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Introduction. Formulation of the problem

Let us consider a three-dimensional elliptic equation with two singular coefficients

Lu ≡ uxx + uyy + uzz +
2β

y
uy +

2γ

z
uz = 0, (1)

in a rectangular parallelepiped Ω = {(x, y, z) : 0 < x < a, 0 < y < b, 0 < z < c}, where β and γ

are real numbers with β, γ< 1/2; u = u (x, y, z) is an unknown function.
Consider the following problem and study its unique solvability.

Dezin’s problem. Find a function u (x, y, z) ∈ C
(
Ω̄
)
∩C1

(
Ω̄ ∩ ({x = 0} ∪ {x = a})

)
∩C2 (Ω)

that satisfies equation (1) in the domain Ω and the following conditions

u (0, y, z) = u (a, y, z) , ux (0, y, z) = ux (a, y, z) , 0 6 y 6 b, 0 6 z 6 c, (2)

u (x, y, 0) = 0, u (x, y, c) = 0, 0 6 x 6 a, 0 6 y 6 b, (3)

u (x, 0, z) = f1 (x, z) , 0 6 x 6 a, 0 6 z 6 c, (4)

u (x, b, z) = f2 (x, z) , 0 6 x 6 a, 0 6 z 6 c, (5)

where f1 (x, z) and f2 (x, z) are given continuous functions.
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Desin studied equation
(d/dt)u−Au = f, 0 6 t 6 a

with the boundary condition bu|t=0 − u|t=a = g [1]. Here, it is assumed that function u (t)

takes values in a complex Banach space B when t ∈ [0, a], A : B → B is an unbounded linear
operator commuting with d/dt and a density domain of definition, and b is a complex number.
It is also explained that the given conditions are “nonlocal” in the sense that they determine the
relationship between the values of the unknown function at different points of the boundary.

Nonlocal boundary value problems are very interesting problems. They generalize the classical
problems and, at the same time, they are naturally obtained when constructing mathematical
models of real processes and phenomena in physics, engineering, etc (for an extended discussion
see [2–6]). Problems with nonlocal conditions for partial differential equations have been studied
by many authors. Below an overview of problems close to the Dezin problem is given. They are
formulated and studied in two-dimensional domains.

Frankl [7] considered the flow around a finite symmetric profile by a subsonic velocity stream
and formulated the problem for the Chaplygin equation in a mixed domain with a nonlocal
condition of the form u(0, y) = u(0,−y). In addition, the local condition ux(0, y) = 0 was
fulfilled. Ionkin [8] proved the existence of a solution to a nonlocal problem with conditions
ux(0, y) = ux(1, y), u(0, y) = 0, 0 6 y 6 T and u(x, 0) = τ(x), 0 6 x 6 1 for the heat
equation using the spectral analysis method. The uniqueness of the solution of this problem was
proved [9]. Such conditions are encountered, for example, in problems of particle diffusion in
turbulent plasma and in problems of heat propagation in a thin heated rod if the law of change
of the total amount of heat of the rod is given. Ionkin and Moiseev [10] proved the unique
solvability of the problem for the heat equation with conditions

a1ux (0, t) + b1ux (1, t) + a0u (0, t) + b0u (1, t) = 0,

c1ux (0, t) + d1ux (1, t) + c0u (0, t) + d0u (1, t) = 0,

where aj , bj , cj , dj , j = 0, 1 are given constants.
Lerner and Repin [11] studied the following problem in half-strip D =

{(x, y) : 0 < x < 1, y > 0}. Find a function u (x, y) with properties

u (x, y) ∈ C
(
D̄
)
∩ C1 (D ∪ {x = 0}) ∩ C2 (D) ;

ymuxx + uyy = 0, (x, y) ∈ D, m > −1;

u (x, y) → 0 at y → +∞ uniformly in x ∈ [0, 1] ;

u (0, y)− u (1, y) = φ1 (y) , ux (0, y) = φ2 (y) , y > 0; u (x, 0) = τ (x) , 0 6 x 6 1,

where τ(x), φ1 (y) and φ2 (y) are given sufficiently smooth functions, and τ (x) is orthogonal to
the system of functions 1, cos (2n+ 1)πx, n = 0, 1, 2, . . . . The similar problem was studied in
the half-strip D for equation [12]

uxx + uyy +
2p

y
uy − b2u = 0, p, b ∈ R,

Assuming that φ1 (y) ≡ 0 and φ2 (y) ≡ 0. The uniqueness of the solution of this problem is
proved on the basis of the extremum principle. Using the methods of separation of variables
and integral transforms, the solvability of the problem in question was established. Moiseev [13]
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studied the following nonlocal boundary-value problem in the half-strip D for degenerate elliptic
equation of the form

ymuxx + uyy = 0, m > −2;

u (x, 0) = f(x), 0 6 x 6 1; u (0, y) = u(1, y), ux (0, y) = 0, y > 0;

f (x) ∈ C2+α [0, 1] , f (0) = f(1), f ′ (0) = 0.

Using the spectral analysis method, the uniqueness and existence of the solution of this
problem were proved in the class of functions u (x, y) ∈ C

(
D̄
)
∩ C2 (D). Functions tend to

zero or are bounded at infinity. Moreover, the solution of the problem was constructed in
the form of the sum of the biorthogonal series. These results are also applicable to equations
ymuxx+uyy−b2ymu = 0, m, b ∈ R, with b > 0, m > 0 [14]. Equation ymuxx− −uyy−b2ymu = 0

was studied in rectangular domain {(x, y) : 0 <x <1, 0 <y < T} [15], where m > 0, b > 0,
T > 0 are given real numbers. Initial conditions u (x, 0) = τ(x), uy(x, 0) = ν(x), 0 6 x 6 1 and
nonlocal boundary conditions u(0, y) = u(1, y), ux(0, y) = 0 or ux(0, y) = ux(1, y), u(1, y) = 0

at 0 6 y 6 T were assumed. The uniqueness and existence theorems are proved with the use of
the spectral analysis method. Equation

uxx + sgny uyy +
2p

|y|
uy + ku = 0, p > 1/2, k ∈ R

was considered in domain D = {(x, y) : 0 < x < 1, y < α} , α > 0 [16] and the following problem
was studied

u ∈ C
(
D̄
)
∩ C2 (D\ {y = 0}) , Lu = 0;

u (0, y) = u (1, y) , ux (0, y) = 0, y < α; u (x, α) = φ (x) , 0 < x < 1,

where φ (x) is the given continuous function that satisfies condition φ (0) = φ (1).
Nonlocal problems for inhomogeneous Lavrentev-Bitsadze equation and for equation of mixed

elliptic-hyperbolic type with power degeneration were studied in the rectangular domains [17–21].
However, nonlocal problems for equations with singular coefficients in three-dimensional do-

mains remain poorly understood.

1. Construction of eigenfunctions

To find a solution to the Dezin problem we apply the Fourier method [22]. Let us find non-
trivial solutions of problem (1)–(3). Using separation of variables u (x, y, z) = = W (x, z)Q (y),
we obtain from equation (1)

Q′′ (y) +
2β

y
Q′ (y)− λQ (y) = 0, 0 < y < b, (6)

Wxx +Wzz +Wx +
2γ

z
Wz + λW = 0, 0 < x < a, 0 < z < c, (7)

where λ ∈ R is the separation constant.
Taking into account conditions (2) and (3), we obtain for equation (7) the following eigenvalue

problem in the domain Π = {(x, z) : 0 < x < a, 0 < z < c} : find the values of parameter λ and
the corresponding nontrivial solutions W (x, z) ∈ C(Π̄) ∩ C1

(
Π̄ ∩ ({x = 0} ∪ {x = a})

)
∩ C2(Ω)

of equation (7) in Π̄ that satisfy conditions W (0, z) = W (a, z), 0 6 z 6 c; W (x, 0) = 0,

W (x, c) = 0, 0 6 x 6 a.
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By separating variables W (x, z) = X(x)Z(z), this problem reduces to the following eigenvalue
problem for the ordinary differential equation:

Lγ
λ−µZ (z) = Z ′′ (z) + (2γ/z)Z ′ (z) + (λ− µ)Z (z) = 0, Z (0) = 0, Z (c) = 0; (8)

L0
µX(x) = 0, X(0) = X(a), X ′(0) = X ′(a), (9)

where µ ∈ R is the separation constant.
Let us find first a solution of problem (9). It is easy to verify that for µ < 0 problem (9)

has only trivial solutions. At µ = 0 the solution of problem (9) is X (x) = d0 (d0 ̸= 0 is some
constant). Consider now the case µ > 0. Since boundary conditions in problem (9) are periodic
conditions, the problem is regular. In addition, it is easy to verify that boundary-value problem
(9) is a self-adjoint problem [23].

Substituting the general solution of equation L0
µX(x) = 0

X(x) = d1 sin
√
µx+ d2 cos

√
µx (10)

into nonlocal conditions X(0) = X(a) and X ′(0) = X ′(a), we obtain the following system of
equations {

d1 sin
√
µa+ d2

(
cos

√
µa− 1

)
= 0,

d1
(
cos

√
µa− 1

)
− d2 sin

√
µa = 0.

(11)

Setting the main determinant of this system to zero, we find cos
√
µa − 1 = 0. Solving

this equation, we find the eigenvalues of the problem: µn = (2πn/a)
2
, n ∈ N . Let us substitute

µ = µn into (10) and (11). It is easy to verify that the eigenvalue µ0 is simple, and it corresponds
to one normalized eigenfunction 1/

√
a. Eigenvalues µn, n ∈ N have multiplicity 2 and they

correspond to two normalized eigenfunctions
√
2/a cos (2πnx/a),

√
2/a sin (2πnx/a). Therefore,

the eigenvalues and the eigenfunctions of problem (9) that correspond to these eigenvalues can
be represented in the form of µn = (2πn/a)

2
, n ∈ N ∪ {0} and

X0(x) =
1√
a
, X2n−1(x) =

√
2

a
sin

(
2πnx

a

)
, X2n(x) =

√
2

a
cos

(
2πnx

a

)
, n ∈ N. (12)

The system of eigenfunctions (12) is orthogonal and complete in the space L2 [0, a], and it
forms orthonormal basis in it (see, for example, [20, 27]).

Now we turn to the study of problem (8). We consider equation Lγ
λ−µZ (z) = 0 and find its

general solution at µ = µn. Introducing Z (z) =
(
t/
√
λ− µn

)1/2−γ
p (t), where t =

√
λ− µn z,

λ > µn (at λ 6 µn, problem (8) has only trivial solutions), from equation Lγ
λ−µn

Z (z) = 0 we
obtain the Bessel equation [24]:

t2p′′(t) + tp′(t) +
[
t2 − (1/2− γ)

2
]
p(t) = 0.

Taking into account the form of the general solution of the last equation [24] and the intro-
duced notation, we obtain the general solution of equation Lγ

λ−µn
Z (z) = 0 in the form

Zn (z) = d1nz
1/2−γJ1/2−γ

(√
λ− µn z

)
+ d2nz

1/2−γY1/2−γ

(√
λ− µn z

)
, (13)

where d1, d2 are arbitrary constants, Jl (z) and Yl (z) are the Bessel functions of the first and
second kind of the order l, respectively [24].
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It follows from (13) that a solution of equation Lγ
λ−µn

Z (z) = 0 that satisfies condition
Z (0) = 0 is Zn (z) = d1z

1/2−γJ1/2−γ

(√
λ− µn z

)
. Substituting this into condition Z (c) = 0,

we obtain the condition for the existence of a nontrivial solution of problem (8):

J1/2−γ

(√
λ− µn c

)
= 0, n ∈ N. (14)

It is known that when l > −1 the Bessel function Jl (z) has a countable number of zeros.
They are real and has pairwise opposite signs [24]. Since 1/2 − γ > 0 then equation (14) has
a countable number of real roots. Denoting the mth positive root of equation (14) at n = k

by δkm, we have values of parameter λ for which there are nontrivial solutions of problem (8):
λnm = µn + (δnm/c)

2
, n = 0, 1, 2, . . . , m ∈ N .

Assuming in (13) that λ = λnm, d1n = 1, d2n = 0, n = 0, 1, 2, . . . , m ∈ N , we obtain
nontrivial solutions (eigenfunctions) of problem (8) up to a constant factor

Znm (z) = z1/2−γJ1/2−γ (δnmz/c) , n = 0, 1, 2, . . . , m ∈ N. (15)

According to [24], for each n the system of eigenfunctions (15) is complete in space L2 [0, c]

with the weight z2γ .
Assuming in equation (6) λ = λnm, we find its general solution

Qnm(y) = anmy1/2−βI1/2−β

(√
λnm y

)
+ bnmy1/2−βK1/2−β

(√
λnm y

)
, 0 6 y 6 b, (16)

here anm and bnm are arbitrary constants, Il (y) and Kl (y) are the modified Bessel functions of
the first and third kind of the order l, respectively [24].

2. The uniqueness of the solution

The proof of the uniqueness of the solution of the Dezin problem is based on the lemma given
below.

Lemma 1. If β, γ < 1/2, function u(x, y, z) is the solution of equation (1), and it satisfies

conditions u(x, 0, z) = 0 and u(x, y, 0) = 0 then inequalities
∣∣∣∣ limy→0

y2βuy(x, y, z)

∣∣∣∣ < +∞ and∣∣∣ lim
z→0

z2γuz(x, y, z)
∣∣∣ < +∞ are satisfied.

Proof. Separating variables by the formula u(x, y, z) = X(x)Q(y)Z(z), from equation (1) with
the variables y and z we obtain the ordinary differential equations (6) and Lγ

λ−µZ(z)= 0. Using
the general solutions of these equations, it is easy to verify that the solutions of equations (6) and
Lγ
λ−µZ(z) = 0 that satisfy conditions Q(0)= 0 and Z(0)= 0 respectively at β, γ < 1/2 have the

form (up to a constant factor) Q(y)= y1/2−βI1/2−β

(√
λ y

)
and Z(z)= z1/2−γJ1/2−γ

(√
λ− µ z

)
.

Taking the first-order derivative of these functions using relations [24]

d

dx

[
x±νJν (x)

]
= ±x±νJν∓1 (x) ,

d

dx

[
x±νIν (x)

]
= x±νJν∓1 (x) , (17)

we have Q′(y) =
√
λ y1/2−βI−1/2−β

(√
λ y

)
, Z ′(z) =

√
λ− µ z1/2−γJ−1/2−γ

(√
λ− µ z

)
. It fol-

lows that
∣∣∣∣ limy→0

y2βQ′(y)

∣∣∣∣ < +∞,
∣∣∣ lim
z→0

z2γZ ′(z)
∣∣∣ < +∞. Taking into account that u(x, y, z) =
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= X(x)Q(y)Z(z), we have that
∣∣∣∣ limy→0

y2βuy(x, y, z)

∣∣∣∣ < +∞ and
∣∣∣ lim
z→0

z2γuz(x, y, z)
∣∣∣ < +∞.

Lemma 1 is proved. 2

Now we turn to the proof of the uniqueness of the solution of the Dezin problem.

Theorem 1. The Dezin problem does not have more than one solution.

Proof. Let V1(x, y, z) and V2(x, y, z) be solutions of the Dezin problem. Then function u(x, y, z) =

V1(x, y, z) − V2(x, y, z) satisfies equation (1), conditions (2), (3) and homogeneous boundary
conditions corresponding to (4) and (5). We prove that u(x, y, z) ≡ 0 in Ω̄.

In domain Ω we have the identity

y2βz2γuLu =
(
y2βz2γuux

)
x
+
(
y2βz2γuuy

)
y
+

(
y2βz2γuuz

)
z
− y2βz2γ

(
u2
x + u2

y + u2
z

)
= 0.

Integrating this identity over domain

Ωε5ε6
ε1ε2ε3ε4 = {(x, y, z) : ε1 < x < a− ε2, ε3 < y < b− ε4, ε5 < z < c− ε6} ,

where εj , j = 1, 6 are sufficiently small positive numbers, we have∫∫∫
Ω

ε5ε6
ε1ε2ε3ε4

[(
y2βz2γuux

)
x
+
(
y2βz2γuuy

)
y
+

(
y2βz2γuuz

)
z

]
dxdydz =

=

∫∫∫
Ω

ε5ε6
ε1ε2ε3ε4

[
y2βz2γ

(
u2
x + u2

y + u2
z

)]
dxdydz. (18)

Obviously, if εj , j = 1, 6 tends to zero then Ωε5ε6
ε1ε2ε3ε4 → Ω.

Applying the Gauss-Ostrogradsky formula [22] to the left hand side of equality (18), we obtain
after some transformations that

c−ε6∫
ε5

b−ε4∫
ε3

y2βz2γ [ux (a− ε2, y, z)− ux (ε1, y, z)]u (a− ε2, y, z) dydz+

+

c−ε6∫
ε5

b−ε4∫
ε3

y2βz2γ [u (a− ε2, y, z)− u (ε1, y, z)]ux (ε1, y, z) dydz+

+

c−ε6∫
ε5

a−ε2∫
ε1

z2γ
[
(b− ε4)

2β
u (x, b− ε4, z)uy (x, b− ε4, z)− ε2β3 u (x, ε3, z)uy (x, ε3, z)

]
dxdz+

+

b−ε4∫
ε3

a−ε2∫
ε1

y2β
[
(c− ε6)

2γ
u (x, y, c− ε6)uz (x, y, c− ε6)− ε2γ5 u (x, y, ε5)uz (x, y, ε5)

]
dxdy =

=

∫∫∫
Ω

ε5ε6
ε1ε2ε3ε4

[
y2βz2γ

(
u2
x + u2

y + u2
z

)]
dxdydz.

Hence, taking the limit at εj → 0, j = 1, 6 and taking into account the conditions of Lemma
1, |uy (x, b, z)| < +∞, |uz (x, y, c)| < +∞ and homogeneous boundary conditions, we obtain∫∫∫

Ω

[
y2βz2γ

(
u2
x + u2

y + u2
z

)]
dxdydz = 0.
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Therefore ux(x, y, z) ≡ uy(x, y, z) ≡ uz(x, y, z) ≡ 0, (x, y, z) ∈ Ω. Then u(x, y, z) ≡const,
(x, y, z) ∈ Ω. Since u(x, y, z) ∈ C(Ω̄) and u(x, 0, z) ≡ 0 then u(x, y, z) ≡ 0, (x, y, z) ∈ Ω̄. The
theorem is proved. 2

3. Construction and justification of the solution of the Dezin
problem

Let us assume that solution of the Dezin problem in domain Ω has the form

u(x, y, z) =

∞∑
n=0

∞∑
m=1

Xn(x)Qnm(y)Znm(z) =

=
1√
a

∞∑
m=1

z1/2−γJ1/2−γ

(
δ0mz

c

)
y1/2−β

[
a0mI1/2−β (δ0my) + b0mK1/2−β (δ0my)

]
+

+

√
2

a

∞∑
n=1

∞∑
m=1

(
sin

2πnx

a
+ cos

2πnx

a

)
z1/2−γJ1/2−γ

(
δnmz

c

)
×

× y1/2−β
[
anmI1/2−β

(√
λnm y

)
+ bnmK1/2−β

(√
λnm y

)]
. (19)

Each term of series (19) satisfies equation (1) and conditions (2) and (3). Assuming that
this series converges absolutely and uniformly, we find constants anm and bnm from the require-
ment that function (19) must satisfy boundary conditions (4) and (5). First, substituting it in
conditions (4), we obtain

F0 (z)√
a

+

√
2

a

∞∑
n=1

Fn (z)

(
sin

2πnx

a
+ cos

2πnx

a

)
= zγ−1/2f1 (x, z) , (20)

where

Fn (z) = 2−1/2−βΓ (1/2− β)

∞∑
m=1

J1/2−γ

(
δnmz

c

)(√
λnm

)β−1/2

bnm. (21)

Series (20) and (21) are called the Fourier series of functions zγ−1/2f1(x, z) and Fn(z) ex-
panded in the system of the trigonometric and Bessel functions, respectively. The Fourier coef-
ficients are determined from (20) as follows

F0(z) =
1√
a

∫ a

0

zγ−1/2f1 (x, z) dx, (22)

Fn(z) =
1√
2a

∫ a

0

(
sin

2πnx

a
+ cos

2πnx

a

)
zγ−1/2f1 (x, z) dx. (23)

Since F0(z) and Fn(z) are known we substitute them into (21), and unequivocally find coefficients
b0m and bnm:

b0m =
23/2+βδ

1/2−β
0m√

a
[
cJ3/2−γ(δ0m)

]2
Γ(1/2− β)

f0m,

bnm =
21+β

(√
λnm

)1/2−β

√
a
[
cJ3/2−γ (δnm)

]2
Γ (1/2− β)

fnm,
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where

fnm =

c∫
0

a∫
0

(
sin

2πnx

a
+ cos

2πnx

a

)
z1/2+γJ1/2−γ

(
δnmz

c

)
f1(x, z)dxdz, n+ 1, m ∈ N.

Now, substituting function (19) into condition (5), we have

G0(z)√
a

+

√
2

a

∞∑
n=1

Gn(z)

(
sin

2πnx

a
+ cos

2πnx

a

)
= zγ−1/2bβ−1/2f2 (x, z) , (24)

where

Gn(z) =

∞∑
m=1

J1/2−γ

(
δnmz

c

)[
anmI1/2−β

(√
λnmb

)
+ bnmK1/2−β

(√
λnmb

)]
. (25)

From relation (24) we find

G0(z) =
1√
a

∫ a

0

zγ−1/2bβ−1/2f2(x, z)dx,

Gn(z) =
1√
2a

∫ a

0

(
sin

2πnx

a
+ cos

2πnx

a

)
zγ−1/2bβ−1/2f2 (x, z) dx.

Substituting G0 (z) and Gn (z) into (25), we obtain

a0mI1/2−β (δ0mb) + b0mK1/2−β (δ0mb) =
2bβ−1/2

√
a
[
cJ3/2−γ (δ0m)

]2 g0m,

anmI1/2−β

(√
λnm b

)
+ bnmK1/2−β

(√
λnm b

)
=

√
2bβ−1/2

√
a
[
cJ3/2−γ (δnm)

]2 gnm,

where

gnm =

c∫
0

a∫
0

(
sin

2πnx

a
+ cos

2πnx

a

)
z1/2+γJ1/2−γ

(
δnmz

c

)
f2 (x, z) dxdz, n+ 1, m ∈ N.

Since b0m and bnm are known then from the last system of equations we unequivocally find
coefficients a0m and anm:

a0m =
2bβ−1/2g0m

√
a
[
cJ3/2−γ (δ0m)

]2
I1/2−β (δ0mb)

−
23/2+βδ

1/2−β
0m K1/2−β (δ0mb) f0m

√
a
[
cJ3/2−γ (δ0m)

]2
Γ (1/2− β) I1/2−β (δ0mb)

,

anm =

√
2bβ−1/2gnm

√
a
[
cJ3/2−γ (δnm)

]2
I1/2−β

(√
λnm b

) −
21+β

(√
λnm

)1/2−β
K1/2−β

(√
λnm b

)
fnm

√
a
[
cJ3/2−γ (δnm)

]2
Γ
(
1
2 − β

)
I1/2−β

(√
λnm b

) .
Substituting the values of coefficients a0m, anm, b0m and bnm into (19), we find the formal

solution of the Dezin problem in the form

u (x, y, z) =
2

a

∞∑
n=0

∞∑
m=1

(
sin

2πnx

a
+ cos

2πnx

a

)
z1/2−γJ1/2−γ (δnmz/c)[

cJ3/2−γ (δnm)
]2 ωnm (y) , (26)
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where

ωnm (y) =
y1/2−βI1/2−β

(√
λnm y

)
b1/2−βI1/2−β

(√
λnm b

) [
gnm − K̄1/2−β

(√
λnm b

)
fnm

]
+

+ K̄1/2−β

(√
λnm y

)
fnm, (27)

where function K̄ν (x) [25] has the form: K̄ν (x) = 21−νxνKν (x) /Γ (ν) , K̄ν (0) = 1 (ν > 0).
Each member of this series satisfies all conditions of the Dezin problem. Let us note that when

β, γ < 1/2 the denominator of the coefficients of series (26) has no zeros. If we prove that series
(26) and serieses uxx, (uyy + (2β/y)uy), (uzz + (2γ/z)uz), obtained from it by differentiation
converge absolutely and uniformly in corresponding domains then its sum is the solution of the
Dezin problem. Moreover, we need the following lemmas.

Lemma 2. For any positive integers n,m and ∀y ∈ [0, b] the estimates

|ωnm (y)| 6 2 (|gnm|+ |fnm|) , (28)∣∣∣y−2β
[
y2βω′

nm (y)
]′∣∣∣ 6 2λnm (|gnm|+ |fnm|) (29)

are valid.

Proof. Obviously, for any values of λnm and y ∈ [0, b] the inequality∣∣∣K̄1/2−β

(√
λnm y

)∣∣∣ 6 1 (30)

is valid. Since y ∈ [0, b], and I1/2−β

(√
λnm y

)
is increasing function, then

y1/2−βI1/2−β

(√
λnm y

)
b1/2−βI1/2−β

(√
λnm b

) 6 1. (31)

We obtain from (27) that

y−2β
[
y2βω′

nm (y)
]′
= λnmωnm (y) . (32)

If inequalities (30) and (31) are taken into account then estimates (28) and (29) immediately
follow from (27) and (32). Lemma 2 is proved. 2

Lemma 3. The following estimates hold for n ∈ N :∣∣∣∣sin 2πnx

a
+ cos

2πnx

a

∣∣∣∣ 6 √
2, (33)

∣∣∣∣ ddx
(
sin

2πnx

a
+ cos

2πnx

a

)∣∣∣∣ 6 √
2µn. (34)

The validity of estimates (33)–(34) follows from the properties of trigonometric functions.

Lemma 4. For all natural numbers n and z ∈ [0, c] the following estimates hold for sufficiently
large m,:

|Znm (z)| 6 C1, (35)∣∣∣z−2γ
[
z2γZ ′

nm (z)
]′∣∣∣ 6 C1(δnm/c)

2
, (36)

where C1 is some positive constant.
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Proof. It is obvious that Znm (z) ∈ C [0, a]. For sufficiently large ξ the asymptotic formula
holds [26]

Jν (ξ) ≈
(

2

πξ

)1/2

cos
(
ξ − νπ

2
− π

4

)
. (37)

Therefore, estimate (35) is true.
Using the first formula (17), we find from (15) that

z2γZ ′
nm (z) = (δnm/c) z1/2+γJ−1/2−γ (δnmz/c) . (38)

Let us take the first-order derivative of function (38) using formula (17). Then, multiplying
it by z−2γ , we obtain

z−2γ
[
z2γZ ′

nm (z)
]′
= −(δnm/c)

2
z1/2−γJ1/2−γ (δnmz/c) = −(δnm/c)

2
Znm (z) .

Then validity of estimate (36) follows from (35). 2

Lemma 5. The following estimate holds for each fixed n ∈ N and sufficiently large positive
integer m:

J2
3/2−γ (δnm) > C2

δnm
, (39)

where C2 is some positive constant.

Proof. Since δnm is a zero of function J1/2−γ (x) then relation∫ c

0

zJ2
1/2−γ

(
δnmz

c

)
dz =

c2

2
J2
3/2−γ (δnm).

is true. It follows from this relation that

J2
3/2−γ (δnm) =

2

c2

∫ c

0

zJ2
1/2−γ

(
δnmz

c

)
dz =

2

δ2nm

∫ δnm

0

ξJ2
1/2−γ (ξ) dξ. (40)

Taking into account asymptotic formula (37), there exists a sufficiently large number c0 > 0 such
that for ξ > c0 equality

ξJ2
1/2−γ (ξ) ≈

2

π
sin2

(
ξ +

γπ

2

)
.

is true. If we assume that δnm is a sufficiently large number and δnm > 2 (c0 + 1) then∫ δnm

0

ξJ2
1/2−γ (ξ) dξ >

∫ δnm

c0

ξJ2
1/2−γ (ξ) dξ > 2

π

∫ δnm

c0

sin2
(
ξ +

γπ

2

)
dξ =

=
1

π
δnm − 1

π
[c0 + cos (δnm + c0 + γπ) sin (δnm − c0)] >

1

2π
δnm.

Taking this into account, we obtain that estimate (39) follows from (40). Lemma 5 is proved. 2

Lemma 6. Let the following conditions be satisfied

lim
x→0

∂k

∂xk
fj (x, z) = lim

x→a

∂k

∂xk
fj (x, z) , k = 0, 2, j = 1, 2, (41)

fj (x, 0) = 0, fj (x, c) = 0, fjz (x, z) ∈ C ([0, a]× [0, c]) , j = 1, 2, (42)

lim
z→0

[
fjzz (x, z) +

2γ

z
fjz (x, z)

]
= 0, lim

z→c

[
fjzz (x, z) +

2γ

z
fjz (x, z)

]
= 0, j = 1, 2, (43)
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∂

∂z

[
fjzz (x, z) +

2γ

z
fjz (x, z)

]
∈ C ([0, a]× [0, c]) , j = 1, 2, (44)

c∫
0

a∫
0

∣∣∣∣z−1/2−γ ∂

∂z

{
z2γ

∂

∂z

[
z−2γ ∂

∂z

(
z2γfjxxxz (x, z)

)]}∣∣∣∣ dxdz < +∞, j = 1, 2. (45)

Then, for large n and m we have estimates

|fnm| 6 C3

n3+ε7δ4+ε8
nm

, |gnm| 6 C4

n3+ε7δ4+ε8
nm

, (46)

where ε7, ε8, C3, C4 are positive constants.

Proof. Using formulas (17), coefficients fnm are presented in the form

fjnm =
ac

2πnδnm

c∫
0

a∫
0

d

dx

(
cos

2πnx

a
− sin

2πnx

a

)
d

dz

[
z1/2+γJ−1/2−γ

(
δnmz

c

)]
f1 (x, z) dxdz.

Taking into account conditions (41)–(44) at j = 1 and applying the rule of integration by
parts three times for variable x and four times for variable z, we obtain

fnm =
a3c4

(2πn)
3
δ4nm

c∫
0

a∫
0

∂

∂z

{
z2γ

∂

∂z

[
z−2γ ∂

∂z

(
z2γf1xxxz (x, z)

)]}
×

×
(
sin

2πnx

a
+ cos

2πnx

a

)
z1/2−γJ1/2−γ

(
δnmz

c

)
dxdz. (47)

It is known [27] that if f (x) is an absolutely integrable function on [a, b] then equalities

lim
n→∞

∫ b

a

f (x) cosnx dx = lim
n→∞

∫ b

a

f (x) sinnx dx = 0. (48)

are true. There is an analog of properties (48) [27]:

lim
n→∞

∫ 1

0

xf (x) Jp (λnx) dx = 0, (49)

here f (x) is an absolutely integrable function on [0, 1], and λn, n ∈ N are positive zeros of
function Jp (x) (p > −1) numbered in ascending order.

Since conditions (45) are satisfied then by virtue of (48)–(49) the following equality takes
place

lim
n,m→∞

c∫
0

a∫
0

∂

∂z

{
z2γ

∂

∂z

[
z−2γ ∂

∂z

(
z2γf1xxxz (x, z)

)]}
×

×
(
sin

2πnx

a
− cos

2πnx

a

)
z1/2−γJ1/2−γ

(
δnmz

c

)
dxdz = 0.

Using (47) and the latter relation and assuming that n and m are sufficiently large, estimate
(46) is obtained. The second estimate in (46) is proved similarly. Lemma 6 is proved. 2

Now we turn to the study of convergence of series. Differentiating (26), we obtain

uxx =
2

a

∞∑
n=0

∞∑
m=1

(
sin

2πnx

a
+ cos

2πnx

a

)′′
Znm (z)ωnm (y)[
cJ3/2−γ (δnm)

]2 , (50)
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uyy +
2β

y
uy =

2

a

∞∑
n=0

∞∑
m=1

(
sin

2πnx

a
+ cos

2πnx

a

)
y−2β

[
y2βω′

nm (y)
]′[

cJ3/2−γ (δnm)
]2 Znm (z) , (51)

uzz +
2γ

z
uz =

2

a

∞∑
n=0

∞∑
m=1

(
sin

2πnx

a
+ cos

2πnx

a

)
z−2γ

[
z2γZ ′

nm (z)
]′[

cJ3/2−γ (δnm)
]2 ωnm (y) . (52)

Taking into account estimates (28), (33), (35) and (39), for sufficiently large natural numbers
n and m, series (26) for any (x, y, z) ∈ [0, a]× [0,∞)× [0, c] is majorized by the number series

∞∑
n=0

∞∑
m=1

C5δnm (|gnm|+ |fnm|). (53)

Series (50)–(52) on each compact K ⊂ Ω are majorized respectively by the following number
series:

∞∑
n=1

∞∑
m=1

C6n
2δnm (|gnm|+ |fnm|), (54)

∞∑
n=0

∞∑
m=1

C7δnm
(
n2 + δ2nm

)
(|gnm|+ |fnm|), (55)

∞∑
n=0

∞∑
m=1

C8δ
3
nm (|gnm|+ |fnm|), (56)

where Cj , j = 5, 8 are some positive constants.
According to [27, p. 276, formula (4.3)], for ∀n ∈ N and sufficiently large positive integers m

inequality (1/δnm) 6 (2/m) is true.
Consequently, according to Lemma 6, for sufficiently large n and m series (53)–(56) are

estimated respectively by numerical series

∞∑
n=1

∞∑
m=1

C9

n3+ε7m3+ε8
,

∞∑
n=1

∞∑
m=1

C10

n1+ε7m3+ε8
,

∞∑
n=1

∞∑
m=1

(n2 +m2)C11

n3+ε7m3+ε8
,

∞∑
n=1

∞∑
m=1

C12

n3+ε7m1+ε8
, (57)

where Cj , j = 9, 12 are some positive constants.
It is not difficult to establish that series (57) converge. Therefore, series (53)–(56) also

converge. Then, according to the Weierstrass criterion, series (26) converges absolutely and
uniformly in Ω̄, and series (50)–(52) converges on each compact K ⊂ Ω. Therefore, function
u (x, y, z) defined by (26) satisfies all conditions of the Dezin problem.

Thus, the following theorem is proved.

Theorem 2. Let function fj (x, z) , j = 1, 2 satisfies conditions (41)–(45). Then a solution of
the Dezin problem exists, it is unique, and it is determined by formula (26).
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Нелокальная задача для трехмерного эллиптического
уравнения с сингулярными коэффициентами
в прямоугольном параллелепипеде

Камолиддин Т.Каримов
Ферганский государственный университет

Фергана, Узбекистан

Аннотация. Исследована нелокальная задача для эллиптического уравнения с двумя сингулярны-
ми коэффициентами в прямоугольном параллелепипеде. Доказательство единственности решения
и его построение проведены спектральным методом с использованием разложения в ряд Фурье и
Фурье-Бесселя. При некоторых условиях относительно параметров и заданных функций доказана
равномерная сходимость построенного ряда.

Ключевые слова: уравнения эллиптического типа, нелокальная задача, сингулярный коэффи-
циент, спектральный метод, параллелепипед.
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