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Introduction. Formulation of the problem

Let us consider a three-dimensional elliptic equation with two singular coefficients

20 27

Lu = upy + tyy + sz + —uy + —u, =0, (1)
Y z
in a rectangular parallelepiped Q = {(z,y,2): 0 <z <a, 0 <y <b, 0 < z < ¢}, where § and ¥
are real numbers with 8, y< 1/2; u = u (z,y, ) is an unknown function.
Consider the following problem and study its unique solvability.
Dezin’s problem. Find a function u (z,y,2) € C () NC* (QN ({z =0} U {z =a})) NC?(Q)
that satisfies equation (1) in the domain Q and the following conditions

w(0,y,2) =u(a,y,2), uz(0,y,2) =uz(a,y,2), 0<y<b 0<z<g, (2)
U($7y,0):0, u(m,y,c):O, 0<z<aq, 0<y<ba (3)
u(z,0,2) = f1(z,2), 0<z<a, 0<z<g, (4)
u(z,b,2) = fa(x,2), 0<z<a, 0<z<e, (5)

where f1 (z,2) and f> (z,2) are given continuous functions.
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Desin studied equation
(d/dt)u—Au=f, 0<t<a

with the boundary condition bu|,_, — u|,_, = ¢ [1]. Here, it is assumed that function u (t)
takes values in a complex Banach space B when ¢t € [0,a], A: B — B is an unbounded linear
operator commuting with d/dt and a density domain of definition, and b is a complex number.
It is also explained that the given conditions are “nonlocal” in the sense that they determine the
relationship between the values of the unknown function at different points of the boundary.

Nonlocal boundary value problems are very interesting problems. They generalize the classical
problems and, at the same time, they are naturally obtained when constructing mathematical
models of real processes and phenomena in physics, engineering, etc (for an extended discussion
see [2-6]). Problems with nonlocal conditions for partial differential equations have been studied
by many authors. Below an overview of problems close to the Dezin problem is given. They are
formulated and studied in two-dimensional domains.

Frankl [7] considered the flow around a finite symmetric profile by a subsonic velocity stream
and formulated the problem for the Chaplygin equation in a mixed domain with a nonlocal
condition of the form u(0,y) = w(0,—y). In addition, the local condition u,(0,y) = 0 was
fulfilled. Tonkin [8] proved the existence of a solution to a nonlocal problem with conditions
uz(0,y) = uy(l,y), u(0,y) = 0,0 < y < T and u(z,0) = 7(x), 0 < z < 1 for the heat
equation using the spectral analysis method. The uniqueness of the solution of this problem was
proved [9]. Such conditions are encountered, for example, in problems of particle diffusion in
turbulent plasma and in problems of heat propagation in a thin heated rod if the law of change
of the total amount of heat of the rod is given. Ionkin and Moiseev [10] proved the unique
solvability of the problem for the heat equation with conditions

ayug (0,t) + brug (1,t) + agu (0,t) 4+ bou (1,t) = 0,

crug (0,t) + diug (1,t) + cou (0,t) + dou (1,t) = 0,

where a;,bj,¢j,d;j, j=0,1 are given constants.
Lerner and Repin [11] studied the following problem in half-strip D =
{(z,y) : 0 <2 <1, y > 0}. Find a function u (x,y) with properties

u(z,y) € C(D)NC' (DU{z=0})NC*(D);
Y Ugz +Uuyy =0, (z,y) €D, m> -1
u(z,y) =0 at y = +oo uniformly in x € [0,1];

U(O,y)—U(Ly):g@l (y)a ux(07y)=<p2(y), y>07 u(x,O):T(a:), 0<!E<17

where 7(x), p1 (y) and ¢y (y) are given sufficiently smooth functions, and 7 (z) is orthogonal to
the system of functions 1, cos (2n+ 1) 7wz, n = 0,1,2,.... The similar problem was studied in
the half-strip D for equation [12]

2
Ugg + Uyy + —puy —b*u=0, p,b€eR,
Y
Assuming that ¢1 (y) = 0 and s (y) = 0. The uniqueness of the solution of this problem is

proved on the basis of the extremum principle. Using the methods of separation of variables
and integral transforms, the solvability of the problem in question was established. Moiseev [13]
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studied the following nonlocal boundary-value problem in the half-strip D for degenerate elliptic
equation of the form
Y Ugg + Uyy =0, M > —2;

u(x,O):f(a:), 0<z< u(O,y):u(l,y), Ux(oay):(),y?();
f(z)eC?0,1], f(0)=f(1), f'(0)=0.

Using the spectral analysis method, the uniqueness and existence of the solution of this
problem were proved in the class of functions u (z,y) € C (D) N C? (D). Functions tend to
zero or are bounded at infinity. Moreover, the solution of the problem was constructed in
the form of the sum of the biorthogonal series. These results are also applicable to equations
Y U+ Uy — b2y u = 0, m,b € R, with b > 0, m > 0 [14]. Equation y™uz,— —uy, —b*y™u = 0
was studied in rectangular domain {(z,y): 0 <z <1,0 <y < T} [15], where m > 0, b > 0,
T > 0 are given real numbers. Initial conditions u (z,0) = 7(z), uy(z,0) = v(z), 0 < z < 1 and
nonlocal boundary conditions u(0,y) = u(1,y), uz(0,y) =0 or u,(0,y) = ux(1,y), u(l,y) =0
at 0 < y < T were assumed. The uniqueness and existence theorems are proved with the use of
the spectral analysis method. Equation

2
Ugg + SENY Uyy + ﬁuy—kkuzo, p=>1/2, keR
Y

was considered in domain D = {(z,y) : 0 <z < 1,y < a}, a > 0 [16] and the following problem
was studied
ueC(D)NC*(D\{y=0}), Lu=0;

w(0,y) =u(l,y), uz (0,y) =0,y <a; u(r,0)=¢(), 0<z<l,

where ¢ () is the given continuous function that satisfies condition ¢ (0) = ¢ (1).
Nonlocal problems for inhomogeneous Lavrentev-Bitsadze equation and for equation of mixed
elliptic-hyperbolic type with power degeneration were studied in the rectangular domains [17-21].
However, nonlocal problems for equations with singular coefficients in three-dimensional do-
mains remain poorly understood.

1. Construction of eigenfunctions

To find a solution to the Dezin problem we apply the Fourier method [22]. Let us find non-
trivial solutions of problem (1)—(3). Using separation of variables u (z,y,2) = = W (2, 2) Q (y),
we obtain from equation (1)

, 2
QW+ ) -2 =0, <y < (6)

2
Wm$+sz+W$+§Wz+>\W:O, O<z<a, 0<z<e (7)

where \ € R is the separation constant.

Taking into account conditions (2) and (3), we obtain for equation (7) the following eigenvalue
problem in the domain IT = {(z,2): 0 <z < a, 0 < z < ¢} : find the values of parameter A and
the corresponding nontrivial solutions W (z,z) € C(II) N C* (IIN ({z = 0} U {z = a})) N C*(Q)
of equation (7) in II that satisfy conditions W(0,z) = W(a,2), 0 < z < ¢; W(z,0) = 0,
W(x,c) =0, 0 <z < a.
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By separating variables W (x, z) = X () Z(z), this problem reduces to the following eigenvalue
problem for the ordinary differential equation:

L’Y

w2 (2)=2" () + (29/2) 2" (2) + A=) Z(2) =0, Z(0) =0, Z(c)=0; (8)

Ly X(x) =0, X(0)=X(a), X'(0)=X'(a), (9)

where p € R is the separation constant.

Let us find first a solution of problem (9). It is easy to verify that for u < 0 problem (9)
has only trivial solutions. At p = 0 the solution of problem (9) is X (z) = doy (do # 0 is some
constant). Consider now the case p > 0. Since boundary conditions in problem (9) are periodic
conditions, the problem is regular. In addition, it is easy to verify that boundary-value problem
(9) is a self-adjoint problem [23].

Substituting the general solution of equation LgX (x)=0

X(z) =dysiny/px+dycos/ux (10)

into nonlocal conditions X (0) = X (a) and X'(0) = X’(a), we obtain the following system of
equations
dysin\/pa + do (Cos\/ﬁa—l)zo, (11
dy (cos /a —1) —dysin \/fia = 0. )
Setting the main determinant of this system to zero, we find cos,/pa — 1 = 0. Solving
this equation, we find the eigenvalues of the problem: p, = (27n/a)?, n € N. Let us substitute
= p, into (10) and (11). It is easy to verify that the eigenvalue pg is simple, and it corresponds
to one normalized eigenfunction 1/+/a. Eigenvalues p,, n € N have multiplicity 2 and they
correspond to two normalized eigenfunctions \/2/a cos (27nz/a), \/2/asin (2rnx/a). Therefore,
the eigenvalues and the eigenfunctions of problem (9) that correspond to these eigenvalues can
be represented in the form of i, = (27n/a)*, n € N U{0} and

Xo(x) = % Xon_1(z) = \/zsin (2”;”’“> . Xon(z) = \/gcos (2”;”’> CmeN. (12

The system of eigenfunctions (12) is orthogonal and complete in the space Ls [0,a], and it
forms orthonormal basis in it (see, for example, [20,27]).

Now we turn to the study of problem (8). We consider equation L:(_MZ (z) = 0 and find its

general solution at p = p,. Introducing Z (2) = (t/v/A — un)lﬂ_’yp (t), where t = /A — i, 2,
A > piy (at A < py, problem (8) has only trivial solutions), from equation L:*\_MZ(Z) =0 we
obtain the Bessel equation [24]:

() + 10/ (6) + [£2 = (1/2=9)°] p(t) = 0.

Taking into account the form of the general solution of the last equation [24] and the intro-
duced notation, we obtain the general solution of equation L] . Z (2) =0 in the form

Zn (2) = dlnzl/z_'YJl/g,W (\/)\ — [l z) + dgnzl/Q_'YYl/g,W (\/)\ — fin z) , (13)

where d;, dy are arbitrary constants, J; (z) and Y; (z) are the Bessel functions of the first and
second kind of the order I, respectively [24].
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It follows from (13) that a solution of equation L}_MZ (z) = 0 that satisfies condition
Z(0)=01is Z,(2) = dlzl/zile/Q_,-Y (VA= fn ). Substituting this into condition Z (¢) = 0,
we obtain the condition for the existence of a nontrivial solution of problem (8):

T jrs (mc) —0, neN. (14)

It is known that when [ > —1 the Bessel function J; (z) has a countable number of zeros.
They are real and has pairwise opposite signs [24]|. Since 1/2 — v > 0 then equation (14) has
a countable number of real roots. Denoting the mth positive root of equation (14) at n = k
by Okm, we have values of parameter A for which there are nontrivial solutions of problem (8):
Am = fin 4 (Opm/c)®, n=10,1,2,..., m e N.

Assuming in (13) that A\ = A\, dip = 1, do, = 0, n = 0,1,2,..., m € N, we obtain
nontrivial solutions (eigenfunctions) of problem (8) up to a constant factor

Zym (2) = 2% 019 (Spmz/c), n=0,1,2,..., m € N. (15)

According to [24], for each n the system of eigenfunctions (15) is complete in space Ly [0, ]
with the weight 227.
Assuming in equation (6) A = Ay, we find its general solution

Qnm(y) = anmy1/2_ﬁll/276 ( Anm y) + bnmy1/2_ﬁK1/2fﬁ ( Anm y) , 0y < b, (16)

here @y, and b, are arbitrary constants, I; (y) and K (y) are the modified Bessel functions of
the first and third kind of the order I, respectively [24].

2. The uniqueness of the solution

The proof of the uniqueness of the solution of the Dezin problem is based on the lemma given
below.

Lemma 1. If 8, v < 1/2, function u(z,y,z) is the solution of equation (1), and it satisfies

conditions u(x,0,z) = 0 and u(x,y,0) = 0 then inequalities lir%yzﬁuy(x,y,z) < 400 and
Yy—

lirrb 22 Yu,(z,y, 2)| < +oo are satisfied.
Z—>

Proof. Separating variables by the formula u(x,y,z) = X (z) Q(y) Z(2), from equation (1) with
the variables y and z we obtain the ordinary differential equations (6) and L7 _ . Z(2)=0. Using
the general solutions of these equations, it is easy to verify that the solutions of equations (6) and
L3 _,Z(z) = 0 that satisfy conditions Q(0)= 0 and Z(0)= 0 respectively at /3, v < 1/2 have the
form (up to a constant factor) Q(y) = y*/>7PI,)5_4 (\5\ y) and Z(z)= 2Y277Jy jo_, (VA= p2).
Taking the first-order derivative of these functions using relations [24]

d

d
—_— [xi”,]u (33)] = :ta:i”.]y;l (z), e

dx

we have Q' (y) = \f)\ylﬂ_ﬁl,l/g,ﬁ (\f)\y), Z'(z) = VA — ,uzl/z_'YJ,l/Q,V (VAX=pz). It fol-

lows that

[a:i”IV (x)} = xi”Jl,:Fl (z), (17)

lirr(l) yQﬂQ'(y)’ < 400, ‘lir% 227Z’(z)‘ < 4o00. Taking into account that u(z,y,z) =
y— z—
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= X(z)Q(y) Z(z), we have that lin}JyQ'Buy(x,y,z) < 400 and hm]ZQ’Yuz(x y,2)| < +oo.
Yy—

z—(

Lemma 1 is proved. O

Now we turn to the proof of the uniqueness of the solution of the Dezin problem.
Theorem 1. The Dezin problem does not have more than one solution.

Proof. Let Vi(x,y, z) and Va(x, y, z) be solutions of the Dezin problem. Then function u(zx,y, z) =
Vi(z,y,z) — Va(z,y, z) satisfies equation (1), conditions (2), (3) and homogeneous boundary
conditions corresponding to (4) and (5). We prove that u(z,y,z) = 0 in Q.

In domain ) we have the identity

vy 2wy = (ywz%uuz)x + (y26227uuy)y + (y2622vuuz)z — 282 (ui + “?24 + uf,) =0.
Integrating this identity over domain

Qesce ={(z,y,2):e1<x<a—eg,e3<y<b—ey, e5<z<c—eg},

€1€2€3€4

where €, j = 1,6 are sufficiently small positive numbers, we have

/// 25 2y ) + (yzﬂzmuuy)y + (QQﬂZZWUUZ)z} dxdydz =

/// Qﬁ 227 (u} +u + u?) ] dadydz. (18)

51525354

Obviously, if €, j = 1,6 tends to zero then Q35 _ _ — Q.
Applying the Gauss-Ostrogradsky formula [22] to the left hand side of equality (18), we obtain
after some transformations that
c—eg b—ey
v 2 [uy (a — £2,y,2) — ug (61,9, 2)] u (a — 2,9, 2) dydz+
€5 €3
c—eg b—ey
s [ [P e e - w6 dyde
1553 €3

C—E&g A—E2

+ / / 22 [(b — 54)25u (x,b—¢eq,2) uy (x,b—€4,2) — egﬂu (x,e3,2) uy (z, €3, z)} dxdz+

1553 £1
b—eq4a—ez

+ y2ﬁ |:(C - 56)27,“ (337 Yy, c— 56) Uz (.’I}, Yy,Cc— 56) - E?U (.’17, Y, 55) Uz (mv Y, E5)i| dl'dy =
€3 €1

/// 2'6 27 u +u +u )]dwdydz

51525354

Hence, taking the limit at £; — 0, j = 1,6 and taking into account the conditions of Lemma
1, luy (z,b, 2)| < 400, |u, (z,y,c)| < +o0o and homogeneous boundary conditions, we obtain

/// 26 27 u +u +u)}dmdydz—0
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Therefore u,(x,y,2) = uy(z,y,2) = u.(z,y,2) =0, (z,y,2) € Q. Then u(z,y,z) =const,
(z,y,2) € Q. Since u(z,y,2) € C(Q) and u(z,0,2) = 0 then u(x,y,2) =0, (z,y,2) € Q. The
theorem is proved. O

3. Construction and justification of the solution of the Dezin
problem

Let us assume that solution of the Dezin problem in domain €2 has the form

.T y Y, =% Z Z Xn Qnm ) nm(z) =

n=0m=1

Oom 2 _
f Z 22 e, ( 0 >y1/2 B [aomI1j2—5 (Bomy) + bomK1/2-5 (Somy)] +

m=1

\/EZ Z ( . 2mnx 4 cos 27m$> A, <§nmz> y
a a c

n=1m=1

X y1/2_’8 {anmfl/g_g ( )\nm y) +ban1/2—ﬂ ( )‘nm y)} . (19)

Each term of series (19) satisfies equation (1) and conditions (2) and (3). Assuming that
this series converges absolutely and uniformly, we find constants a,,, and b,,, from the require-
ment that function (19) must satisfy boundary conditions (4) and (5). First, substituting it in
conditions (4), we obtain

\/72 F, (Sln + cos 27:?36) =712 (z,2), (20)

F,(2) = 271/27P0 (1/2 - B Z e W( "mz> (m)ﬁfwbnm. (21)

Series (20) and (21) are called the Fourier series of functions z7~Y/2f)(z,2) and F,(z) ex-
panded in the system of the trigonometric and Bessel functions, respectively. The Fourier coef-
ficients are determined from (20) as follows

where

Fy(z) = = /Oa 72 (z,2) dx, (22)

Ja

2 2
F,(2) \/%/ < in = 4 cos W;w> STV (2, 2) da. (23)

Since Fy(z) and F,,(z) are known we substitute them into (21), and unequivocally find coefficients
bom and by,,:

23/2+651/2 B
bom = for fom,
ﬁ[CJS/z—y(5Om)] I'(1/2 - p)

218 () 7
Va[edsa—n (6um)] T (1/2 = B)

frim,

bnm =
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where

[ (.2 2 Sum
= // (Sin T 1 cos an) 21/2+7J1/2_,y< Z) filz,z)dxdz, n+1, m e N.
a a c
00

Now, substituting function (19) into condition (5), we have

\f Z Gz <bm

2mnx
0s — )—— T2, (z,2), (24)
where

2) = ih/zw (6”6"12) |anmIi/2—5 (VAumb) + bam Ko (VAamb) | (25)

From relation (24) we find

Go(z) = %/0 V22 (1, 2)da

2 2
Gn(2) \/ﬂ/ < in = 4+ cos W:x> V228 () 2) d.

Substituting Go (z) and G, (z) into (25), we obtain

2p°-1/2
aomIi /25 (0omb) + bom K1 /2—p (omb) = 5 Jom

\/a[CJS/Q—’y (JOm)}

\/Qbﬁfl/Q
nmI — )\nm b)+ ban — )\nm b) = nm»
nml1/2-p (\/ ) 1/2-8 (V ) \/E[CJ3/2_7 (5nm)]29

where

[ (.2 2 S
://(sin T 1 cos ij) zl/2+7J1/2w( s Z) fo(z,2)dzdz, n+1, m € N.
a a
00

Since by, and by, are known then from the last system of equations we unequivocally find
coefficients ag,, and a,m:

P 208-1/2¢,, 23/2%5(1)7/,12_[31(1/2—5 (domb) fom
Om — 2 - 2 )
Valedssa—y (6om)] Tija—p Bomb)  Va[eJzjo—ry (8om)] T (1/2 = B) I1j2—p (Somb)
1/2— R
a = ﬁbﬁil/Zgnm - 21+5 ( Vv A"m) / 6K1/2_:8 ( A"m b) fnm

\/a[CJ3/27y (6n'rn)} 211/27ﬁ (\/ /\nm b) \/a[CJ3/27’y (5nm)] QF (% - ﬂ) 11/27,8 (\/ )\nm b) '

Substituting the values of coefficients aom, anm, bom and by, into (19), we find the formal
solution of the Dezin problem in the form

w9 =3 33 (0

nOml

2 V297 o (8pm
+ cos mx)z 1/2-1 ( Z/C)wnm(y)v (26)

[eJ3/2— (6um)]”

- 540 —



Kamoliddin T. Karimov Nonlocal Problem for a Three-dimensional Elliptic Equation. ..

where

VB o (V) i
Y 1/2—pB nm Y .
Wnm (y) = b1/275]1/2_,8 ( SV b) {gnm K1/2—5 (\/ Anm b) fnm] +

+Kipss (Vimy) fams  (27)

where function K, (z) [25] has the form: K, (z) = 2'""2"K, (z) /T (v), K, (0)=1 (v > 0).

Each member of this series satisfies all conditions of the Dezin problem. Let us note that when
B, v < 1/2 the denominator of the coefficients of series (26) has no zeros. If we prove that series
(26) and serieses gy, (Uyy + (28/y) uy), (Uzz + (27/2) us), obtained from it by differentiation
converge absolutely and uniformly in corresponding domains then its sum is the solution of the
Dezin problem. Moreover, we need the following lemmas.

Lemma 2. For any positive integers n,m and Yy € [0,b] the estimates

wnm (¥)] < 2 (Ignm| + | faml) (28)

[y (52 )| < 2Aum (gl + ) (29)

are valid.

Proof. Obviously, for any values of A, and y € [0, ] the inequality

is valid. Since y € [0,b], and I1/o_5 (VAnm ) is increasing function, then
y1/276]1/2—ﬁ (\/ Anm y)

<1 31
CIES T Wowt) @)

We obtain from (27) that
Y2 [42P n (1)] = A (1) - (32)

If inequalities (30) and (31) are taken into account then estimates (28) and (29) immediately
follow from (27) and (32). Lemma 2 is proved. O

Lemma 3. The following estimates hold for n € N:

. 2mnx 2mne
sin S

<V2, (33)

2 2
4 (sin T 4 cos wnx)‘ < V2 . (34)
dx a a

The validity of estimates (33)—(34) follows from the properties of trigonometric functions.

Lemma 4. For all natural numbers n and z € [0, c] the following estimates hold for sufficiently
large m,:
| Znm (2)] < Ch, (35)

‘Z‘QW (2272 (2)]] < C1(Bum /), (36)

where Cy is some positive constant.
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Proof. Tt is obvious that Z,, (z) € C'[0,a]. For sufficiently large & the asymptotic formula

holds [26] N o
Jy (&) =~ (71'5) cos (§ -5 Z) . (37)

Therefore, estimate (35) is true.
Using the first formula (17), we find from (15) that

nm

2270 (2) = (Bnm /) 22T oy (Bumz/c) - (38)

Let us take the first-order derivative of function (38) using formula (17). Then, multiplying
it by 2727, we obtain

Z—Q’Y [ZQ’YZ/nm (Z)]/

= — (/)22 pay B2/ €) = = (O /) Zoum (2) -
Then validity of estimate (36) follows from (35). a

Lemma 5. The following estimate holds for each fixred n € N and sufficiently large positive
mteger m:

Co
J§/2—'y (671771) 2 5 ’ (39)
where Cy 1s some positive constant.
Proof. Since 0py, is a zero of function J; /5 (x) then relation
¢ Onmz c?
2 nm 2
— |dz = — Onm)-
/0 2J1/27'y ( c ) Z B J3/27’y( )
is true. It follows from this relation that
2 [° O 2 [Onm
2 _ 2 nm _ 2
J3/2—'y (57"77«) - 072\/0 ZJl/Q—'y <C> dz = m 0 g‘]l/?—'y (g) df (40)

Taking into account asymptotic formula (37), there exists a sufficiently large number ¢y > 0 such
that for £ > ¢ equality

2
§13y (€) m —sin? (¢ + 1),

is true. If we assume that 0,,, is a sufficiently large number and 8, > 2 (co + 1) then

[ e @i [T @aes 2 [an (417 de =

0 Co

1 1 . 1
= —pm — — [co + 08 (dnm + co + ) sin (pm — €0)] = =—0nm.
T T 2

Taking this into account, we obtain that estimate (39) follows from (40). Lemma 5 is proved. O

Lemma 6. Let the following conditions be satisfied

. oF .o .
Ihﬁrnowfj (x7z):£l_r£le] (.’I),Z), k:O727 ]:1727 (41)
fi(@,0)=0, f;(z,c)=0, fi:(v,2) €C([0,a] x[0,c]), j=1,2, (42)

2 2 _
lim | fi-- (@,2) + =i (m)] =0, lim [szz (0,2)+ L f (@) =0, j=T2,  (43)

z—0

— 542 —



Kamoliddin T. Karimov Nonlocal Problem for a Three-dimensional Elliptic Equation. ..

% [szz (x,2) + ngjz (m,z)} e C([0,a] x [0,¢]), j=1,2, (44)

drvdz < 400, j=1,2.  (45)

c a 5 ) )
—-1/2— Y 2y O 2y 0 oy g
00

Then, for large n and m we have estimates

C3
b
n3+a7§;llj-nas

Cy
q b
nd+5752j‘n58

| from]| < (46)

|gnm| <

where e7,e5, Cg, Cy are positive constants.

Proof. Using formulas (17), coefficients f,, are presented in the form

B 2mnz o 2mnx\ d [ g0y, Onm?z
fmm_27m5nm// ( sin . )dz [z J_1/2—4 . f1(x, 2) dxdz.

Taking into account conditions (41)—(44) at j = 1 and applying the rule of integration by
parts three times for variable x and four times for variable z, we obtain

i 22 [ 2 ]}

P P
X (sin Wam + cos 7?93) Ay (5"mz> dadz. (47)

It is known [27] that if f (x) is an absolutely integrable function on [a, b] then equalities

b b
lim f(z)cosnzdx = lim f (z)sinnz dx = 0. (48)

n— oo a n— oo a

are true. There is an analog of properties (48) [27]:
1
lim zf (z) Jp (Anz)dr =0, (49)

here f(x) is an absolutely integrable function on [0,1], and A\,, n € N are positive zeros of
function J, () (p > —1) numbered in ascending order.
Since conditions (45) are satisfied then by virtue of (48)—(49) the following equality takes

place
. [ 9 273 7%8 2y
Jm [ 5 {5 [ e ) |
0 0

2 2 Onm
X (sin E _ cos an) 21/2*“’(]1/2_7 ( Z> dxdz = 0.
a a c

Using (47) and the latter relation and assuming that n and m are sufficiently large, estimate
(46) is obtained. The second estimate in (46) is proved similarly. Lemma 6 is proved. O

Now we turn to the study of convergence of series. Differentiating (26), we obtain

9 X &2 9 9 " Z
-2 Z Z (sin TZLQL‘ cos ﬂ:ﬂ:) vm (2) Wnm (y)g, (50)

n=0m=1 [CJB/Z ¥ (5nm)]
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y —u . 2mnax + eos 2mna \ ¥ 2P [P (y)]/ ;
w2 (o ) o 2 O

. 2mnx 27rmc) 222 o (2)]
Uy, + -+ cos Wam (1Y) - (52)
nZOle ( a [CJ3/2—~/ (5nm)]2

Taking into account estimates (28), (33), (35) and (39), for sufficiently large natural numbers
n and m, series (26) for any (x,y,z) € [0,a] x [0,00) X [0, ¢] is majorized by the number series

n=0m=1

oo o0

> D Cabum (|gnml + [ Fml)- (53)

n=0m=1

Series (50)—(52) on each compact K C 2 are majorized respectively by the following number
series:

Z Z Cﬁn26nm (‘gnml + |fnm|)a (54)
n=1m=1
DD Cobum (0 +67) (I9nml + | Faml)s (55)
n=0m=1
Z Z C(8 |gnrn| + |fnm|) (56)
n=0m=1

where C;, j = 5,8 are some positive constants.

According to [27, p. 276, formula (4.3)], for Vn € N and sufficiently large positive integers m
inequality (1/0pm) < (2/m) is true.

Consequently, according to Lemma 6, for sufficiently large n and m series (53)—(56) are
estimated respectively by numerical series

i 7’L +m? 011 57)
SN PIPPEEETI. s Yoy e e iTes PP PR e
n=1m=1

n=1m=1 n=1m=1 n=1m=1

where C;, j = 9,12 are some positive constants.

It is not difficult to establish that series (57) converge. Therefore, series (53)—(56) also
converge. Then, according to the Weierstrass criterion, series (26) converges absolutely and
uniformly in 2, and series (50)—(52) converges on each compact K C Q. Therefore, function
u(x,y, z) defined by (26) satisfies all conditions of the Dezin problem.

Thus, the following theorem is proved.

Theorem 2. Let function f; (z,z), j = 1,2 satisfies conditions (41)-(45). Then a solution of
the Dezin problem exists, it is unique, and it is determined by formula (26).
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HenokaapHas 3aJlava AJId TpeXMEepPHOI'o JJIJIUIITUYI€CKOI'o

ypaBHEHUSI C CUHTYJISPHBIMEU KO3 dunmeHTamm
B IIPSIMOYTOJILHOM I1apaJijiejenulie/ie

Kamomuaauua T. Kapumos
DepraHcKUil rOCyJapCTBEHHBI YHUBEPCUTET
@Peprana, Y36eKucraH

Awnnoranusi. VcciieroBana HestoKaabHas 3a7a4a IS SJTUIITHIECCKOTO YPABHEHUS C IBYMSsI CHHTYJISIPHBI-
MU KOa(dpuImeHTaMu B IPsIMOYTOJIBHOM TapaJuiesenuiesie. JJoka3aTesbCcTBO €IMHCTBEHHOCTH PEIIeHUsI
¥ €ero MOCTPOEHUE MPOBEIEHBI CIIEKTPAJBHBIM METOJIOM C MCIOJb30BaHUEM pa3jioKeHus B psii Pypbe u
Dypoe-beccens. [Ipu HEKOTOPBIX YCIOBUSIX OTHOCUTEIBHO TAPAMETPOB U 33 IaHHBIX (DYHKITHI TOKA3aHA
paBHOMEpHAs CXOJUMOCTh IIOCTPOEHHOIO Psijia.

Kiarougesbie ciioBa: YpPaBHEHUA SJUUIUIITUIECKOI'O TUIla, HEJIOKaJ/IbHasdA 3a1a4a, CI/IHFyJIHprIﬁ KOa(b(i)I/I—

IIUEHT, CIIEKTPAJIbHBIA METO/, TTapaJslae/IeITnIIe]T.
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