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Abstract. The ionic conductivity of nanopores with electrically conductive surface is investigated
theoretically. The generalization of two-dimensional (2D) Space–charge model to calculating the ion
transport under the applied potential gradient in a nanopore with constant surface potential is proposed
for the first time. The results are compared with one-dimensional (1D) Uniform potential model, which is
derived from the Space–charge model by assuming the independence of potential, ion concentrations, and
pressure on the radial coordinate. We have found that the increase of surface potential magnitude leads
to the enhancement of conductivity due to the increase of counter–ion concentration inside the nanopore.
It is shown that the 1D and 2D models provide close results when the pore radius is smaller than the
Debye length. Otherwise, the 1D model essentially overestimates the ionic conductivity. According to
the 2D model, the ionic conductivity decreases with increasing the nanopore radius, while the 1D model
predicts the opposite trend, which is not physically correct.
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Introduction
The ion transport in single nanochannels and nanoporous membranes is relevant in many

technological applications such as separation and purification [1], water treatment [2], energy
harvesting and conversion [3], electrochemical sensors [4], and nanofluidic devices [5]. When
ionic solutions are confined in nanoscale geometries, the interactions of ions with the surface
become of primary importance. The transport of ions can be switched or tuned by combining
the variation of pore geometry and surface physicochemical properties with external stimuli, such
as electric field, radiation, temperature, solution pH, etc. [6, 7].
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The ability of nanoporous media to transport ions under the applied electric field is char-
acterized by the ionic conductivity, which is the ratio of ionic current to the voltage difference.
Membranes with high conductivity are advantages in such processes as electrodialysis [8], ca-
pacitive deionization [9], and hydrogen energy conversion [10]. The experimental measurements
of ionic conductivity, streaming potential, and potential at zero current in mica membranes
were performed in [11]. The conductivity of ion–exchange membranes under alternating current
was investigated in [12]. Recently, the measurements of ionic current through microfluidic de-
vices containing one or several single wall carbon nanotubes revealed linear or voltage–activated
current–voltage dependence [13]. Nanoporous membranes with electrically conductive surface
were suggested in [14] by electroless plating of gold on the pore walls of track–etched polymeric
support. It was shown that their ionic selectivity can be switched from cation to anion by varying
the potential applied to the membrane surface. The authors of [15] found that the increase of
applied potential magnitude resulted in the enhancement of ionic conductivity in gold nanotube
membranes. The effect of changing the ionic selectivity and conductivity of alumina nanofiber
membranes with conductive carbon coating was demonstrated in [16].

The theoretical description of ion transport in charged nanoporous membranes was developed
in [17] on the basis of Navier–Stokes, Nernst–Planck, and Poisson equations. Now it is known
as the two–dimensional Space–charge (SC) model, which takes into account the radial and lon-
gitudinal variations of potential, ion concentrations, and pressure in a cylindrical nanopore with
constant surface charge density. This model was successfully employed for predicting the ionic
conductivity in mica and alumina membranes [11,18]. The SC model was revisited recently [19]
by providing an essential simplification of working formulas, and further used to predict the
ionic conductivity of carbon nanotubes [20]. The extension of SC model to the nanopores with
constant surface potential was first suggested in [22] and applied to description of membrane
potential at zero current in conductive nanopores [23–25]. It was demonstrated that the induced
charge effects can essentially affect the magnitude of membrane potential. The simplification of
SC model known as Uniform potential (UP) model was suggested in [19] by neglecting the radial
variations of potential, ion concentrations, and pressure. This one-dimensional model is valid for
nanopores, which effective diameter is comparable with or smaller than the Debye length. The
extension of UP model to the presence of both electronic and pH-dependent chemical charges
was proposed in [26]. It was successfully employed in [27] for describing the experimental results
of [14] on switchable ionic selectivity. It should be noted that the studies of carbon nanotube [13]
and gold nanotube [14,15] membranes rise interest in the theoretical analysis of ionic conductivity
on the basis of SC and UP models with constant surface potential boundary condition. The com-
parative analysis of these models could provide the conditions, under which the two-dimensional
SC model can be replaced by one-dimensional UP model with much lower computational cost.

In this work, we theoretically investigate the ionic conductivity of nanopores with electri-
cally conductive surface and its dependence on the surface potential and nanopore radius. The
comparison between results obtained from two-dimensional SC model and one-dimensional UP
model is performed.

1. Mathematical models of nanopore ionic conductivity
1.1 Two-dimensional space charge model

We are interested in studying the ionic current through a nanoporous membrane, which
separates two reservoirs denoted by L (left) and R (right). The reservoirs contain aqueous
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solutions of the same monovalent and symmetric (1:1) electrolyte with concentration C0. The
motion of ions is induced by the electric field, which is imposed by specifying different potentials
ΦL and ΦR in the reservoirs. The pressures in the reservoirs are equal and taken to be zero for
simplicity. The potential Φs is specified on the electrically conductive membrane surface.

A membrane is modelled as an array of cylindrical pores of length Lp and radius Rp. Thus,
it is enough to calculate the ion transport in a single pore, where the cylindrical coordinates
R in radial and Z in axial directions are introduced (Fig. 1). The transport of electrolyte
through the pore is characterized by the solution velocity U = (U, V ), pressure P , cation C+

and anion C− concentrations (mol/m3), and electric potential Φ, which are functions of axial
and radial coordinates. These quantities satisfy the system of two–dimensional Navier–Stokes,
Nernst–Planck, and Poisson equations [11,19,23].

Fig. 1. The geometry of a single cylindrical pore

The ions in the nanopore are transported by convection, diffusion, and migration in electric
field. The fluxes of ions are written as

J± = C±U −D±∇C± ∓ D±F

RgT
C±∇Φ,

where D± are the ion diffusion coefficients, Rg is the ideal gas constant, T is the temperature,
and F is the Faraday constant.

Let us introduce dimensionless variables by

R = Rp r, Z = Lp z, U =
D+

Lp
u, P = C∗RgT p,

C± = C∗ c±, Φ =
RgT

F
φ, J± =

D+C∗

Lp
j±.

(1)

Here u = (u, v) and C∗ is the reference concentration taken as C∗ = 1 mol/m3.
In what follows, we will need the quantities averaged over the pore cross–section. The di-

mensional average axial velocity is defined by

V =
2

R2
p

∫ Rp

0

V RdR. (2)

The average pressure P , ion concentrations C±, potential Φ, axial ion fluxes J±, total axial ion
flux J = J+ + J−, and axial charge flux I = J+ − J− are introduced in the same way. The
corresponding dimensionless quantities are v, p, c±, φ, j±, j = j+ + j−, and i = j+ − j−.

The ionic conductivity G (S) is the ratio between the ionic current I and the potential
difference U :

G =
I

U
.
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For the nanopore shown in Fig. 1, one should put U = ΦL −ΦR, while the ionic current through
the pore is given by I = πR2

pFI. Thus, a positive voltage drop between left and right reservoirs
induces positive current, i.e. positive charge is transported in the direction of electric field. The
specific conductivity κ (S/m) of a cylindrical nanopore is defined by

κ = G
Lp

πR2
p

.

Let us express it through the dimensionless average charge flux and potential difference:

κ =
D+C∗F

2

RgT

i

φL − φR
. (3)

We use the two–dimensional Space–Charge (SC) model for describing the transport of ions
through the nanopore and calculating the ionic current and conductivity. The SC model is
derived from the Navier–Stokes, Nernst–Planck, and Poisson equations by introducing several
assumptions appropriate for large aspect ratio pores [19]. The dimensionless potential φ, ion
concentrations c±, and pressure p are represented as

φ(r, z) = ϕv(z) + ψ(r, z), c±(r, z) = cv(z) exp(∓ψ(r, z)),

p(r, z) = pv(z) + 2cv(z) cosh(ψ(r, z)).
(4)

Here the ion concentrations satisfy the Boltzmann distribution. The function ψ satisfies the
Poisson equation with the boundary condition of axial symmetry

1

r

∂

∂r

(
r
∂ψ(r, z)

∂r

)
=
cv(z)

λ2
sinhψ(r, z), (5)

∂ψ

∂r
(0, z) = 0. (6)

Here λ =
√
εε0RgT/2F 2C∗/Rp is the dimensionless Debye length, ε is the relative permittivity,

and ε0 is the dielectric constant. At r = 1, we impose the condition

ψ(1, z) = φs − ϕv(z), (7)

which is derived from (4) by assuming the constant potential on the nanopore surface. The
generalization of Space–Charge model to constant surface potential case was first proposed in [22].

The relation of the average volume flux v (or average axial velocity), average ion flux
j = j+ + j−, and average charge flux i = j+ − j− to the gradients of virtual pressure pv, virtual
chemical potential µv = ln cv, and virtual electric potential ϕv can be written in the form of
phenomenological flux–force formalism [19]:

(
dpv
dz

,
dµv

dz
,
dϕv
dz

)T

= L
(
v, j, i

)T
. (8)

Here L = −L−1 is the symmetric 3×3 matrix. The coefficients of matrix L = {Lij(z)} depend
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on the function ψ(r, z) and virtual concentration cv(z) according to [19,23]

L11 =
1

8α
, L22 = 2cv

∫ 1

0

r

(
D exp(ψ(r)) + exp(−ψ(r))

)
dr−

−16c2v
α

∫ 1

0

[
r cosh(ψ(r)) ln r

(
r2

2
cosh(ψ(r))− λ2

4cv

(
r
∂ψ(r)

∂r

)2)]
dr,

L33 = −8cv
α

∫ 1

0

r

[
sinh(ψ(r))λ2(ψ(r)− ψs)−

α

4

(
D exp(ψ(r)) + exp(−ψ(r))

)]
dr, (9)

L12 = L21 =
cv
α

∫ 1

0

(r − r3) cosh(ψ(r)) dr, L13 = L31 =
4

α

∫ 1

0

rλ2(ψ(r)− ψs) dr,

L23 = L32 =
8cv
α

∫ 1

0

r

[
cosh(ψ(r))λ2(ψ(r)− ψs)−

α

4

(
D exp(ψ(r))− exp(−ψ(r))

)]
dr,

where α = µD+(C0RgTR
2
p)

−1, ψs = ψ(1, z), D = D−/D+ is the ratio of diffusion coefficients,
and µ is the solution dynamic viscosity. The dependence of ψ and cv on z is not explicitly stated
in the above formulas.

The boundary conditions for equations (8) are derived by putting ψ(r, z) = 0 in (4) and
taking into account the dimensional values of potential, ion concentration, and pressure in the
reservoirs (see Fig. 1):

z = 0 : pv = −2c0, cv = c0, ϕv = φL,

z = 1 : pv = −2c0, cv = c0, ϕv = φR.
(10)

In this paper, we first propose a method for solving the problem (5)–(10). Note that the
solution procedures for calculating the membrane potential at zero current in a nanopore with
constant surface charge [19] or constant surface potential [22, 23] are essentially based on the
fact that the salt concentrations in the reservoirs are different. They cannot be applied to the
considered case, where the reservoir concentrations are equal, see (10).

First, it should be noted that the elements of matrix L in (9) can be expressed as Lij = Lij(z)

provided that the dependencies cv = cv(z) and ϕv = ϕv(z) are known. Now let us integrate
equations (8) with a variable upper limit from z′ = 0 to z′ = z taking into account boundary
conditions (10):

pv(z) = −2c0 +

∫ z

0

(
L11v + L12j + L13i

)
dz′,

cv(z) = c0 exp

(∫ z

0

(
L12v + L22j + L23i

)
dz′

)
, (11)

ϕv(z) = φL +

∫ z

0

(
L13v + L23j + L33i

)
dz′.

Setting z = 1 in the above equations and taking into account (10) gives

v

∫ 1

0

L11 dz
′ + j

∫ 1

0

L12 dz
′ + i

∫ 1

0

L13 dz
′ = 0,

v

∫ 1

0

L12 dz
′ + j

∫ 1

0

L22 dz
′ + i

∫ 1

0

L23 dz
′ = 0,

v

∫ 1

0

L13 dz
′ + j

∫ 1

0

L23 dz
′ + i

∫ 1

0

L33 dz
′ = φR − φL.

(12)
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The numerical algorithm for solving the problem is formulated as follows:

Step 1. Introduce a mesh on z direction with n+ 1 points (z0, z1, . . . , zn), where z0 = 0 and
zn = 1.

Step 2. Set cv(z) = c0, ϕv(z) = ϕL + (ϕR − ϕL)z as initial approximations.

Step 3. Solve problem (5)–(7) numerically for cv = cv(zk) and ϕv = ϕv(zk), k = 0, . . . , n and
calculate the corresponding matrices Lij(zk) according to (9).

Step 4. Determine the fluxes v, j, i by solving the linear system of equations (12).

Step 5. Calculate the solutions for cv(z) and ϕv(z) from (11) at z = zk, k = 0, . . . , n.

Step 6. Repeat Steps 3–5 until the convergence for fluxes is achieved within the admissible
error.

Step 7. Determine pv(z) from (11) and calculate the specific conductivity from (3).

1.2 One-dimensional uniform potential model

When the nanopore radius is comparable with or less than the Debye length, the profiles of
potential, ion concentrations, and pressure in the radial direction become almost uniform. In
this case, one can neglect the radial dependence of all quantities. This approach is known as
Uniform potential (UP) model [19].

To describe the nanopore with electrically conductive surface within one-dimensional ap-
proach, we assume the presence of a thin dielectric Stern layer, which separates the pore wall
and the diffuse layer (the pore interior), where ions and water molecules are located. In the
Stern layer, there are no ions, and only water molecules can be present. The relation between
the charge σ induced on the diffuse layer boundary and the surface potential Φs is given by [26,27]

σ = Cs(Φs − Φ). (13)

Here Φ is the potential of the diffuse layer, which is radially uniform in the 1D model, and Cs is
the capacitance of the Stern layer. For a cylindrical nanopore, the latter is given by [27]

Cs =
εsε0

(Rp − δs) ln
Rp

Rp−δs

, (14)

where δs and εs are the thickness and relative permittivity of the Stern layer, respectively. The
dimensionless variables for the 1D model are introduced similarly to (1), where Rp should be
replaced by Rp − δs.

The governing equations of UP model are derived from those of SC model taking into account
essential simplification, which arises when the radial dependence of all quantities is ignored
[19,26,27]:

v =
1

8α

(
−dp
dz

+X
dφ

dz

)
,

j = cv +
1

2

(
−(D + 1)

dc

dz
+ (X(D + 1) + c(D − 1))

dφ

dz
− (D − 1)

dX

dz

)
, (15)

i = −Xv + 1

2

(
(D − 1)

dc

dz
− (c(D + 1) +X(D − 1))

dφ

dz
+ (D + 1)

dX

dz

)
.
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Here c = c+ + c− is the total concentration of cations and anions, and X is the effective volume
charge density, which is equal in magnitude and opposite in sing to the ionic charge density

X = c− − c+. (16)

The quantity X is related to the surface charge density σ at the pore wall by
X= 2σ(F (Rp− δ))−1. By defining the dimensionless capacitance cs = 2CsRgT (C∗F

2(Rp−δ))−1,
we can write on the basis of (13)

X = cs(φs − φ).

Equations (15) can be solved with respect to the derivatives dp/dz, dc/dz, dφ/dz to obtain a
system of three ordinary differential equations. The boundary conditions inside the pore at the
inlet from the left reservoir are written as

p(0) = c(0)− 2c0, c(0) =
√
X2(0) + 4c20, ϕ(0) = ϕ0. (17)

Here, ϕ0 is the Donnan potential jump at the pore inlet. The corresponding concentrations and
osmotic pressure jumps are described by first and second conditions in (17), respectively. Given
that c±(0) = c0 exp(∓(ϕ0−ϕL)) and substituting these relations in (16), we obtain the equation
to determine the potential ϕ0:

cs (φs − ϕ0) = 2c0 sinh (ϕ0 − ϕL) . (18)

The boundary conditions inside the pore at the outlet to the right reservoir have the form

p(1) = c(1)− 2c0, c(1) =
√
X2(1) + 4c20, ϕ(1) = ϕ1. (19)

The relation analogues to (18) allows determination of potential ϕ1:

cs (φs − ϕ1) = 2c0 sinh (ϕ1 − ϕR) . (20)

Now the numerical algorithm for solving the problem can be formulated as:
Step 1. Set the initial approximations for fluxes v, j, i.
Step 2. Determine the potentials ϕ0 and ϕ1 from (18) and (20) and set the initial condi-

tions (17).
Step 3. Integrate equations (15) numerically from z = 0 to z = 1.
Step 4. Calculate the next approximation for fluxes from the condition of minimizing the

residuals between the left–hand and right–hand parts of boundary conditions (19).
Step 5. Repeat Steps 3–4 until convergence for fluxes is achieved within the admissible error.
Step 6. Determine the specific conductivity from (3).

The integration is performed by the Runge–Kutta–Merson method of 5th order, while the
boundary potentials and fluxes are determined by the one–dimensional and three-dimensional
secant methods, respectively.

2. Results and discussion

We have investigated the ionic conductivity in an aqueous KCl solution for different surface
potentials Φs and pore radii Rp. The fixed parameters in this study are electrolyte concentration
C0 = 10 mM, ion diffusion coefficients D+ = 1.957 · 10−9 and D− = 2.032 · 10−9 m2/s, pore
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length Lp = 100 µm, reservoir potentials ΦL = −0.025 V and ΦR = 0.025 V, relative permittivity
of water ε = 78.49, viscosity µ = 0.88 ·10−3 Pa·s, and temperature T = 298.15 K. The Stern layer
thickness is δs = 0.5 nm, and the Stern layer permittivity is taken as that of water εs = 78.49.

Let us first analyze the profiles of potential, ion concentrations, and pressure along the
nanopore. Fig. 2 shows the comparison between 1D and 2D models for a nanopore with the
radius Rp = 2 nm and surface potential Φs = 0.025 V. For the 2D model, the cross–sectionally
averaged values are shown, see formula (2). The Donnan potential jump, ion concentration
jumps, and osmotic pressure jump are seen at the interface between the nanopore and both
reservoirs. The surface potential is positive, so the concentration of cations (anions) inside the
nanopore is lower (higher) than in the bulk. The 1D and 2D models provide close results for po-
tential and cation concentration profiles, while the variation of pressure and anion concentration
along the pore are slightly higher in the 1D model. Note that the Debye length for C0 = 10 mM
is 3.04 nm, which is larger than the pore radius of 2 nm.

Fig. 3 shows the profiles of all quantities in the nanopore of 10 nm radius. Here the 1D
model leads to overestimated values of potential, pressure, and anion concentration, while the
cation concentration is underestimated in comparison with the 2D model. In this case, the Debye
length (3.04 nm) is smaller than the nanopore radius (10 nm). Thus, the decrease of potential
and the corresponding radial variations of cation/anion concentrations in the 2D model lead in
the noticeable deviation of cross–sectionally averaged values from the 1D model.

Fig. 2. The profiles of cross–sectionally averaged potential (a), pressure (b), concentrations of
cations (c) and anions (d) along the nanopore with the radius Rp = 2 nm and surface potential
Φs = 0.025 V
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Fig. 3. The profiles of cross–sectionally averaged potential (a), pressure (b), concentrations of
cations (c) and anions (d) along the nanopore with the radius Rp = 10 nm and surface potential
Φs = 0.025 V

The conductivity dependence on the applied surface potential for nanopores of 2 and 10 nm
radius is shown in Fig. 4. The increase of surface potential magnitude leads to the enhancement
of conductivity. It occurs due to the increase of counter–ion concentration inside the nanopore
and, consequently, the ionic current. The 1D and 2D models provide very close results since the
Debye length (3.04 nm) is higher than the pore radius (2 nm). Nevertheless, the 1D model gives
slightly higher conductivity values (Fig. 4 a) due to higher concentration of counter–ions inside
the nanopore in comparison with the 2D model, see Fig. 2 d. For a nanopore with the radius of
10 nm (Fig. 4 b), the pore radius exceeds the Debye length, and cross–sectionally averaged ion
concentrations inside the nanopore in the 2D model deviate from the bulk reservoir values much
smaller in comparison with the 1D model, see Fig. 3 c, d. Thus, the 2D model provides much
lower magnitudes of ionic conductivity except the region near Φs = 0, where the nanopore is not
charged. However, the qualitative dependence of conductivity on the applied potential is similar
in both models.

The dependence of ionic conductivity on the nanopore radius for fixed surface potential
Φs = 0.025 V is presented in Fig. 5. According to the 2D model, the conductivity decreases
with the nanopore radius due to lowering of counter–ion concentration inside the nanopore,
which is in turn caused by the decreasing Debye length. However, the 1D model first shows
some decrease and then the increase of conductivity when the nanopore radius becomes larger,
which is physically incorrect. Nevertheless, the 1D and 2D models provide close results when the
nanopore radius is smaller than the Debye length. The discrepancy between them grows with
increasing the nanopore radius.
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Fig. 4. The dependence of ionic conductivity on the surface potential for a nanopore with the
radius Rp = 2 nm (a) and Rp = 10 nm (b)

Fig. 5. The dependence of ionic conductivity on the nanopore radius for surface potential
Φs = 0.025 V

Conclusion

In this work, we have investigated the ionic conductivity of a single nanopore with electrically
conductive surface on the basis of two–dimensional (2D) Space charge model and one–dimensional
(1D) Uniform potential model. The models are derived from the Navier–Stokes, Nernst–Planck,
and Poisson equations. The generalization of Space charge model to calculating the ion transport
under the applied potential difference in a nanopore with constant surface potential is proposed
for the first time. The numerical algorithms for solving the model equations are suggested. It
is shown that the ionic conductivity becomes larger with increasing the magnitude of applied
surface potential due to the increase of counter–ion concentration inside the nanopore. A good
agreement is found between the 1D and 2D models when the pore radius is smaller than or
comparable with the Debye length. Otherwise, the 1D model essentially overestimates the ionic
conductivity. According to the 2D model, the ionic conductivity decreases with increasing the
nanopore radius, while the 1D model predicts the opposite trend, which is not physically correct.
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Моделирование ионной проводимости нанопор
с проводящей поверхностью

Артур И.Кром
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Аннотация. В работе теоретически исследуется ионная проводимость нанопоры с электропрово-
дящей поверхностью. Для описания ионного переноса под действием приложенной разности по-
тенциалов в нанопоре с постоянным поверхностным потенциалом впервые предложено обобщение
двумерной модели пространственного заряда на основе уравнений Навье–Стокса, Нернста–Планка
и Пуассона. Результаты расчетов сравниваются с данными, полученными на основе одномерной
модели равномерного потенциала, которая выводится из модели пространственного заряда в пред-
положении независимости потенциала, концентраций ионов и давления от радиальной координа-
ты. Установлено, что увеличение абсолютной величины потенциала поверхности приводит к росту
проводимости в силу повышения концентрации противоионов внутри нанопоры. Показано, что обе
модели дают близкие значения проводимости для нанопор, радиус которых меньше длины Дебая.
Для нанопор большего радиуса одномерная модель дает завышенные значения проводимости. Со-
гласно двумерной модели, ионная проводимость уменьшается с увеличением радиуса нанопоры,
что не подтверждается одномерной моделью, которая даёт физически некорректный результат в
этом случае.

Ключевые слова: нанопора, ионная проводимость, модель пространственного заряда, модель
однородного потенциала.
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