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1. Introduction and preliminaries

The selection of classes biholomorphically equivalent domains has great importance in multi-
dimensional analysis and its applications. It is well known that all simply connected proper open
subsets of the plane C are conformally equivalent (Rieman mapping theorem). The situation is
completely different in the multidimensional case. For instance, an open unit ball and an open
unit polydisc are not biholomorphically equivalent. In fact, there does not exist any holomorphic
mapping from one to the other. Therefore, it is very important to have stocks of domains that
are biholomorphically equivalent to each other.

Finding the kernels of representations of holomorphic functions in domains Cn and in the
matrix domains from Cn [m×m] is a rather difficult task (see [1–4]). Usually, in classical theory,
kernels of such kind are constructed in bounded symmetric domains (see [5]). One of such domain
is the matrix ball. One considers the following problems for it (see [4, 6]): finding the transitive
group of automorphisms of a matrix ball; computing the Bergman and Cauchy-Szegö kernels for
this domain; finding Carleman’s formula, recovering values of a holomorphic function in a matrix
ball by its values on some boundary (uniqueness) sets (see [7–9]).

By writing down explicitly the transitive group of automorphisms of the matrix ball, by direct
calculation, we can find the Bergman and Cauchy-Szegö kernels for this domain. And then (using
the properties of the Poisson kernel) we can find Carleman’s formula, which recovers values of
a holomorphic function in whole domain by its values on some boundary set of uniqueness
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(see [9–11]). Here we use the scheme from ([5, 12, 13]) for finding the Bergman and Cauchy-
Szegö’s kernels. In [14], the volumes of the third type matrix ball and the generalized Lie ball
are calculated. The full volumes of these domains are necessary for finding kernels of integral
formulas for these domains (the Bergman, Cauchy-Szegö’s, Poisson kernels etc.). It is also used
for the integral representation of functions holomorphic in these domains as well as in the mean
value theorem and other important concepts.

Bergman spaces of bounded symmetric domains are fundamental objects in the analysis.
They are equipped with natural projection, i.e. with the Bergman projection, which is defined
by the property of the reproducing kernel. On the other hand, the Bergman weighted spaces are
very important in harmonic analysis also. For any transitive circular domain, the Bergman kernel
is equal to the ratio of the volume density to the Euclidean volume of the domain. In the book
of Hua Lo-ken (see [5]) the Bergman kernels are constructed for four types of classical domains,
guided only by this consideration and without referring to complete orthonormal systems. In [15],
holomorphic and pluriharmonic functions for classical domains of the first Cartan type were
defined, and the Laplace and Hua Lo-Ken operators were studied. Moreover, the relationship
was stated between these operators.

In homogeneous domains,the groups of automorphisms can be used for finding integral for-
mulas ([2, 3]). Domains with rich automorphism groups are often realized as matrix domains
([5, 16]). They are very useful in solving various problems in theory of functions.

In this paper, we continue to develop the analysis in the future tube and move on to the
study of the Lie ball. In [17, 18] it was noted that the Lie ball can be realized as a future tube.
These realizations are subject of our research. We will be interested in integral formulas with
holomorphic kernels in the future tube. There are two main types of formulas for restoring
holomorphic functions: the Bergman formulas where integration is carried out over the entire
domain and the Cauchy-Szegö formulas where integration is carried out over some set on the
boundary of the domain (usually along its skeleton). This implementation turns out to be
convenient for calculating the Bergman and Cauchy-Szegö kernels.

1. Realization of the Lie ball

We consider an n dimensional complex space Cn, the set of all ordered n tuples of complex
numbers z = (z1, z2, . . . , zn). The domain <n

IV
(the Lie ball (see [5])) consists of all n dimensional

complex vectors z satisfying the conditions

<n
IV

=
{
z ∈ Cn : |zz′|2 − 2zz′ + 1 > 0, |zz′| < 1

}
,

where z′ is the transpose of a vector z = (z1, z2, . . . , zn).
This domain is called the classical fourth type domain (according to E. Cartan’s classification

(see [19–21])) or the Lie ball. The Shilov boundary (the skeleton) Γℜn
IV

for the domain <n
IV is

defined as follows:
Γℜn

IV
= {z ∈ Cn : zz′ = 1, |zz′| = 1} .

An unbounded domain of the form

τ+ (n) =
{
w ∈ Cn+1 : (Imwn+1)

2
> (Imw1)

2
+ · · ·+ (Imwn)

2
, Imwn+1 > 0

}
is called the future tube in Cn+1. The boundary ∂τ+ (n) of the domain τ+ (n) is defined as

∂τ+ (n) =
{
w ∈ Cn+1 : (Imwn+1)

2
= (Imw1)

2
+ · · ·+ (Imwn)

2
, Imwn+1 > 0

}
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and the skeleton

Γτ+(n) =
{
w ∈ Cn+1 : Imw1 = · · · = Imwn = Imwn+1 = 0

}
= Rn+1,

on which the boundary degenerates.
The following statement is true.

Lemma 1. The map Φ : Cn
z → Cn

w defined by the equalities

wk =
−2izk

n−1∑
j=1

z2j + (zn − i)
2

, k = 1, . . . , (n− 1) , wn =
2 (zn − i)

n−1∑
j=1

z2j + (zn − i)
2

− i, (1)

maps biholomorphically the domain <n
IV

onto τ+ (n− 1), while Γℜn
IV

goes over to Γτ+(n−1).

We call the transformation (1) "the generalized Cayley transform". Then, from (1) we can
find the inverse map Ψ = Φ−1 : Cn

w → Cn
z , which is defined as

zk =
−2iwk

n−1∑
j=1

w2
j − (wn + i)

2

, k = 1, . . . , (n− 1), zn = i− 2 (wn + i)
n−1∑
j=1

w2
j − (wn + i)

2

. (2)

Now we calculate the Jacobians of the transformation (1) and (2). For this purpose we denote

W =

n−1∑
k=1

w2
k − (wn + i)

2 and Z =

n−1∑
k=1

z2k + (zn − i)
2
.

Lemma 2. The Jacobians of the transformation Φ of the form (1) and Φ−1 of the form (2) are
given by the next formulas respectively

JCΦ(z) = 2n (−i)
n+1

Z−n

and
JCΦ

−1 (z) = −2n (−i)
n+1

W−n.

2. Integral representation in the domain τ+ (n− 1)

We denote by dV the normalized Lebesgue measure in the domain D ⊂ Cn and define the
Bergman space

A2 (D) =

{
f ∈ O (D) :

∫
D

|f (z)|2 dV (z) < ∞
}
.

The inner product in the Bergman space is defined as:

〈f, g〉 =
∫
D

f (z) g (z)dV (z) .

Let the Bergman kernel Kτ+(n)(w, ξ) of the domain τ+ (n) has the form [17]:

Kτ+(n)(w, ξ) =
2n (n+ 1)!

πn+1

[(
w−ξ
i

)2
]n+1 , w, ξ ∈ τ+ (n) , (3)
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where
(
w − ξ

i

)2

=
[(
w1 − ξ̄1

)2
+ · · ·+

(
wn−1 − ξ̄n−1

)2 − (
wn − ξ̄n

)2]. If we denote

∆(y) := y2n − (y′)
2
= y2n −

(
y22 + y23 + . . . + y2n−1

)
,

then the relation (3) can be written as

Kτ+(n)(w, ξ) =
2n (n+ 1)!

πn+1∆n+1
(

w−ξ
i

) , w, ξ ∈ τ+ (n) .

It is known that the Bergman kernel for the Lie ball <n
IV has the form

Kℜn
IV

(z, ζ) =
1

V (<n
IV )

· 1(
1− 2zζ̄ ′ + zz′ζζ ′

)n , (4)

where V (<n
IV ) =

πn

2n−1n!
is the volume of the Lie ball <n

IV (see [5]).

We denote by dµ, dν and dη, dσ the normalized Lebesgue measures in the domains τ+(n− 1),
the Lie ball <n

IV and on the skeletons Γτ+(n), Γℜn
IV

, respectively.

Lemma 3. Let w = Φ(z), ξ = Φ(ζ). Then by the mapping (1) the Bergman kernel
Kτ+(n−1)(w, ξ) transforms as follows

Kτ+(n−1)(Φ(z),Φ(ζ)) =
1

4n
[
ZΥ

]n ·Kℜn
IV

(z, ζ) , (5)

where

Z =

n−1∑
k=1

z2k + (zn − i)
2
, Υ =

n−1∑
k=1

ζ2k + (ζn − i)
2
.

Proof. Let Φ : <n
IV 7→ τ+ (n− 1) be biholomorphic and φ ∈ A2 (<n

IV ). Then by replacing the
variable ζ = Φ−1(ξ), we have∫

ℜn
IV

JCΦ(z)Kτ+(n−1) (Φ (z) ,Φ(ζ)) JCΦ(ζ)φ (ζ) dν (ζ) =

=

∫
τ+(n−1)

JCΦ(z)Kτ+(n−1) (Φ (z) , ξ) JCΦ(Φ−1 (ξ))φ
(
Φ−1 (ξ)

)
JRΦ

−1 (ξ) dµ (ξ) =

= JCΦ(z)

∫
τ+(n−1)

Kτ+(n−1) (Φ (z) , ξ) JCΦ(Φ−1 (ξ))φ
(
Φ−1 (ξ)

) 1

JRΦ(Φ−1 (ξ))
dµ (ξ) .

(6)

By the Jacobian property (JRΦ = |JCΦ|2) the last integral in (6) has the form:

JCΦ(z)

∫
τ+(n−1)

Kτ+(n−1) (Φ (z) , ξ) JCΦ(Φ−1 (ξ))φ
(
Φ−1 (ξ)

) 1

|JCΦ(Φ−1 (ξ))|2
dµ (ξ) =

= JCΦ(z)

∫
τ+(n−1)

Kτ+(n−1) (Φ (z) , ξ) [
(
JCΦ

(
Φ−1 (ξ)

))−1
φ
(
Φ−1 (ξ)

)
]dµ (ξ) .

After changing variables, we can see that the expression
(
JCΦ

(
Φ−1 (ξ)

))−1
φ
(
Φ−1 (ξ)

)
in square

brackets in the last integrand is an element of the space A2 (τ+ (n− 1)). Applying the repro-
ducing property of Kτ+(n−1), we have

JCΦ(z) (JCΦ(z))
−1

φ
(
Φ−1 (Φ (z))

)
= φ (z) .
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From here it follows "variable replacement formula" for the Bergman kernels:

JCΦ(z)Kτ+(n−1) (Φ (z) ,Φ(ζ)) JCΦ(ζ) = Kℜn
IV

(z, ζ) .

Then
Kτ+(n−1)(Φ(z),Φ(ζ)) = [JCΦt(z)]

−1 ·Kℜn
IV

(z, ζ) ·
[
JCΦ(ζ)

]−1

=

= 2−n(−i)−n−1Zn · 2−n(i)−n−1Υ
n
Kℜn

IV
(z, ζ) =

1

4n
[
ZΥ

]n ·Kℜn
IV

(z, ζ).

The lemma is proved 2

In particular, when n = 1, from formulas (4) and (5), we have

Kτ+(0)(w, ξ) =
1

π∆
(

w−ξ
i

) = − 1

π
(
w − ξ

)2 − 1

π
(
−i z+i

z−i − i ζ−i

ζ+i

)2 =
(z − i)

2 (
ζ + i

)2
4π

(
1− zζ

)2 .

On the other hand

Kτ+(0)(w, ξ) = Kℜ1
IV

(z, ζ)
Z

2

Υ

2
=

1

π
(
1− zζ

)2 (z − i)
2 (

ζ − i
)2

4
=

(z − i)
2 (

ζ + i
)2

4π
(
1− zζ

)2 .

Let w = Φ(z), ξ = Φ(ζ). We have the following theorem

Theorem 1. For any function f ∈ A2 (τ+ (n− 1)) the formula holds:

f(w) =

∫
τ+(n−1)

f(ξ)Kτ+(n−1)(w, ξ)dµ(ξ), w ∈ τ+ (n− 1) .

The integral in this formula defines an orthogonal projector of the space L2(τ+ (n− 1)) into the
space A2 (τ+ (n− 1)).

Proof. Using the change of variables, according to Lemma 3 and the Jacobian properties we
have: ∫

τ+(n−1)

f(ξ)Kτ+(n−1)(w, ξ)dµ(ξ) =
1

4n

∫
ℜn

IV

f(Φ(ζ))Kℜn
IV

(z, ζ)ZnΥ
n
JRΦ(ζ) dν(ζ) =

=
Zn

2n

∫
ℜn

IV

f(Φ(ζ))Kℜn
IV

(z, ζ)
Υ

n

2n
|JCΦ(ζ)|2 dν(ζ) =

= Zn

∫
ℜn

IV

f(Φ(ζ))

Υn
Kℜn

IV
(z, ζ)dν(ζ).

The last integral is the Bergman integral in the Lie ball <n
IV of the function

f(Φ(ζ))

Υn
and it is

equal to
f(Φ(z))

Zn
. So, we obtain the first statement of the theorem.

Any function g ∈ L2(τ+ (n− 1)) can be represented as g = f + h, where f ∈ A2(τ+ (n− 1))

and h ∈ A2⊥(τ+ (n− 1)) are orthogonal function:∫
τ+(n−1)

f(ξ)h(ξ)dµ(ξ) = 0.
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We must show that ∫
τ+(n−1)

h(ξ)Kτ+(n−1)(w, ξ)dµ(ξ) = 0.

So, ∫
τ+(n−1)

f(ξ)h(ξ)dµ(ξ) =

∫
ℜn

IV

f(Φ(ζ))h(Φ(ζ))
∣∣∣2n (−i)

n+1
Υ−n

∣∣∣2 dν(ζ) =
= 2n

∫
ℜn

IV

f(Φ(ζ))Υ−nh(Φ(ζ))Υ−ndν(ζ) = 0.

Hence, h(Φ(ζ))Υ−n ∈ A2⊥(<n
IV ), i.e.∫
ℜn

IV

h(Φ(ζ))Kℜn
IV

(z, ζ)Υ−ndν(ζ) = 0.

Then∫
τ+(n−1)

h(ξ)Kτ+(n−1)(w, ξ)dµ(ξ) =
Zn

4n

∫
ℜn

IV

h(Φ(ζ))Υ
n
Kℜn

IV
(z, ζ)

∣∣∣2n (−i)
n+1

Υ−n
∣∣∣2 dν(ζ) =

= Zn

∫
ℜn

IV

h(Φ(ζ))ΥnKℜn
IV

(z, ζ)dν(ζ) = 0.

The theorem is completely proved. 2

We define the Cauchy-Szegö kernel Cτ+(n−1)(w, ξ) as follows (see [22])

Cτ+(n−1)(w, ξ) =
2nπ

n−1
2 Γ

(
n+1
2

)
∆

n+1
2 (w − ξ)

,

for w ∈ τ+ (n) , ξ ∈ Γτ+(n).
The kernel Cτ+(n−1)(w, ξ) is a holomorphic function in w and antiholomorphic in ξ.
The proof of the following lemma is similar to the proof of Lemma 1.

Lemma 4. Let w = Φ(z), ξ = Φ(ζ). By mapping (1), the Cauchy-Szegö kernel Cτ+(n−1)(w, ξ)
transforms in the following way

Cτ+(n−1) (Φ (z) , Φ(ζ)) =
1

2n
Z

n
2 Ῡ

n
2 Cℜn

IV
(z, ζ) ,

where Cℜn
IV

(z, ζ) is the Cauchy-Szegö kernel for the Lie ball <n
IV (see [19]).

Cℜn
IV

(z, ζ) =
1

V
(
Γℜn

IV

) [
(x− e−iφz) (x− e−iφz)

′
]n

2
,

ζ = eiφx, x ∈ Rn, xx′ = 1, φ ∈ [0; 2π] .

Proof. According to Jacobian property (see [5]) for the Cauchy-Szegö kernel we have[
Cℜn

IV
(z, ζ)

]2
=

[
Cτ+(n−1) (Φ (z) ,Φ(ζ))

]2
JCΦ(z) JCΦ(ζ),
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it follows that

Cτ+(n−1) (Φ (z) ,Φ(ζ)) =
1

2n
Z

n
2 Ῡ

n
2 Cℜn

IV
(z, ζ) =

Z
n
2 Ῡ

n
2 Γ

(
n
2

)
2n−1π

n+2
2

[
(x− e−iφz) (x− e−iφz)

′
]n

2
.

Theorem 2. For any function f ∈ H1(τ+ (n− 1)) the formula holds‡

f(w) =

∫
Γτ+(n−1)

f(ξ)Cτ+(n−1)(w, ξ)dη(ξ), w ∈ τ+ (n− 1) .

Proof. It is known that the Poisson kernel for the domain τ+ (n) (see [17]) can be written in the
form

Pτ+(n) (w, ξ) =
2nΓ

(
n+1
2

)
π

n+3
2

∆
n
2 (Imw)

|∆n (w − ξ)|
, w ∈ τ+ (n) , ξ ∈ Γτ+(n).

By Lemma 3.4 from [23] we can get

Pτ+(n−1) (Φ(z),Φ(ζ)) dη(Φ(ζ)) = Pℜn
IV

(z, ζ)dσ(ζ), (7)

where

Pℜn
IV

(z, ζ) =
(1 + |(z, z)|2 − 2 |z|2)n

2

|(z − ζ, z − ζ)|n
, z ∈ <n

IV , ζ ∈ Γℜn
IV

,

is the Poisson kernel for the Lie ball.
On the other hand, due to the relation between the Cauchy-Szegö and Poisson kernels

(see [23]) we have

P (w, ξ) =
C(w, ξ)C(ξ, w)

C(w,w)
=

|C(w, ξ)|2

C(w,w)
,

and by Lemma 2 we get that

Pτ+(n−1) (Φ (z) ,Φ(ζ)) =

∣∣Cτ+(n−1)(w, ξ)
∣∣2

Cτ+(n−1)(w,w)
=

1
4n |Z|n |Υn|

1
2n |Z|n

∣∣Cℜn
IV

(w, ξ)
∣∣2

Cℜn
IV

(w,w)
=

=
1

2n
|Υn|Pℜn

IV
(z, ζ) .

From that, we get

Pτ+(n−1) (Φ (z) ,Φ(ζ)) =
1

2n
|Υn|Pℜn

IV
(z, ζ) . (8)

Now dividing the relation (7) by (8), we obtain

dη (Φ (ζ)) = 2n
∣∣Υ−n

∣∣ dσ (ζ) .

Further on, after changing variable ξ = Φ(ζ) and taking into account Lemma 2, we have∫
Γτ+(n−1)

f(ξ)Cτ+(n−1)(w, ξ)dη(ξ) = Z
n
2

∫
Γℜn

IV

f(Φ(ζ))

|Υn|
Υ

n
2 Cℜn

IV
(z, ζ)dσ(ζ) =

= Z
n
2

∫
Γℜn

IV

f(Φ(ζ))

Υ
n
2

Cℜn
IV

(z, ζ)dσ(ζ).

‡The Hardy class H1(D) is defined as follows: a function f holomorphic in D belongs to H1 (D), if
sup

06r<1

∫
S(D)

|f (rξ)| dη < ∞, where η is the Lebesgue measure on the skeleton S (D).
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The last integral is the Cauchy-Szegö integral in the Lie ball of functions
f(Φ(ζ))

Υ
n
2

, and it is

equal to
f(Φ(z))

Z
n
2

. It gives us the statement of the theorem.
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Связь между ядрами Бергмана и Коши-Сеге
в областях τ+ (n− 1) и <n

IV

Гулмирза Х.Худайберганов
Жонибек Ш. Абдуллаев

Национальный университет Узбекистана
Ташкент, Узбекистан

Аннотация. В работе с использованием биголоморфной эквивалентности областей τ+ (n− 1) и
шара Ли ℜn

IV найдена связь между ядрами Бергмана и Коши-Сеге. Получены интегральные пред-
ставления голоморфных функций в этих областях.

Ключевые слова: классические области, шар Ли, труба будущего, граница Шилова, Якобиан,
ядро Бергмана, ядро Коши-Сеге, ядро Пуассона.
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