \left\{d(x, y), D(x, G x), D(y, G y), \frac{1}{2}[D(x, G y)+D(y, G x)]\right\}
$$

If there exists $x_{0} \in X$ such that $G x_{0} \sqsubseteq\left\{x_{0}\right\}$, then G has a fixed point $x^{*} \in X$.
Proof. If $x_{0} \in G x_{0}$, then the proof is finished. Otherwise, by Definition 1.2 , we have $x_{0} \succeq x$ for any $x \in G x_{0}$. Since G has approximative values, there exists $x_{1} \in G x_{0}$ with $x_{0} \succeq x_{1}$ and $x_{0} \neq x_{1}$ such that $d\left(x_{0}, x_{1}\right)=D\left(x_{0}, G x_{0}\right)$. Continue this procedure, we have a non-increasing sequence $\left\{x_{n}\right\}$ with $x_{n} \preceq x_{n-1}$, where $x_{n} \in G x_{n-1}$ and $x_{n} \neq x_{n-1}$ such that $d\left(x_{n}, x_{n+1}\right)=$ $=\inf _{x \in G x_{n}} d\left(x_{n}, x\right)=D\left(x_{n}, G x_{n}\right)$. The rest of this proof is the same as that of Theorem 2.5.

3. Application to integral equation

As an application of our results, we will consider the following Volterra integral equation:

$$
\begin{equation*}
x(t)=\int_{0}^{t} K(t, s, x(s)) d s+g(t) \tag{9}
\end{equation*}
$$

where $I=[0,1], K \in C(I \times I \times \mathbb{R}, \mathbb{R})$ and $g \in C(I, \mathbb{R})$ for all $t \in I$.
Let $C(I, \mathbb{R})$ be the Banach space of all real continuous functions defined on I with the sup norm $\|x\|_{\infty}=\max _{t \in I}|x(t)|$ for all $x \in C(I, \mathbb{R})$ and $C(I \times I \times C(I, \mathbb{R}), \mathbb{R})$ be the space of all continuous functions defined on $I \times I \times C(I, \mathbb{R})$. Alternatively, the Banach space $C(I, \mathbb{R})$ can be endowed with Bielecki norm $\|x\|_{B}=\sup _{t \in I}\left\{|x(t)| e^{-\tau t}\right\}$ for all $x \in C(I, \mathbb{R})$ and $\tau>0$, and the induced metric $d_{B}(x, y)=\|x-y\|_{B}$ for all $x, y \in C(I, \mathbb{R})$ (see [5]). Also, let $f: C(I, \mathbb{R}) \rightarrow C(I, \mathbb{R})$ defined by $f x(t)=\int_{0}^{t} K(t, s, x(s)) d s+g(t)$ and $g \in C(I, \mathbb{R})$. Moreover, we define the relation " \preceq " on $C(I, \mathbb{R})$ by $x \preceq y \Leftrightarrow\|x\|_{\infty} \leqslant\|y\|_{\infty}$ for all $x, y \in C(I, \mathbb{R})$. Clearly the relation " \preceq " is a quasi-order relation.

Theorem 3.1. Let $\left(C(I, \mathbb{R}), d_{B}, \preceq\right)$ be a sequentially complete metric space. Suppose that G : $C(I, \mathbb{R}) \rightarrow C B(C(I, \mathbb{R}))$ is a set-valued operator such that $G(x)=\{f x(t)\}$ and has UCAV. Let $K \in C(I \times I \times \mathbb{R}, \mathbb{R})$ be an operator satisfying the following conditions:
(i) K is continuous;
(ii) $\int_{0}^{t} K(t, s,$.$) for all t, s \in I$ is increasing;
(iii) there exists $\tau>0$ such that $|K(t, s, x(s))-K(t, s, y(s))| \leqslant e^{-\tau}|x(s)-y(s)|$ for all $x, y \in$ $C(I, \mathbb{R})$ and all $t, s \in I$.

Then, the Volterra-type integral equation (9) has a solution in $C(I, \mathbb{R})$.
Proof. By definition of G, we have $H(G x, G y)=d_{B}(f(x), f(y))$ for all $x, y \in C(I, \mathbb{R})$. Thus,

$$
\begin{aligned}
H(G x, G y)=d_{B}(f(x), f(y)) & =\sup _{t \in I}\left\{\left|\int_{0}^{t} K(t, s, x(s)) d s-\int_{0}^{t} K(t, s, y(s)) d s\right| e^{-\tau t}\right\} \\
& \leqslant \sup _{t \in I}\left\{\int_{0}^{t}|K(t, s, x(s))-K(t, s, y(s))| e^{-\tau t} d s\right\} \\
& \leqslant \sup _{t \in I}\left\{\int_{0}^{t} e^{-\tau}|x(s)-y(s)| e^{-\tau t} d s\right\} \\
& \leqslant\|x-y\|_{B} \sup _{t \in I}\left\{\int_{0}^{t} e^{-\tau} d s\right\} \\
& =e^{-\tau} d_{B}(x, y)
\end{aligned}
$$

Taking logarithms, we have $\ln (H(G x, G y)) \leqslant \ln \left(e^{-\tau} d_{B}(x, y)\right)$, which implies that $(\tau+$ $+\ln (H(G x, G y))) \leqslant \ln \left(d_{B}(x, y)\right)$. Now, consider the function $F(t)=\ln (t)$ for all $t \in C(I, \mathbb{R})$ and $\tau>0$. Then, all conditions of Theorem 2.1 are satisfied. Consequently, Theorem 2.1 ensures the existence of fixed point of G that this fixed point is the solution of the integral equation.

We are grateful to the Research Council of Shahid Chamran University of Ahvaz for financial support (Grant number: SCU.MM99.25894).

References

[1] R.P.Agarwal, M.A.El-Gebeily, D.O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., 87(2008), 1-8.
[2] A.Amini-Harandi, Fixed point theory for set-valued quasi-contraction maps in metric spaces, Appl. Math. Lett., 24(2011), 1791-1794. DOI: 10.1016/j.aml.2011.04.033
[3] S.Banach, Surles operations dans les ensembles abstraits et leurs application auxequations integrales, Fund. Math., 3(1922), 133-181.
[4] T.G.Bhaskar, V.Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65(2006), 1379-1393.
[5] A.Bielecki, Une remarque sur la methode de Banach-Cacciopoli-Tikhonov dans la theorie des equations differentielles ordinaires, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 4(1956), 261-264.
[6] Lj.Ćirić, Fixed points for generalized multi-valued contractions, Math. Ves., 24(1972), 265-272.
[7] E.L.Ghasab, H.Majani, E.Karapinar, G.Soleimani Rad, New fixed point results in F-quasimetric spaces and an application, Adv. Math. Phys., 2020, 2020:9452350.
DOI: $10.1155 / 2020 / 9452350$
[8] Z.Kadelburg, S.Radenović, Notes on some recent papers concerning F-contractions in b metric spaces, Construct. Math. Anal., 1(2018), 108-112.
[9] H.P.Masiha, F.Sabetghadam, Fixed point results for multi-valued operators in quasi-ordered metric spaces, Appl. Math. Lett., 25(2012), 1856-1861.
[10] S.B.Nadler, Multi-valued contraction mappings, Pacific J. Math., 30(1969), 475-488.
[11] J.J.Nieto, R.Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order., 22(2005), 223-239.
[12] A.C.M.Ran, M.C.B.Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132(2004), 1435-1443.
[13] R.Saadati, S.M.Vaezpour, Monotone generalized weak contractions in partially ordered metric spaces, Fixed Point Theory., 11(2010), 375-382.
[14] D.Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012, 2012:94.
[15] D.Wardowski, Solving existence problems via F-contractions, Proc. Amer. Math. Soc., 146(2018), 1585-1598.

Неподвижные точки многозначных операторов F-сжатия в квазиупорядоченных метрических пространствах с приложением к интегральным уравнениям

Эхсан Л. Гасаб
Хамид Маджани
Университет Шахида Чамрана в Ахвазе
Ахваз, Иран
Гасем С. Рад
Исламский университет Азад
Тегеран, Иран

Abstract

Аннотация. В этой статье мы докажем некоторые новые теоремы о неподвижных точках, включающие многозначные F-сжатия в условиях квазиупорядоченных метрических пространств. Наши результаты важны, поскольку мы представляем принцип банахового сжатия иначе, чем тот, который известен в настоящей литературе. Для подтверждения полученных результатов приведены некоторые примеры и приложение к существованию решения интегрального уравнения типа Вольтерра. Ключевые слова: неподвижная точка, F-сжатие, секвенциально полные метрические пространства, оператор упорядоченного замыкания.

[^0]: *e-lotfali@stu.scu.ac.ir https://orcid.org/0000-0002-8418-9351
 ${ }^{\dagger}$ Correspondent: h.majani@scu.ac.ir; majani.hamid@gmail.com
 ${ }^{\ddagger}$ gha.soleimani.sci@iauctb.ac.ir; gh.soleimani2008@gmail.com
 © Siberian Federal University. All rights reserved

