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Introduction

In this paper we consider a family of transmission problems for elliptic operators with constant
coefficients related to models of electrocardiology. More precisely, for many years for satisfactory
models of heart activity one uses Cauchy, Dirichlet, and Neumann problems for scalar strongly
elliptic operators, see, for example, [1, 2]. A modification of such a model involving boundary
problems for the Laplace operator has been recently studied in [3].

We consider similar problems for more general matrix linear elliptic operators and find suf-
ficient conditions under which the scheme for solving the problems suggested in [3] allows to
construct their solutions. Our approach is essentially based on the general theory of Fredholm
problems for strongly elliptic (matrix) linear operators, see, e.g., [4], and the theory of regular-
ization of an ill-posed Cauchy problem for operators with an injective principal symbol, see [3].

1. A model example

To begin with, we consider a basic example related to models of electrocardiology. As known
from clinical practice, see, e.g., [1, 2], electrical activity of cardiac cells is crucial for pumping
function of heart, which is the result of rhythmical cycles of contraction-relaxation of the cardiac
tissue. Anomalies of electrical activity often cause heart diseases, which makes these investiga-
tions, in particular, development of adequate mathematical models, very relevant nowadays.

Let us illustrate this by one model of electrocardiology [1,2,5]. Denote by ΩB and ΩH three-
dimensional domains with piecewise smooth boundaries with ∂ΩB and ∂ΩH corresponding to a
body and a heart (see Fig. 1). Then the domain Ω = ΩB\ΩH with the boundary ∂Ω = ∂ΩB∪∂ΩH

corresponds to the body without heart.
∗yushefer@mail.ru
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Fig. 1. Geometry of the model

Usually, in standard models one assumes that the cardiac tissue can be divided into two parts
– intracellular and extracellular parts separated by a membrane – to which the electric potential
ui and ue, respectively, is assigned. Regarding the cardiac tissue as a continuous medium we
think of the potentials as defined in each point of ΩH and satisfying the equation

∇∗Mi∇ui +∇∗Me∇ue = 0, (1)

where Mi and Me are known tensor matrices that characterize intracellular and extracellular
parts, and ∇ is the gradient operator in R3.

One often considers the case when Mi and Me are positively defined matrices with constant
coefficients with entry values defined by conductivity of the cardiac tissue. For simplicity of the
further analysis one assumes that these matrices are proportional

Mi = λMe, λ > 0.

Based on equation (1) one considers two models of heart activity. In one model it is assumed
that the heart is isolated and one considers the problem

∇∗Mi∇ui +∇∗Me∇ue = 0 in ΩH ,

(ν1, ν2, ν3)Mi∇ui = 0 on ∂ΩH ,

(ν1, ν2, ν3)Me∇ue = −(ν1, ν2, ν3)Mb∇ub on ∂ΩH ,

ub = ue on ∂ΩH ,

(2)

where Mb is the tensor matrix characterizing conductivity of the body, ν is the vector field of
unit outward normal vectors to the boundary of the domain under the consideration and ub is
the electric potential of the body.

In the second model one takes the body into account, and from the electrodynamics of
stationary currents it follows that the electric potential of the body ub in the domain Ω is
defined by the equations

∇∗Mb∇ub = 0 in Ω,

(ν1, ν2, ν3)Mb∇ub = 0 on ∂ΩB .
(3)

A feature of the model is the fact that one is more interested not in potentials ui and ue
separately but in their difference v = ui − ue in ΩH or at least on its boundary.

Since matrices Mi and Me are positively defined and not degenerate, the problems (2), (3)
can be studied in the framework of the theory of boundary (maybe ill-posed) problems for elliptic
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formally self-adjoint equations, see [1, 2, 5]. Moreover, notice that the problems above may be
regarded as transmission problems for elliptic equations with discontinuous coefficients describing
solutions in different domains of a continuum with the help of additional conditions on separating
surfaces, see, for example, [6, 7].

Until now we have not used any functional spaces in the problems description, in the next
section we give a precise formulation of a more general problem and specify functional classes
for its solution.

2. Formulation of a problem

Let θ be a measurable set in Rn, n > 2. Denote by L2(θ) a Lebesgue space of complex-valued
functions on θ with the scalar product

(u, v)L2(θ) =

∫
θ

v(x)u(x) dx.

If D is a domain in Rn with a piecewise smooth boundary ∂D, then for s ∈ N we denote by
Hs(D) the standard Sobolev space with the scalar product

(u, v)Hs(D) =

∫
D

∑
|α|6s

(∂αv)(∂αu)dx.

It is well-known that this scale extends for all s > 0. Let now Hs(D) for s ∈ R+ \ Z+ be the
standard Sobolev-Slobodeckij spaces. Denote by Hs

0(D) the closure of the subspace C∞
comp(D)

in Hs(D), where C∞
comp(D) is the linear space of functions with compact supports in D.

The space of k-vectors u = (u1, . . . , uk) whose components lie in Hs(D) equipped with the
scalar product

(u, v)[Hs(D)]k =

k∑
j=1

∫
D

∑
|α|6s

(∂αvj)(∂
αuj)dx =

∫
D

∑
|α|6s

(∂αv)∗(∂αu)dx

we shall denote by [Hs(D)]k.
Further on, we shall consider linear matrix operators

A =
∑
|α|6p

Aα∂
α, x ∈ D,

where p ∈ N is the order of operator A, α ∈ Zn
+, and Aα are (l × k)-matrices with constant

coefficients. By a formal adjoint of A we call the differential operator

A∗ =
∑
|α|6p

A∗
α∂

α,

where A∗
α is the adjoint matrix for Aα or, equivalently,

(Au, v)[L2(D)]l = (u,A∗v)[L2(D)]k для всех u ∈ [C∞
0 (D)]

k
, v ∈ [C∞

0 (D)]
l
.

As usual, the principal symbol of an operator A is the matrix

σ(A)(x, ζ) =
∑
|α|=p

Aαζ
α, x ∈ D, ζ ∈ Cn.
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We say that the principal symbol of A is injective if l > k and

rangσ(A)(x, ζ) = k, для всех ζ ∈ Rn \ {0} и всех x ∈ D.

If l = k operators with injective principal symbols are called elliptic.
Let now Ae, Ai, and Ab be linear differential operators of the first order with constant

coefficients on Dm, i.e.

Am =

n∑
j=1

a
(m)
j

∂

∂xj
+ a

(m)
0 ,

where m ∈ {e, i, b}, De ≡ Di ≡ ΩH , Db ≡ Ω.
Further on, we assume that principal symbols of operators Am are injective in the corre-

sponding domains.
Denote by A∗

m a formal adjoint of Am and consider a generalized Laplacian A∗
mAm.

Under assumptions made above, the operator A∗
mAm is a strongly elliptic (k × k)-matrix

second order operator, i.e. it is elliptic and there exists a positive constant c such that

ℜ
(
− w∗σ(A∗

mAm)(x, ζ)w
)
> c |w|2 |ζ|2 for all ζ ∈ Rn \ {0} , w ∈ Ck \ {0} , x ∈ Dm.

The operator A∗
mAm is also formally self-adjoint, i.e.

(A∗
mAmu, v)[L2(Dm)]k = (u,A∗

mAmv)[L2(Dm)]k = (Amu,Amv)[L2(Dm)]l for all u, v ∈ [C∞
0 (Dm)]

k
;

in particular, the operator A∗
mAm is (formally) positively defined

(A∗
mAmu, u)[L2(Dm)]k > 0 for all u ∈ [C∞

0 (Dm)]
k
.

Let, as before, ν be the outward normal vector operator on the boundary of the domain of
the operator Am. Introduce the conormal derivatives

νAm
= σ∗(Am)(ν)Am,

associated with these operators via Green’s formula:∫
∂Ω

vνAmuds =

∫
Ω

(v∗(A∗
mAmu)− (Amv)

∗Amu)dx for all u, v ∈
[
H2(Dm)

]k
. (4)

Assume that bounded domains ΩH , Ω, and Ωb have twice smooth boundaries and consider the
following problem (5), (6): find vector-functions ui, ue from

[
H2(ΩH)

]k and a vector-function
ub from

[
H2(Ω)

]k such that 
A∗

iAiui +A∗
eAeue = 0 in ΩH ,

νAi
ui = 0 on ∂ΩH ,

νAe
ue = −νAb

ub on ∂ΩH ,

ue = ub on ∂ΩH ,

(5)

{
A∗

bAbub = 0 in Ω,

νAb
ub = 0 on ∂ΩB ,

(6)
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where the equality on the boundary is in the sense of traces, and the equality in the domains
is in the sense of distributions. In this case we can assume that traces of functions and their
conormal derivatives are well-defined.

It is obvious that the problem (5), (6) is a generalization of the problem (2), (3). Note also
that it incorporates several classical boundary problems.

Example 2.1. Consider first the classical case Ab = ∇ (k = 1, l = n), then νAb
=

∂

∂ν
is a

directional derivative along the outward normal vector to ∂ΩB . If we assume that ue is known
on ∂ΩH and equal to a function v0 ∈ H3/2(∂ΩH), then (5), (6) gives the following problem: find
a function ub ∈ H2(Ω) satisfying 

−∆ub = 0 in Ω,

∂ub
∂ν

= 0 on ∂ΩB ,

ub = v0 on ∂ΩH .

(7)

This is a classical mixed problem that is often called a Zaremba problem, see, e.g. [4, 8]. This
problem can be studied by standard methods in Sobolev and Hölder spaces. It is well-known
that this problem has a unique solution in these classes that can be written with the help of the
Green function ZΩ(x, y) having the standard properties

ub(x) =

∫
∂Ω

ZΩ(x, y)v0(y)dS(y), x ∈ ΩH ,

where dS(y) is the volume form on the surface ∂Ω, see [4, 8].

Analogously, if we assume that Ae = ∇ (k = 1, l = n), then νAe =
∂

∂ν
is a directional

derivative along the outward normal vector to ∂ΩH . If the conormal derivative νAe
ue is known

on ∂ΩH and equal to a function v1 ∈ H1/2(∂ΩH), then (5), (6) gives a special case of a classical
Neumann problem for a Laplace operator: find a function ub ∈ H2(Ω) satisfying

−∆ub = 0 in Ω,

∂ub
∂ν

= 0 on ∂ΩB ,

∂ub
∂ν

= v1 on ∂ΩH ,

(8)

see [4, 9]. It is known that this problem is Fredholm in Sobolev and Hölder spaces, its solution
is defined up to an additive constant, and the necessary and sufficient condition for solvability is
the following ∫

∂ΩH

v1(y)dS(y) = 0. (9)

If this condition is satisfied the problem has a unique solution ub in these classes that satisfies,
for example, ∫

∂ΩH

ub(y)dS(y) = 0. (10)

It can be written with the help of an appropriate parametrix NΩ(x, y) that has the standard
properties

ub(x) =

∫
∂Ω

NΩ(x, y)v0(y)dS(y), x ∈ ΩH ,

However, the general theory of boundary problems suggests that knowledge of ue or νAeue on
∂ΩH does not allow to recover the potential ui uniquely from the remaining data and equations
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without additional conditions (see also Uniqueness Theorem 3.1 for the problem (5), (6) proved
under additional assumptions below).

Besides that, cardiology models are special in the sense that additional conditions necessary
for recovering of unknown potentials ui, ue, ub in the problem (5), (6) should preferably be set
on the boundary of ‘the body’ Ω, since all measurements must be less traumatic for a patient
and not invasive.

3. Application of an ill-posed Cauchy problem

On of the simplest additional conditions mentioned above leads to using of an ill-posed Cauchy
problem. More precisely, it implies measuring the potential ub on the boundary of ‘the body’:

ub = f on ∂ΩB , (11)

where f is a given vector-function from
[
H3/2(Ω)

]k
.

Unfortunately, as known very well, the problem (6), (11) is nothing else but an ill-posed
problem for an elliptic operator A∗

bAb. Let us see what the addition of the property (11) gives
in a more general problem than those in cardiology.

Denote by N(Ω) the set of solutions to the problem (5), (6), (11) under the condition f = 0.
Let SAe

(ΩH) be the space of generalized solutions of the equation Aeh = 0 в ΩH . Since the
operator Ae has an injective symbol and its coefficients are real analytic, the Petrovsky theorem
yields that the elements of the space SAe(ΩH) are real analytic vector-functions in ΩH .

Theorem 3.1. Let bounded domains ΩH , Ω, and Ωb have twice smooth boundaries and let for
some constant λ > 0,

Ai = λAe. (12)

Then the set N(Ω) consists of triples (ui, ue, ub) ⊂
[
H2(ΩH)

]k ×
[
H2(ΩH)

]k ×
[
H2(Ω)

]k such
that

ui =
h− w

λ2
, ue = w, ub = 0, (13)

where h is an arbitrary function from the space SAe
(ΩH) ∩

[
H2(ΩH)

]k, and w is an arbitrary
function from

[
H2

0 (ΩH)
]k.

Proof. Let a vector h belong to SAe
(ΩH) ∩

[
H2(ΩH)

]k and a vector w belong to
[
H2

0 (ΩH)
]k.

Then w satisfies the following conditions

w = 0 on ∂ΩH , νAi
(w) = 0 on ∂ΩH , (14)

and A∗
iAi = λ2A∗

eAe. Therefore the vector functions from (13) give a solution to the problem
(5), (6), (11) for f = 0.

Let ui, ue ∈
[
H2(ΩH)

]k, and ub ∈
[
H2(Ω)

]k is a triple of functions from N(Ω). Then from
(5), (6) it follows that ub is a solution to the Cauchy problem for the operator A∗

bAb:

A∗
bAbub = 0 in Ω, νAb

(ub) = 0 on ∂ΩB , ub = 0 on ∂ΩB .

Since the operators Am have injective symbols, we have

rang (νAm)(x, ν(x)) = σ∗(Am)(x, ν(x))σ(Am)(x, ν(x)) = k
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for any m = e, i, b and all x ∈ ∂ΩH or ∂Ω, respectively. In particular, the systems of boundary
operators {I, νAe}, {I, νAi} are first order Dirichlet systems on ∂ΩH , while the system of bound-
ary operators {I, νAb

} is a first order Dirichlet system on ∂Ω (see, for example, [3]). Then by
the uniqueness theorem for a Cauchy problem for elliptic operators (see, for example, [3, The-
orem 10.3.5]), ub ≡ 0 in Ω. Now by the trace theorem for Sobolev spaces and by equations
from (5) we see that ue ≡ 0 нon ∂ΩH and νAe

(ue) ≡ 0 on ∂ΩH . However, since the system of
boundary operators {I, νAe} is a first order Dirichlet system on ∂ΩH , it follows from the theorem
on spectral synthesis (see [10]) that ue ∈ [H2

0 (ΩH)]k.
To complete the proof of the theorem we need the following lemma.

Lemma 3.1. Let ΩH be a bounded domain in Rn with a twice smooth boundary and (12). If
the functions ue, ui ∈

[
H2(ΩH)

]k satisfy the equations (5) then they are related in ΩH by

ue + λ2ui = h, (15)

where h as a function from the space SA∗
eAe

(ΩH) ∩
[
H2(ΩH)

]k.
Moreover, if ub ≡ 0 on ∂ΩH , then the functions ue, ui are related in ΩH by 15, where h is a

function from the space SAe(ΩH) ∩
[
H2(ΩH)

]k.
Proof. Since Ai = λAe, the first equation in (5) can be rewritten in the form

Ae
∗Aeh = 0 in ΩH , (16)

with h = ue + λ2ui, and clearly h ∈ SA∗
eAe

(ΩH) ∩
[
H2(ΩH)

]k.
If we additionally know that ub ≡ 0 on ∂ΩH then, as noticed above, ub ≡ 0 in Ω. Therefore

νAe(ue) = 0 on ∂ΩH , and νAi(ui) = 0 and ∂ΩH , which implies that

νAe
(h) = 0 on ∂ΩH . (17)

From this, by the Green formula (4) we obtain

0 = (A∗
eAeh, h)[L2(ΩH)]k =

∫
ΩH

h∗(A∗
eAeh)dx =

=

∫
ΩH

(Aeh)
∗(Aeh)dx+

∫
∂ΩH

h∗νAe(h)ds = ∥Aeh∥2[L2(ΩH)]l .

Therefore, the vector function h defined by the equality (15) belongs to SAe
(ΩH)∩

[
H2(ΩH)

]k.
Thus, the functions ui, ue ∈

[
H2(ΩH)

]k satisfy (5), and by Lemma 3.1 we get ui =
h− v

λ2
,

where v ∈ [H2
0 (ΩH)]k and h ∈ SAe

(ΩH) ∩
[
H2(ΩH)

]k.
In particular, it follows from Lemma 3.1 that the zero space of the problem (5) coincides with

the space SAe
(ΩH) ∩

[
H2(ΩH)

]k.
Denote by kerAe the kernel of a continuous linear operator Ae : [H2(ΩH)]k → [H1(ΩH)]l

and consider several examples. In fact, kerAe = SAe
(ΩH) ∩

[
H2(ΩH)

]k.
Example 3.1. Let Ae =

(
∇
1

)
, (k = 1, l = n + 1). Then A∗

e =
(
−div, 1

)
, νAe

=
∂

∂ν
, A∗

eAe =

= −∆+ 1, and the problem (16)–(17) becomes a Neumann problem for the Helmholtz operator
−∆h+ h = 0 in ΩH ,

∂h

∂ν
= 0 on ∂ΩH ,

(18)
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and the equation Aeh = 0 takes the form{
∇h = 0 in ΩH ,

h = 0 in ΩH .

Consequently, kerAe = {0} and coincides with the space of solutions of the homogeneous prob-
lem (18).

Example 3.2. Let Ae = ∇ then A∗
e = −div. In this case (k = 1, l = n), A∗

e = −div, νAe =
∂

∂ν
,

A∗
eAe = −∆, and the problem (16), (17) becomes a Neumann problem for the Laplace operator

∆h = 0 in ΩH ,

∂h

∂ν
= 0 on ∂ΩH ,

(19)

and the equation Aeh = 0 takes the form

∇h = 0 in ΩH .

Therefore, kerAe = R and coincides with the space of solutions of the problem (19).

Example 3.3. Consider the case where Ae = ∂ = ∂x − i∂y is the Cauchy–Riemann operator in
R2 ∼= C where i stands for imaginary unit. Then A∗

e = −∂ = −∂x − i∂y, and the kernel of Ae

is holomorphic functions. The problem (16)–(17) defines then the zero space of a non- coercive
∂-Neumann problem, see, for example, [11, 12].

It is clear that the operator Ae should be chosen in a way that its kernel is at least finite
dimensional.

Under assumptions of Theorem 3.1 the rest of the scheme of solving the problem (5), (6),
(11) differs little from the standard one, see [5]. Namely, first we introduce a function h(x) such
that h(x) = λ2ui+ue, where x ∈ ΩH . From the conditions on the boundaries in (5) and the fact
that νAi

= λνAe
we get that

νAeh = −νAb
ub on ∂ΩH .

Thus, we can rewrite the original problem (5), (6), (11) in new notation: knowing a vector
f ∈ [H3/2(∂ΩH)]k, find vectors h ∈ [H2(∂ΩH)]k and ub ∈ [H2(∂Ω)]k such that{

A∗
eAeh = 0 in ΩH ,

νAe
h = −νAb

ub on ∂ΩH ,
(20)


A∗

bAbub = 0 in Ω,

νAb
ub = 0 on ∂ΩB ,

ub = f on ∂ΩB .

(21)

The original problem splits into two — (20) and (21). The problem (21), as noticed above,
is an ill-posed Cauchy problem for an elliptic operator A∗

bAb. It is known that if a solution to
this problem exists it is unique. The problem (20) is a Neumann problem for an elliptic operator
A∗

eAe. Unfortunately, in general the Neumann problem may also be ill-posed. For it to be
Fredholm, the so called Shapiro-Lopatinsky conditions must be placed [13, Chapter 1, Sec. 3,
condition II for q = 0], [14] on the pair (A∗

eAe, νAe
). In particular, they guarantee that the space

SAe(ΩH) ∩ [H2(ΩH)]k is finite dimensional.
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More precisely, let us consider the following Neumann problem: for a given vector h0 ∈
[H1/2(∂ΩH)]k find a vector h ∈ [H2(∂ΩH)]k such that{

A∗
eAeh = 0 in ΩH ,

νAe
h = h0 on ∂ΩH ,

(22)

and formulate conditions for solvability.

Theorem 3.2. If for a pair of operators (A∗
eAe, νAe

) the Shapiro-Lopatinsky conditions are
fulfilled then the problem (22) is Fredholm. To be precise,

1) the zero space of the problem coincides with the finite-dimensional space SAe
(ΩH) ∩

[H2(ΩH)]k;

2) the problem is solvable if and only if

(h0, φ)[L2(∂ΩH)]k = 0 for all φ ∈ SAe(ΩH) ∩ [H2(ΩH)]k; (23)

3) under (23) there exists a unique solution h1 of the problem (22) satisfying

(h1, φ)[L2(∂ΩH)]k = 0 for all φ ∈ SAe
(ΩH) ∩ [H2(ΩH)]k. (24)

Proof. See [4].

Thus, under hypothesis of Theorem 3.2 for solvability of the Neumann problem (20) it is
necessary and sufficient that for the vector h0 = −νAb

ub the condition (23) is fulfilled. This
can be achieved if we place additional conditions on relations between the operators Ae and Ab.
Namely, as we have seen above, it is quite natural to assume that

Ae = λ̃Ab for some constant λ̃ > 0. (25)

Denote by SAb
(Ω) the zero space of solutions to the problem (21) in the domain Ω.

Corollary 3.1. Let for the pair of operators (A∗
eAe, νAe

) the Shapiro–Lopatinsky conditions be
fulfilled. Besides that assume that the identity (25) holds and the spaces SAe

(ΩH) ∩ [H2(ΩH)]k

and SAb
(Ω) ∩ [H2(Ω)]k coincide. Then for any vector ub ∈ [H2(Ω)]k satisfying (21) there exists

a unique vector h1 ∈ [H2(ΩH)]k that satisfies (20) and (24).

Proof. By Theorem 3.2 for solvability of the problem (20) it is necessary and sufficient that

(νAeub, φ)[L2(∂ΩH)]k = 0 for all φ ∈ SAe(ΩH) ∩ [H2(ΩH)]k. (26)

If the vector ub ∈ [H2(Ω)]k satisfies (21), then by the Green formula (4) for the operator Ab

−
∫
∂ΩH

νAb
ubψds =

∫
∂Ω

νAb
ubψds = (ψ,A∗

bAbu)[L2(Ω)]k − (Abψ,Abu)[L2(Ω)]k = 0,

for any ψ ∈ SAb
(ΩH) ∩ [H2(ΩH)]k.

On the other hand, the relation (25) guarantees that (λ̃)2νAb
= −νAe

, and therefore

(νAe
ub, φ)[L2(∂ΩH)]k = −(λ̃)2(νAb

ub, φ)[L2(∂ΩH)]k = −(λ̃)2
∫
∂ΩH

νAb
ubψds

for any φ ∈ SAe
(ΩH) ∩ [H2(ΩH)]k. Due to the fact that the spaces SAe

(ΩH) ∩ [H2(ΩH)]k and
SAb

(Ω) ∩ [H2(Ω)]k coincide, (26) holds. Then by statement 3 of Theorem 3.2 for any vector ub
there exists a unique vector h1 ∈ [H2(ΩH)]k satisfying (20) and (24).
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The condition that the spaces SAe(ΩH)∩ [H2(ΩH)]k and SAb
(Ω)∩ [H2(Ω)]k coincide seems to

be rather strong, especially since these are spaces of solutions to different differential equations in
different domains. Nevertheless, provided (25) holds, such a coincidence is possible if the operator
Ae is so much overdetermined that the space of its solutions in any domain is finite dimensional
and coincides with the space of solutions in Rn; the typical examples are the so-called stationary
holonomic systems. Let us illustrate this by the following examples.

Example 3.4. Let Ae = ∇ and Ab = λ̃∇ (k = 1, l = n). The function u = const is a solution
to the equation ∇u = 0 in ΩH and extends to Ω, where it is a solution to λ̃∇u = 0. Thus we get
that the spaces SAe(ΩH) and SAb

(Ω) coincide.

Example 3.5. Let Ae=

(
∇
1

)
and Ab= λ̃

(
∇
1

)
, (k= 1, l= n+ 1). A solution to Aeu= 0 in ΩH

is u ≡ 0 and it extends to Ω, where it is a solution Abu = 0. Thus, the spaces SAe
(ΩH) and

SAb
(Ω) coincide.

Example 3.6. Consider the following operators Ai, Ae и Ab:

Ae =


∂x 0 0
∂y 0 0
0 ∂x 0
0 ∂y 0
−1 0 ∂x
0 −1 ∂y

 , Ai = λ


∂x 0 0
∂y 0 0
0 ∂x 0
0 ∂y 0
−1 0 ∂x
0 −1 ∂y

 , Ab = λ̃


∂x 0 0
∂y 0 0
0 ∂x 0
0 ∂y 0
−1 0 ∂x
0 −1 ∂y

 .

These operators have injective principal symbols and are equivalent to second order operators

Ãe =

∂xx∂yy
∂xy

 , Ãi = λ

∂xx∂yy
∂xy

 , Ãb = λ̃

∂xx
∂yy
∂xy,

 .

Therefore the space of solutions of the system Aeu = 0 in ΩH coincides with the set of all
linear functions u = c1x + c2y + c3, and any function of this form extends to Ω, where it is a
solution to the equation Abu = 0. Therefore, the spaces SAe

(ΩH) and SAb
(Ω) coincide.

As noticed above, if a solution to the Neumann problem (20) exists, it is ‘unique’ up to an
element of the space SAe

(ΩH) ∩ [H2(ΩH)]k ( additively).
Recall that the aim of solving the original problem (5), (6), (11) is to find the transmembrane

potential v on the surface ∂ΩH . Let us write down the algorithm for solving the problem
(20), (21):

1. Find a function ub and its conormal derivative νAb
(ub) on the surface ∂ΩH by solving an

ill-posed Cauchy problem (21) for an elliptic operator A∗
bAb.

2. Compute values of h(x) on the surface ∂ΩH by solving a Neumann problem (20) for an
elliptic operator A∗

eAe with the data νAb
ub on ∂ΩH obtained in Step 1. The possibility of

this depends on whether the restrictions on operators Ae and Ab described above hold.

3. Find the transmembrane potential v on the surface ∂ΩH by using the relation (15) together
with ub and h on ∂ΩH , found in Steps 1 and 2, respectively

v = ui − ue =
h− ub
λ2

− ub on ∂ΩH . (27)
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In conclusion we note that solvability conditions for an ill-posed Cauchy problem in Sobolev
spaces for a rather wide class of operators with real analytic coefficients are well known, see, for
example, [3]. Moreover, in [3, 15] on can find constructive procedures for its regularization, i.e.
for construction exact and approximate solutions (the so called Carleman formulas). Regarding
areas with models with the geometry corresponding to that in cardiology and operators that
are first order matrix factorizations of the Laplace operator, or more generally, of a Lamé-type
operator such Carleman formulas were obtained in [17].

The work was supported by the Foundation for the Advancement of Theoretical Physics and
Mathematics "BASIS".

References

[1] M.Burger, K.A.Mardal, B.F.Nielsen, Stability analysis of the inverse transmembrane poten-
tial problem in electrocardiography, Inverse Problems, 26(2010), no. 10, 105012

[2] J.Sundnes, G.T.Lines, X.Cai, B.F.Nielsen, K.A.Mardal, A.Tveito, Computing the Electrical
Activity in the Heart, Springer-Verlag, 2006.

[3] N.N.Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie-Verlag,
Berlin, 1995.

[4] S.Simanca, Mixed Elliptic Boundary Value Problems, Comm. in PDE, 12(1987), 123–200.

[5] V.Kalinin, A.Kalinin, W.H.W.Schulze, D.Potyagaylo, A.Shlapunov, On the correctness of
the transmembrane potential based inverse problem of ECG, Computing in Cardiology, 2017,
1–4.

[6] M.Schechter, A generalization of the transmission problem, Ann. SNS di Pisa, Cl. Sci.,
14(1960), no. 3, 207–236.

[7] M.Borsuk, Transmission problem for Elliptic second-order Equations in non-smooth domains,
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Об одной задаче трансмиссии, связанной с моделями
электрокардиологии

Юлия Л. Шефер
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. В настоящей работе рассмотрено одно обобщение задачи трансмиссии для матричных
эллиптических операторов, связанной с математическими моделями кардиологии. Указаны доста-
точные условия, при которых подход, разработанный для скалярных операторов, все еще работает
в новой, гораздо более общей ситуации.

Ключевые слова: задачи трансмиссии для эллиптических операторов, модели электрокардиоло-
гии.
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