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Abstract. In this paper we prove a series of combinatorial identities arising from computing the
exponents of the commutators in P. Hall’s collection formula. We also compute a sum in closed form
that arises from using the collection formula in Chevalley groups for solving B. A. F. Wehrfritz problem
on the regularity of their Sylow subgroups.
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1. Introduction and main results

In the paper [1], P. Hall proved the collection formula for the expression (zy)” and showed
that the exponents of the commutators in that formula are expressed as linear combinations of
binomial coefficients with integral non-negative coefficients. In connection with different appli-
cations of the collection formula, the exponents of some commutators were found in a form of
combinatorial sums in [2, 3, 4, 5|. In the paper [6], a parametrization of the uncollected part
of Hall’s collection formula was proposed. The parametrization can be used to express the ex-
ponents of the commutators in the form of multiple combinatorial sums. For this reason, the
problem of computing obtained sums in closed form and also modulo prime n arises.

In this paper we prove a series of identities that arise in our research, using the method of
coefficients [7, 8, 9], which is directly connected with the theory of residues in multidimensional
complex analysis. We also compute one combinatorial sum that regularly arises in computing
commutators in Chevalley groups.

*gegorych@mail.ru
Tsklsnkv@mail.ru
tv.m.leontiev@outlook.com
© Siberian Federal University. All rights reserved

- 12 —



Georgy P. Egorychev,. . . Integral Representation and the Computation of Multiple Combinatorial Sums from ...

It was shown in [6] that the exponent of the commutator [[y, ], [y, v2]], 1 S v <u < n—1,
in the collection formula is equal to

SEE ) EE M0 o

1k=1 i=v—k m=1k=m+

The first multiple sum was transformed in [10] as follows:

éjg::(n_l_l)(u—;H)(vjk)' @

Since the product (" = 1) (u_z_H) (vik) is equal to zeroifn—i—1< k,ori<u—k+1,or

i < v — k, we finally rewrite sum (1) in the following way:

gi_max(:§;,vk)<n_li_1>(u—/i+1)( RS S Sl (16 Bt

m=1k=m+1

In [10], a combinatorial identity was proved that transforms the first multiple sum in (3) into
linear combination of binomial coefficients of the form (Z) with integral non-negative coefficients.
This representation is useful for computing the sum modulo prime n. In the following theorem,
we give a new, simpler proof of the identity (4).

Theorem 1. Suppose
O ={n,u,veNkeNy|n<u+1},

Qo ={n,u,v e N,k e Ny | v <u+1},
Q3 ={nu,veNke Ny | k<u+1}.

If the parameters n,u, v,k belong to Q = Q1 U Qe UQg3, then the following combinatorial identity
holds:

n—k—1 . ) .
N S [N (A E
i=max(0,v—k,u—k+1) k u—k+1 v—k

_min(vfum v—k n u—k+i+1 )
N ) it u+2 v—k '

i=max(0,v—u—1)

Denote by S and T, respectively, the left-hand and right-hand sides of identity (4). Here,
the combinatorial sums S = S(z) and T' = T'(z) are integer-valued functions of the integral
parameters z = (n, k, u,v). In addition to computing the sum S, we faced a difficult and, possibly,
new problem in combinatorial practice: to find all the values of the parameters n, k, u, v for which
the identity S(z) = T'(z) holds. In other words, the problem is to find all the solutions of the
equation S(z) —T(z) = 0. Theorem 1 partially solves this problem, since sufficient conditions on
the parameters n, k, u, v, are found for which the identity (4) holds. Let us note that Theorem 1
was proved thanks, in large part, to the fact that the terms of the combinatorial sums S(z) and
T(z) are non-negative.

Further on, in connection with computing the exponent of the commutator
[ly,i+12], [y,:x], 2] in another collection formula, the following identity was proved in
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[6]:
5 (W)

_1=1s,_ s1=1s=1

n _n_rz_i_2 n—i—s—2\/[i+s+1\>
i+r+2 l 1+ 1

s=0

The following theorem shows that an r-multiple sum of a more general form can be reduced to
a 2-multiple sum with the Stirling numbers of the first kind.

Theorem 2. Suppose r,m,n,i € No, r > 1 and s1(m,r) are the Stirling numbers of the first
kind. Then we have the following r-multiple formula of summation:

— R r4n—i—s—2\/i+s+1\’
3721:1%22:1 Z(ZH)_ng ( r—1 )( s )

In conclusion, for the root system of type A,,, we compute the following sum:

erjiK—aj7—5Ka7aw (5)

i=1 j=1

where aq,...,a, are all simple roots of the root system @, a, 8 € @, (rj;) is the Cartan
matrix. The numbers K, s (r,s € ®T or r,s € &) are defined by the following equality with
the structure constants of the Lie algebra of type ®:

KT,S = § : NS’Q1N8+Q1,Q2 cee NS+Q1+~~+Qt—1’Qt7 (6)
(q15---,qt)

where the summation is taken over all combinations of not necessarily different simple roots
q1,---,q: such that r = s+q1+...+¢: and for any integer i, 1 < ¢ < t—1, thesum s+q¢;+...+g¢;
is a root. If such sequences do not exist, then we put K, , =0 by definition.

The sum (5) regularly arises in computing commutators in Chevalley groups. The following
theorem holds.

Theorem 3. Suppose the natural numbers: p, q, k, m,n satisfy the inequalities: 1 < p < g < n+1,
1<k<m<n+1. Then we have

S () () o

where (1;;) is the following square n x n matriz:

2 -1 ... 0 0
—1 2 ... 0 0
(rij) = :
0 0 2 -1
0 0 —1 2

2. Proof of Theorem 1

To prove Theorem 1 we need several lemmas. Let

P(w) = ®(wy, w2, w3, wy) = Z S(n,u, v, k)ywiwiwiwy
n,u,vENg,kEN

be the generating function for the multiple sequence S.
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Lemma 1. The function ®(w), w € C*, is rational and holomorphic in a neighborhood of zero
and has the following form:

w2wswy
P(w) = L , 8
( ) (1—w1)(1—w1(1+w2)(1+w3))(1—w1 —w1w2w3w4) ( )
where
|w1w2w3w4/(17w1)| < ]., |w1(1+w2)(1+w3)| < 1.
Proof. We have
O(w) = Z S(n,u, v, k)wlwiwiwh =

n,u,vENg,kEN

! n—i—1 i i

. n, w, v Bk v _
-2 et S () k) ()

n,u,vENg,kEN i=max(0,v—k,u—k+1)

n—k-1 —k—1 i i

> w1w2w3w4< > r‘?{w}'fif{w Il R N )

n,u,vENy,kEN =0
we extend the summation over ¢ to infinity, adding zero terms, |z| < 1,

n, w, v (1_x)_k_1 - 4
= Z wiwiwiw] res {Inkyuk+22vk+1 ' Z(m(l +y)(1+2))

z,Y,z ,
n,u,vENg,kEN e =0

summing over i, |z(1 +y)(1+ 2)| < 1,

Z wlwiwlwk res (- x)_k_l =
n,u,vENg,kEN P Y,z xn—kyu—k+2zv—k+1(1 - 13(1 + y)(l + Z))
Sy Uy 05

"o { (1 —2) 2wy = [ zyzwy k-t
E WIWEWE TES e — E — =
Sty Wz | anrTlyrtlzo(1 — (1 4+ y)(1 4 2)) p 1—=z

=1

summing over k, |zyzw,/(1 — z)| < 1,

n, u, v (1 — x)ilw‘l
= g wiwyws res
P2 ey Lan—lyutizo(1 — o(1 4 y) (1 + 2))(1 — z — zyzwy)

n,u,vENg
summing over n,u,v by the substitution rule |7, p. 13] and the change: = = wq, y = we, z = w3,
w%w3w4
(]. — wl)(l — w1(1 + ’LUQ)(]. + wg))(]. — wp — w1w2w3w4) ’

The lemma is proved. (I
Let
V(w) = V(wy, w2, w3, wy) = Z T(n, u, v, k)wlwiwiwk,
n,u,veENg,keN
be the generating function for the multiple sequence T

Lemma 2. The function ¥(w), w € C*, is rational and holomorphic in a neighbourhood of zero
and has the following form:

wiwzwg (14 w3z)(1 —w1) (1 — wi (1 4+ wa)(1 + w3)) ™t

] = 9
(w) (1 —wy 4+ w3 — wiws — W3wg — WIW3Wy — WaW3Wy 9)
where
wiws (1 4 ws) , wswy (1 —wy — wiws) <1 (10)
1—w —wiws (1—w1)(1—|—w3)
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Proof. We have
v—k .
v—k n u—k+i+1
T: =
()G (05T
—k

_ r&;{<1+*ﬂ”k},res{(l-y)<”“+”1}.r@3{(1+2ﬂ“k”+1}::

P J;H-l v ynf(i+u+2))+1 pe xv—k-‘rl

summing over i by the substitution rule and the change: z = y(1 4 2)(1 —y) %,
{ A+y(Q+2)1—y) )" F1—y) 31 +2) }

[STRESY

z,y,2 yn—1L+SZ1)—k+1 l.i—i—l 1— Yy

~ res {(1 —y) (1 2k [Z (1+2)°* <y<1+z>>i

1=0

= I;:E ynfuflz'ufk«%l =
B (1 + yz)vfk(l _ y)f(v7k+u+3(1 4 Z)ufkwtl
- I;:E ynfuflzvfl%%l :
Therefore,
U(w) = Z T(n,u, v, k)wwiwiws =

n,u,vENg,kEN

X (1 + yz)v—k(l _ y)—(v—k+u+3yu+2(l + Z)u—k—i—l
- > utupeiutis { (A

n,u,vENg,kEN

summing over n by the substitution rule and the change: y = wy,
Z ut2, u, k { (14 w12)?~* (1 — wy) = @ktutd(] 4 z)uk+l }
= w! _

wywy res poT]

u,vENg,kEN
the change t = 2(1 — wy)/ws(1 + w1 2), |2| <€ 1,
(1 —w1) 72 (1 + twg) 1A+ } 7

ut2, u, kok {
= E wi T wiwswy res
1 WaWzwy =
z V(1 — wy — ywywsz)v—k+2
u,u€Ng,kEN ( 1~ ywiws)

summing over v by the substitution rule and the change: ¢t =1,

—k—2 —k+1
- Z wqfﬂw“wgwf(liwl) (Lt wa) 77

_ _ —k+2
u€Np,keN (1 w1 ywlwg)“ *

_ w? (1 + ws) i (wlwg(l—i-wg) )ui (w3w4(1—w1 —w1w3)>k
(]. — w1)2(1 — w1 — w1w3)2 w—0 1— w1 — W1Ws 1 (1 — wl)(l -+ ’LU3)

Since (10) holds, it remains to use the summation formula for a geometric series to simplify the
sums over u and k. The lemma is proved. g

Let us denote by ©(w) the difference ®(w) — ¥(w). Then O(w) is not identically zero, is
rational and holomorphic in a neighbourhood of zero, and has the following form:

2,122 ~1
—wiwswy (1 —wy; — wiwawswy)

O(w) = , 11
( ) (1—w1)(1+w3) —’LU3U)4(1—’LU1 —wlwg) ( )
where
wawy (1 — wy — wiws) W1 W2W3Wy .
ATRISTA ) wi| <1, i=1,2,3. 12
(1—w1)(1—|—w3) ’ 1—’LU1 | | ( )
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Suppose
O(w) = E 0(n, u, v, k)wlwiwiwy
n,u,vENp,kEN
and
O(w)
O(n,u,v, k) = res Vn,u,v € Ng, Vk € N.
( s Uy Uy ) W1, s, Wws w?“w%‘“wé’“w{f“ ) s Uy 05

To conclude the proof of Theorem 1 it remains to show that if n,u, v, k € Q, then 8(n,u,v,k) =0
and, therefore, S(n,u,v, k) = T(n,u,v, k).
We have

O(n,u,v, k) = res

{ wiwiwi (1 —wi) 11 — wy — wiwawzwy) ! } (13)
w?+1wg+1w§+1w§+1((l —w1)(1 +ws3) — wsws(l — wy — wiws)))

By expanding the functions
(1 — Wy — w1w2w3w4)71, ((1 — wl)(l + w3) — w3w4(1 — w1 — wlwg))A
in powers of (wywawzws)(1 —w1) ™1, wawyf(wr,ws), respectively, where

(1 —wy — wyws)
(1 —wp)(1 +w3)’

f(w17w3) =

we obtain

)3 -1 o > i
O(n,u,v, k) = = res 0wy (o) ‘Zwéwif(wbws)]'z:(W)

1,218,104 w?+1w§+1wi}+l 7=0 1=0 1= w1

Transforming the last expression into the form

— — [es} [es} i
res (1 —w) (1 +ws)"} wiwd f(wr, ws)? - res 1 wiwawswy \'
. E L ws)? - E
w1,ws,wa wi it tHphtt i ’ wy | wy Tt 4 1—w
1 3 4 =0 2 =0

and computing the residue at the point wy = 0, we get

(1 - wl)U73 . 1 . fo: f(”LU17UJ3)j (14)
) — wéU—Q—j—u)-‘rlwz(lk—u—j—Q)—i-l '
J:

O(n,u,v,k) = res
( y Uy Uy ) W w3, ws wgn—u—2)+1 (1_|_w3

The residue at the point w; = 0 is equal to zero if n —u — 2 < 0, i.e. n < u+ 1 (the
case (n,u,v,k) € Q1). The residue at the point ws = 0 is equal to zero for every j > 0 if
v—2—j—u<0,ie forv<u+1 (the case (n,u,v,k) € Q2). Finally, rewriting (14) as follows:

oo

O(n,u,v, k) = res (1_11;1)“_3' : 'Zw-res{l} ’

w1 ws wgn—u—2)+l 14 ws — wé’u—2—j—u)+1 wy ik_u_j_2)+1

(15)
we see that the residue at the point wy = 0 is equal to zero for every j > 0 if K < u+ 1 (the case
(n,u,v, k) € Q3).
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3. Proof of Theorem 2.

Let us recall the definition of the Stirling numbers of the first kind s1(m,r) ([7], p. 272):
ala—1)x...x(a—n+1) Zsl k)a*, VacR.
k=0

Thus, we have
m

<:1>:a(a1) nghmﬂ Zslmj

Taking into account (16), we obtain
Sr—1 m n Sr—1 s1 s j
BRI DD LTI () IS D ST 5 SUD SIS 31 F8d)
Sp_1=18,._9=1 Sp_1=158,._9=1 s=1
Using the identity
— mor S rdn—i—s—2\ [i+s+1\™
Yy () - . ;. om>1
Sp—1=1s8,_9=1 s1=1s=1 Z+ S "= s
proved in [6], we finally get
Sr—1 n n—i . . j
1 r4+n—i—s—2\[i+s+1\’
H—l - .
£E ) A ()

The theorem is proved. O

4. Proof of Theorem 3

We have
=\ o " —p—1\(/m—-k—-1
= ity (4TP =
=2 200 Tl](q—i—l)(m—j—l)
i=1 j=1
1m 1m
_qzzl yitip (Q—p—1)<m—@—1> qzzl yitiy <pr—1><m.—k—1).
== qg—i1—1)\m—-—j5—-1 == ) j—k

If we replace i —p, j — k by s, t, respectively, and put Q =q¢q—p—1, M = m—k —1, then we get

Q M ) M
S = (—1)t+k+s+prs+p,t+k< ) ( ) Z Z 1)ttt 7"s+p,t+k<8) (M _ t>'

s=0 t=0 s=0 t=0

Let us rewrite the sum S using the formula (}) = res,(1+ )"z %! and adding terms, which
are equal to zero for s > @ and t > M:

S = Z Z(—l)t+k+s+p Forpirk -1es (14 w)Pw 1 - res (1 4 2)Mz~(M=D-1,
s=0t=0
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The elements r;; are not equal to zero only in the following cases: i = j, ¢ = j+ 1, j =i+ 1,
when r;; = 2, 7541 = 141, = —1. Thus, rsypyr =2, if s+p=t+k,ie t=5+p—Fk for
any s > 0. Note that if p — k < 0, then the index ¢t < 0 for ¢ =0,1,...,p — k — 1. However, in
this case, both the binomial coefficient ( M],Vi .
Continuing this line of reasoning for the cases 7; ;41 = 7i+1,;, = —1, we obtain

) and its integral representation are equal to zero.

S = Z(_l)(s+p—k)+k+s+p2 } ri)s(l + w) Q! ves (14 2)M = (M=(stp=k)=1
s=0

£ (—1)HpmRED R (1) res (14 w) Qw5 T cves (1 4 2) My (M- (stpmkt )=l
) w z

S

+ Z(_1)(s+p—k—1)+k+s+p(_1) 'I‘E}S (1 + w)Qw—s—l . I"GZS (1 + Z)Mz—(AI—(s+p—k—1))—1+
s=0

z

o0

=res {(1 + )M MR D=1 (] 4 22 4 %) [Z z°res (1 + w)Qw81] } :
s=0

Summing over s, using the substitution rule and the change w = z, we finally get

_ Ck—1)— +M+2 g—p+m—~k
S — 1 M+Q+2 ,—~M+(p—k—1)—1 _ Q _ )
I"GZES(( +2) ¥ M-p+k+1 m—p

The theorem is proved. (I
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I/IHTel"paJIbHoe IIpeacraB/jieHEe 1M BblYUCJ/IEHNE KPAaTHbBIX
KOM6I/IHaTOprIX CyMM M3 XOJLJIOBCKOI1 Teoprunu KOMMYTaTOpPOB

T'eoprmii II. Eropsruesn
Cepreii I'. Konecuukon

Baagumup M. JleoHTheB
Cubupckuii demepasbHbIl YHUBEPCUTET
Kpacnosipck, Poccuiickas ®eneparus

Awnnoranusi. B pabore mokasbiBaeTcs psii KOMOMHATOPHBIX TOXKIECTB, BO3SHHUKIIUX MPYW BBIYUCICHUN
oKa3zaTeJjieil creneHeii KOMMyTaToOpoB B cobupareabHoit popmysie @. Xosuta. Takke BbIUMCIeHA B 3a-
MKHYTOM BUJ€ CyMMa, BOBHUKINAs B Pe3y/bTaTe HCIOJb30BaHUsI COOUPATENHHON (POPMYJIbI B IPYIIAx
IeBaste mpu pemennn Bompoca B.A.®@. Bepdpura o peryssipHOCTH WX CHJIOBCKHUX MOJATPYIIIL.

KuroyeBbie ciioBa: mHTErpaJibHOE IIPEJCTaBIeHAE, MeTO I KO3(MMUIIMEHTOB, cobupaTe/ibHas HopMyIa

®. Xoua.
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