Journal of Siberian Federal University. Mathematics & Physics 2021, 14(1), 69-73

DOI: 10.17516/1997-1397-2021-14-1-69-73
VIIK 512.54

A Note on Computation MTs with Time in Instructions
or with Tapes of Fixed Length

Vladimir V. Rybakov*

Siberian Federal University

Krasnoyarsk, Russian Federation

A.P. Ershov Institute of Informatics Systems
Novosibirsk, Russian Federation

Received 18.09.2020, received in revised form 23.11.2020, accepted 26.12.2020

Abstract. In this short note we analyze the computation algorithms modelled by Church-Turing-Post
machines with algorithms for computation which use amount of time spent for computation (number
of steps) in their own definitions. We notice some difference and illustrate that there are distinctions
in behaviour of such algorithms; also we consider working of MTs on tapes of fixed length and observe
again noticed difference.

Keywords: computations, universal Church-Turing Machines, time of computation.

Citation: V.V.Rybakov, A Note on Computation MTs with Time in Instructions or with Tapes of
Fixed Length, J. Sib. Fed. Univ. Math. Phys., 2021, 14(1), 69-73. DOI: 10.17516/1997-1397-2021-14-
1-69-73.

1. A small recall

We use here standard well known definitions and results from logic in computer science and
computability theory (cf. [1-4]). A Church-Post-Turing machine consists of (i) a finite tape
(string) divided into cells, one next to the other. Each cell contains a symbol from some finite
alphabet (we use here 1, 0, L, R — left end, right end); (ii) a head that can read and write
symbols on the tape and move on the tape left and right one (and only one) cell at a time;
(iii) a state register that stores the state of the machine, among these is the special start state
with which the state register is initialized and the stop state — receiving the which the machine
stops.

As usual a program for Church-Post-Turing machine (MT is sequel) is a finite collection of
instructions of sort ¢;a; = ¢n,b;(LRS) and the computation by MT is the modification of the
tape (string) in accordance with this instructions.

We will consider a modification of this sort MTs by only one more feature — taking to account
the amount of steps, that is the amount of the applied instructions

q;a; = gmbi(LRS),

during computation on the tape of MT, during transformation by MT its tape (string).

In this note we will consider computation by MT as the procedure of transformation its tape.
The algorithms (informal), thus, we will mean as any informal (and formal) instructions for
transformation tapes filled in with 0 and 1. So, algorithms works with finite strings (tapes) with
cells filled in with 0 or 1 and with symbols L at the beginning and R in the end — denoting

*Vladimir_ Rybakov@mail.ru
(© Siberian Federal University. All rights reserved

— 69 —

Vladimir V. Rybakov A Note on Computation MTs with Time in Instructions. ..

the beginning of the string and the end of the string respectively (so the strings look as typical
input-output tape of the Turing machine). Any algorithm starts on a tape, and, if terminates
during run, we call the final state of the tape to be output this algorithm. Standard formal
Turing Machines work exactly this way. For example, the standard MT computing a function f,
starting on the tape filled in with n 1 terminates on its run in sees output with f(n) 1if f(n) is
defined.

2. What we do

Our considerations will use sequence of programs MT,,,n € N for MTs which contain all
possible (finite) MT-programs. This sequence to be generated by an algorithm GM writing out
these programs in the sequence (that algorithm may, for example, be viewed as Monkey—Typing
on Typewriter with only care not to repeat the same MT,,s; so programs may be with wrong
structure, not working correctly, not working at all, etc. So, for just modelling we do not care
now about efficiency, etc.)

That algorithm for generating M,,n € N may be any one chosen, for example the best (if
possible?). But as soon as it is chosen we fix it and work longer with only such one, and any
program M, (sequence of its instructions) to be computed by that GM generating algorithm.
So, we may admit that we have a file FGM written in a computer hard drive, where any n — th
record is a MT-program, program MT,, FGM(n) := MT,. We may consider this FGM as a
realization of universal Turing machine. In computer science, universal Turing machine (UTM)
is a Turing machine that simulates an arbitrary Turing machine on arbitrary input (cf. [7]). We
do not restrict ourselves here with consideration just universal Turing functions — algorithms
are more general substance.

We consider now an algorithm A,,,n € N, any A, is based on the MT,, the program MT,.
A, starts and creates finite strings (tapes) with cells filled in with 0 or 1 and with symbols L at
the beginning and R in the end

Definition 1. Given with any natural number m represented as the string Sy, starting with L
next filled with m symbols 1 and concluded with R the algorithm A, does the following.

It launches the program MT, on S,,,

the STEP in sequel means the application of some instruction

of the program from MT, and

(i) If MT,, stops on a step before the number of steps exceeds 106 x m x n, stops correctly
being on stopping internal state and looking on a cell containing a;, it changes the value a; to
the opposite (1 to 0, 0 to 1) and again stops;

(ii) If MT,, stops on a step before the number of steps exceeds 106 x m x n but stays not in a
stopping configuration (does not get stopping internal state, that is it does not have instruction
how to continue, got suspended) we simply stop and as earlier above change the value of the cell
observed by the reading head to the opposite and stop.

(iii) If MT, does not stops on a step before the number of steps exceeds 10° x m x n we
change the value of the cell observed by the reading head on the step 106 x m x n to the opposite
and stop (if it is R we move one cell left and if it is L we move one cell right).

Lemma 1. The procedure A, is a computable algorism transforming any given string Sp, in a
finite string A, (Sy), this algorithm always terminates after at most 106 x m x n+2 steps of M,
and the output string A,(Sy) has length at most m + 10° x m x n + 4.

Proof is evident.

Definition 2. Consider now the algorithm Alg which transform any given string Sy, in Au(Sm).
That procedure again is an algorithm, which terminates at any given input Sy, .

— 70 —

Vladimir V. Rybakov A Note on Computation MTs with Time in Instructions. ..

Here there is a small trick — in fact we use potentially infinite number of Church-Turing
programs MT,,,m € M. But notice that an algorithm after using it does not cease to be an
algorithm

Lemma 2. There is no Turing machine MT,, such that MT,, transforms any input string Sy, as
Alg does. That is for any input Sy,, starting both on the string Sy, they would produce identical
output tapes on any step of computation before stop (of applying machine instructions from MT,
and Alg (A.,) respectively) and stop after the same amount of applying such instructions.

Proof. Assume the opposite, and take such MT,, which works on all strings S,, as Alg does.
Launch Alg and MT,, on S,,. Then by definition of Alg we launch A,, on S,, and by definition of
A,, we have that some of (i) or (ii) from the definition of A,, above holds, and then the outputs
MT,, and Alg will be different or else (iii) holds and then MT,, will take more steps (amount
of applications of the machines instructions) comparing with Alg; more precisely - they - steps
- instructions — exactly the same for both before Alg stops. But any algorithm does not may
stop and not stop simultaneously, and MT,, continues to work. O

Definition 3. We fiz now what we mean by modelling by a Turing Machine MT an Algorithm
B transforming the TM-strings. We say so if starting on any string (only after stating to
make transformations on strings), at any step of strings-transformation, produce identical output
strings before stop or B stops but MT continue to work.

Notice that before starting to work on a string the algorithm B may do any preparation job
before touching the string (do any necessary magic, as we do above by choosing A,,).

Theorem 1. There is no Turing machine MT modelling computation of the algorithm Alg on
numbers S,,. That is such MT that, for any string S, (number n), after starting on the string
Sn, MT would produce output strings (at any its step) the same as the algorithm Alg starting at
Sy does and they would stop simultaneously (at the same number of steps) (Alg always stops.).

Proof. Assume not and such MT exists. Then for some MT, programs in MT,, and MT are
exactly the same. Then Lemma 2 gives a contradiction. O |

In general this looks enough curious. Alg cannot be modelled by Turing machines in precise.
So, whichever machine MT to be taken — it either gives different with Alg outputs on stops, or
else starting to work at a string S,,, Alg stops at a step but MT produces the same sequences
of output strings until the final one for Alg and yet compulsory continue to work.

Remark. Now on we would like briefly comment how this approach might be viewed in the
light of computable functions and Church-Turing thesis. At first glance all the same all holds
(We considered above algorithms of transformation strings with numbers as more general case
to get more general results). But else there are serious distinctions in the case of functions
computability.

Getting on computable functions — they (computable by MT) are those f for which there is
an MT which computes it. That is, given with any input S,,, MT gives output Sy, if f(n) is
defined or does not stop or gets suspended if f(n) is not defined. It is sufficient just to a little
adjust the definition of the algorithms A, above to model it. More precisely if A,, stops in case
(i) and outputs the number r € N it has to change it to » + 1 and stop. The rest is the same.
Then the modified one accordingly Alg will be an algorithm, which in particular, computes some
one argument computable functions.

Notice that we might start with M7 and MT5 as with MTs computing = + 1 and = + 2, so
this Alg indeed computes then a function which domain is not empty — function is non-trivial.
And again no Turing machine M, or M,, modelling this function Alg (in the sense pointed above
— transforming the machines tape the same way). The proof is as for the our theorem above.

- 71 —

Vladimir V. Rybakov A Note on Computation MTs with Time in Instructions. ..

Though, in this case no way to say that there is no usual Turing machine computing Alg
as function. The matter is that after long additional computation (after stop Alg in (iii)) the
machine MT (admittedly computing as Alg) may return back after some more steps and make
all cleaning to make the same configuration as Alg did on the stop. So, this way machine MT
may precisely compute the function computable by Alg. So, this case the words may be only
that this machine nonetheless, as earlier above, transforms the tape different way and longer as
Alg does — uses more applied instructions.

But as to simply (or more generally if you like) looking at the algorithms transforming strings
(tapes) of numbers it (the theorem what proved above) looks curious and a bit unusual — there is
an algorithm which cannot be precisely (in pointed sense) modelled by Church-Turing machines.

3. Computation on tapes with fixed length

Now we would like to transfer our result to MT working at tapes of fixed length, this way we
may illustrate results of previous section on impossibility to precisely model any algorithm with
a Turing machine without implementing time (number of steps) while computation.

Consider some finite fixed non-empty alphabet A and the set A™ of all nonempty worlds over
the alphabet, admit yet that 1 and 0 belong to A. For a given mapping f : AT — AT we say f
is normal if for any w € AT the length of w is at most length of f(w).

For any MT working at tapes with the alphabet A the normal mapping fj; is defined as
follows.

Definition 4. For any w € AT we start MT at w, if MT ever stops in stopping condition the
resulting tape is far(w). So, far(w) may be sometimes not defined, so the mapping in principle
may be only partial.

Theorem 2. For any A with at most 2 letters there is a computable normal mapping f which is
not partial (f(w) is defined for any w) which is different from any far for any MT M working
at the alphabet A.

That is again this computable f looks as not modelling precisely by any MT.

Proof. Let again M,,,n € N be any fixed computable enumeration of all MTs on the alphabet A.
Define now the function f as follows. Let w € AT, if w is not the sequence of 1, put f(w) = w.
Otherwise, if w is the string of length n of 1-s, we start M,, on w. Then compulsory one of the
following events holds.

(1) M, extends the length of w; (2) M, does not extend the length of w and correctly or not
correctly stops; (3) M,, does not extend the length of w but fall in a loop (not stops).

As soon as one of this holds (that is always computable) we change the first symbol on the
tape on anything different from the first symbol on the initial tape w. It is easy to see that
f is computable and everywhere defined. Besides, if f(w) ever stops on tape w (that is not
computable but nonetheless) of length n with only 1 in cells, fus, (w) # f(w). So, f # fu, for
any M,. O

So, indeed this computable f cannot be precisely modelled by Mts. But if we will extend the
length of type w and may then return back to clean up the content, the argument above again
does not work.

I thank A. Morozov for his idea to extend my initial results to MTs working on tapes of fixed
length as it is represented in Section 3.

Supported by RFBR and Krasnoyarsk Regional Fund of Science, research project 18-41-
240005; Supported by RFFI (-RFBR) and Krasnoyarsk Regional Fund of Science, research project
18-41-240005; supported by the Krasnoyarsk Mathematical Centre and financed by the Ministry
of Science and Higher Education of the Russian Federation (Grant no. 075-02-2020-1534/1).

— 72 —

Vladimir V. Rybakov A Note on Computation MTs with Time in Instructions. ..

References

[1] G.S.Boolos, J.P.Burgess, R.C.Jeffrey, Computability and Logic (4th ed.), Cambridge UK:
Cambridge University Press, 2002.

[2] M.Davis, Engines of Logic: Mathematicians and the origin of the Computer (1st ed.), New
York, W. W. Norton and Company, 2000.

[3] Neary, Turlough, Woods, Damien, "Small Weakly Universal Turing Machines", 17th Inter-
national Symposium on Fundamentals of Computation Theory, Lecture Notes in Computer
Science, 5699, Springer, (2009b), 262-273.

[4] Y.Rogozhin, Small Universal Turing Machines, Theoretical Computer Science, 168(1996),
no. 2, 215-240. DOI: 10.1016/S0304-3975(96)00077-1.

3aMeTKa O BBIUMCJEHUSIX HA MallnHaX ThIOpuHra
CO BpeMeHeM BBIYUCJIEHUII B MAIIMHHBIX MHCTPYKIASIX
NJIN Ha JIEHTaX (PUKCHUPOBAHHON JAJINHBI

Baaagumup B. PribakoB

Cubupckuii dejiepajbHbIl yHUBEPCUTET
Kpacnosipck, Poccuiickaa Peeparimst

WNucturyt cucrem nadopmaruku nuMm. A. I1. Epmosa
Hosocubupck, Poccniickass ®eneparyst

Amnnoranus. B 9T0if KOPOTKOI cTaThe Mbl aHAJIN3UPYEM BBIUHCINTEIbHBIE AJITOPUTMBbI, MOJIEJIUPYEMbIE
mamuHamu Yepua, Treropunra, IlocTta B cpaBHeHUU C aJropuTMaMu, KOTOPBIE HCIOIB3YIOT BPEMsS BBI-
YUCJIEHUsSI B BBIMUCIUTEIbHBIX MHCTPYKIMsIX. MBI 3aMedaeM, 4TO CylecTByeT HEKOTOPOE CyIIeCTBEHHOE
pa3ju4ue B IOBEJEHNN TAKUX BBIYNCIIEHHI, 1 HIIIOCTPUPYEM 3TO IpuMepamu. Mul paccmarpusaeM pado-
Ty MamuH TblopuHra Ha JIeHTaX (GUKCHPOBAHHON JJINHLI TAKKe 3aMedaeM IPUMedaTeIbHOe PA3InIne.

KuarouyeBrble cjioBa: BBIYHIC/IEHHS, aJlOPUTM, YHUBEPCAJIbHbIE MAIIUHBI epua-TbiopuHra, BpeMs Bbl-

YUCJICHUA.

- 73 —

