Journal of Siberian Federal University. Mathematics & Physics 2020, 13(5), 608-621

DOI: 10.17516/1997-1397-2020-13-5-608-621
VIIK 517.9

Baranchick-type Estimators of a Multivariate Normal Mean
Under the General Quadratic Loss Function

Abdenour Hamdaoui*

Department of Mathematics

University of Sciences and Technology, Mohamed Boudiaf, Oran
Laboratory of Statistics and Random Modelisations (LSMA), Tlemcen
Algeria

Abdelkader Benkhaled!

Department of Biology

Mascara University Mustapha Stambouli

Laboratory of Geomatics, Ecology and Environment (LGEO2E)
Mascara, Algeria

Mekki Terbechet

Department of Mathematics

University of Sciences and Technology, Mohamed Boudiaf, Oran
Laboratory of Analysis and Application of Radiation (LAAR), USTO-MB
Oran, Algeria

Received 08.04.2020, received in revised form 01.06.2020, accepted 16.07.2020

Abstract. The problem of estimating the mean of a multivariate normal distribution by different types

of shrinkage estimators is investigated. We established the minimaxity of Baranchick-type estimators
for identity covariance matrix and the matrix associated to the loss function is diagonal. In particular
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1. Introduction and Preliminaries

The field of estimation of a multivariate normal mean using shrinkage estimators was intro-
duced in [10]. The author showed that the maximum likelihood estimator (MLE) of the mean 6
of a multivariate gaussian distribution NN, (0, UQI,,) is inadmissible in mean squared sense when
the dimension of the parameters space p > 3. In particular, he proved the existence of an es-
timator which always achieves the smaller total mean squared error regardless of the true 6.
Perhaps the best known estimator of such kind is James-Stein’s estimator introduced in [7]. This
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one is a special case of a larger class of estimators known as shrinkage estimators which is a
combination of a model with low bias and high variance, and a model with high bias but low
variance. In this context we can cite for example Baranchik [2] for his work on the minimax-
ity of the estimators of the form 6,(X,S) = (1 — #(F)/F)X where F = || X||*/S, the statistics
S ~ %x2 is the estimator of the unknown parameter o and r(.) is a real mesurable function.
Strawderman [12] was interested to study the estimation of the mean vector of a scale mixture
of multivariate distribution under squared error loss. He showed the analogous results obtained
by Baranchik [2]. Xie et al [13] have introduced a class of semiparametric/parametric shrinkage
estimators and established their asymptotic optimality properties. Selahattin et al [9], provided
several alternative methods for derivation of the restricted ridge regression estimator (RRRE).
The optimal extended balanced loss function (EBLF) estimators and predictors are introduced
and derived from [8] and discussed their performances. In [6], the authors considered the model
X ~ N, (6,01,) where o2 is unknown and estimated by S? (S? ~ o2x2). They studied the
following class of shrinkage estimators &, = 67 + [(S2(S?, | X]1%)/ 11X ||*)X with [ is real pa-
rameter. Benkhaled and Hamdaoui [3], have considered the model X ~ N, (9,02Ip) where o2
is unknown. They studied the minimaxity of two different forms of shrinkage estimators of 6:
estimators of the form 6% = (1 — (52, X]*)S% || X||*)X, and estimators of Lindley-type given
by 6% = (1 — p(S2,T?)S*T?*) (X — X) + X.

In this work, we deal with the model X ~ N,, (6, £) and the loss matrix ) where the covariance
matrix ¥ is known. Our aims is to estimate the unknown parameter 6 by shrinkage estimators
deduced by the MLE. The paper is organized as follows. In Section 2, we study the standard
case ¥ = [, and Q) = D = diag(di, ds, ..., d,), we find the explicit formula of the risk function of
considered estimators and we treat there minimax property. As a special case, the James-Stein
estimator and its risk are also found. In Section 3, we study the considered problem with the
generalized matrices X and @. In Section 4, we graphically illustrate risks ratios of the James-
Stein estimator and the estimators of Baranchick-type to the MLE for various values of p. We
end the manuscript by giving an Appendix which contains technical lemmas used in the proofs
of our results.

We recall that if X ~ N, (0,0%I,), then 1X]?/02 ~ Xz (A) where x2()\) denotes the
non-central chi-square distribution with p degrees of freedom and non-centrality parameter
X = ]16]|?/202. We also recall the following results that are useful in our proofs.

Definition 1. For any measurable function f: Ry — R, X;2; (N\) integrable, we have

A
P<2,dk>,

where P (A\/2) being the Poisson’s distribution of parameter \/2 and Xsz is the central chi-
square distribution with p + 2k degrees of freedom.

Lemma 1. (Stein [11]). Let X be a N ('U,Jz) real random variable and let f : R — R be an
indefinite integral of the Lebesque measurable function, [’ essentially the derivative of f. Suppose
also that E|f' (X)| < +o0, Then

B|(F52) 0] =B 0o,

—+oo

E[f(g )] = Bz [FO)] = l . ()X 4 2pdu

k=0

o2

For the next, if X ~ N, (#,%X), we assume that the loss incurred in estimating 6 by o
is the function Lg(6,0) = (6 — 0)'Q(§ — ) and the risk function associated to this loss is
R (8,0) = Eg(Lg(6,0)).
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2. Results for standard case

Let X ~ N,(0,1I,) be a multivariate gaussian random variable in R” and for any estimator
§ we take the loss function Le(d,6) = (6 — 0)'Q(6 — #) where Q = D = diag (dy, da, . .., dp) . It
is well known that the MLE of the parameter 8 is X and its risk function associated to the loss

P
function Lp is > d; = Tr (D). Endeed
i=1

Rp (X,0) = E(Lp (X,0)) <Zd > ZdE )? = Tr (D),

because for any i (i =1,...,p), (X; — 6;)° ~ x? where X2 is the chi-square distribution with 1
degrees of freedom, then Ep(X; —6;)? = 1. It is easy to check that the MLE X is minimax, thus
any estimator dominates it, is also minimax.

Next, we suppose that K = (K4,...,K,) where K; (i = 1,...,p) are independent Poisson

P (6?/2) and K = Z K; (K ~ P (||6%]|/2)). We give the following Lemma, that can be used in
our proofs and its proof is postponed to the Appendix.

Lemma 2. Let X ~ N, (0,1,) where X = (X1,...,X,)" and 0 = (01,...,0,)". If p > 3, we
have

202
X2 e

el )| 19|,
) (nxn?) P2k

202

) X2\ 6]
”)E<||X||4>_E (p—2+42K) (p + 2K)

2.1. Baranchick-type estimators

In this part, we study the minimaxity of Baranchick-type estimator, which is given by

v (IX1%)
Oy = -—— | X.
P 1 ”XHZ (1)

Proposition 1. The risk function of the estimator defined in (1) under the loss function Lp is

zpjd (1 267 K)

1+ —5

= 16]12 V*(Xp k)
p+ 2K

2
— 4y’ (x p+2K) + 47¢(Xp+2[()

RD((Sw, 9) = TI"(D) + F 3 5
Xp+2K Xp+2K

—2Tr (D) E <W> :

2
Xp+2K
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Proof. We have

Rp(84,0) = E[Lp (6,,0)] = E { (X . v (||XH2) X) D (X oY (||XH2) X) } _

v (IXI7) 3 dix?

v v (1X1) X,
—23 4B [(Xi—60;) | ——5—| | -
I g3 l( ) [ ] ”

Using Lemma 1, we obtain

v (IXI7) 3 dix?

i o [v(Ix1?) x;
Rp(6y,0) =Tr (D) + £ N GE | | L || =
o EG g 0X; | x|
p P
02 (X)) 35 dix? v (1% 3 dix?
=Tr(D)+F = —4FE =1 _
1] 1|
p
» v (1x)°) v (IXI7) 32 dix?
-2 di | & +4F = -
(Z ) x| x|

3 d;X? )2 (||X||2) (0 (HXII2)

=Tr(D)+E{ = — 4y ) +4
" IXIE | e (117) + 4=
v (I1X1%)
—2Tr (D) FE
) ( I1XIP

From the independence given K between X2/||X||> and || X||? for i = 1,...,p, we get

Rp(0y,0) =Tr(D)+

+E {Zdsz <”§i|2|2 K> E Kw — 4y’ (IX%) +4W) |K] } -

=1

(e[
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Using the Lemma 2, we have

+E —
p+2K 1X1 X1
v (Ix1?)
—2Tr (D) 3 =
1X1

= Tr (D) - 2Tr (D) E M
111

v 26?
E%”Mﬂ>wmﬁ

+ESE
p+2K 1x)*

@#OXW)+4¢<XWMK

From Definition 1 and using properties of conditional expectation we have, for any two measurable
functions G and H, E [G (||X||2)] — E[G (x2,2x)] and E{E[H (K)|K]} = E[H (K)], where
K~ P(||9||2/2), thus we get the desired result. O

Note that the classical result of minimaxity of Baranchick-type estimators which is obtained

P
for the loss function L (8,6) = > (6; — 6;)* (ie. di = 1 for any i = 1,...,p), is also available
i=1

and it is established in the following Theorem.

Theorem 1. Assume that y is given in (1) with p > 3. Under the loss function Lp with
Tr (D) .

— =221

max (d;)

1<igp

i) ¥ (.) is monotone non-decreasing function;

Tr (D)

g, ()

i) 0< () <2 9

7

then dy is minimaz.

Proof. From formula (2), we have

Rp(6,,0) < Tr (D) +

P 202
49 (o) (14 2K ) o

= + e (32

+FE i=1 ”0H + max (dz) (G (Xp+2K)2 P (Xp+2K)
p+2K 1<i<p X 12K
2
—2Tr (D) E w <
Xp+2K
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' g p 207
44 (Zar) 3 <1+ e >

<Tr(D)+E +

p+2K

Xp+2K 1<i<p

+FE {W [max (di) [ (Xpi2r) +4] —2Tx (D)} } :

Then, a sufficient condition for that d, is minimax is that ¢ (.) is a positive monotone non-
decreasing function and max (d;) [v (XZ+2K) + 4] — 2Tr (D) < 0. Which are equivalent to
P

M(.)gg(w)?)

max (d;
1<i<p

and 9 (.) is monotone non-decreasing. O
Example 1. Let the shrinkage functions () (||X||2) = || x]?/ (||XH2 + 1), w(2)(|\X||2) =

=1 — exp(— || X||*) and the matrices DO = diag (dy = 1,dy = 1/2,...,d, =1/p) with p > 7
and D® = diag (d, = 1/2,dy = 2/3,..., d, =p/p+1) with p > 4. It is clear that the functions
1) (.) and @) () satisfie conditions of Theorem 1. Then the estimators Oy and G2 are
minimax for p > 7 under the loss function Lg) and are minimax for p > 4 under the loss

function L(Dz) .

Now, we discuss the special case where 9 (.) = a with a is a positive constant.

2.2. James-Stein estimator

Consider the estimator §, = (1 - a/HX||2) X=X- (a/||XH2) X, where a is a real parameter
that can depend on p. Using the Proposition 1, the risk function of the estimator J, is
P 202
> d; <1 + —5K )
i=1 6]
(p—2+2K)(p+2K)

Rp(64,0) =Tr(D)+a(a+4)FE

——2aTT(D)l?<p21+2u(). 3)

Tr (D
Proposition 2. Under the loss function Lp with p > 3 and L
m

i) a sufficient condition for that 0, dominates the MLE X is

Tr (D)

max (d;)
1<i<p

0<a<? -21;

i1) the optimal value of a that minimizes the risk function Rp(dqa,0) is

Tr(D)E ((}?—21+2K)) —2,

«

a:
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where o = E (Zidi (1—!— (29?/”9”2) K)/(p—2—|-2K) (p+2K)>,

Proof. 1) From formula (3), a sufficient condition so that J, dominating the MLE X is

P 2
> d; <1 + 20l2K>
i=1 6]

1
A E — 2Tt (D)E [ ————— ) <.
ala+4) (p—2+2K) (p + 2K) aTr (D) <p2+2K)
As P 202
> di(l + ||9|12K) )
=1
E < dWE(— ),
-2+ 2K) (pr2K) | S 2 () (p—?-i—QK)

thus, a sufficient condition so that §, dominates the MLE X is

a {(a +4) max (d;) — 2Tr (D)} E (])_21+2K> <0,

1<isp

which is equivalent to the desired result.
ii) Using the convexity of the risk function Rp(d,,6) on a, one can easily show that the optimal
value of a that minimizes the risk function Rp(d,,0) isa = (Tr (D) E (1/(p — 2+ 2K))/a) — 2,

where a = E (i d; (1 + (29,2/”9“2) K)/(p 24 2K) (p+ 2K)>. O

For a = @ we obtain the James-Stein estimator d;g (: 0 = (1 - Zi/||X||2> X) which min-
imizes the risk function of estimators d,, so that from formula (3), the risk function of the
James-Stein estimator ;g under the loss function Lp is

Rp(3ss,0) = Tr (D) - {TY o <p = QK) - m} , (4)

«

As the constant « is non-negative and using the formula (4), it is clear that the James-Stein
estimator §;g, has a risk less than Tr (D), then ;s is minimax.

3. The case of generalized X and ()

Let X ~ N, (0,%) and the loss function Lg (6,0) = (6 — )" Q (6 — ) where the covari-
ance matrix ¥ is known and ¥'/2Q¥'/? is diagonalizable matrix. Take the change of vari-
ables Y = PX.~'/2X where P is an orthogonal matrix (PP! = I,,) that diagonalizes the matrix
»1/2Q%1/2 such as PXY2Q¥YV/2pPt = D* = diag(ay,...,a,). Then we have Y ~ N, (v, 1,)
with v = PX71/20. Thus the risk function of the MLE X associated to the loss function Lg is

ﬁ: a; = Tr (D*). Endeed
Ro(X,0)=E [(X 0 Q(X — 9)} - E{ {21/213*1 (Y - ”)T Q {21/213*1 (v - 1/)} } -

E {(Y _ )t PEY2QR2pt (Y — y)} —E {(Y — )i D (Y — y)} -

_ija@E (% = )] = e (D),
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because for any i (i=1,...,p) (V; — l/i)2 ~ X3 where x? is the chi-square distribution with
1 degrees of freedom, thus E (Y; — z/i)2 = 1. As the MLE X is minimax, then any estimator
dominates it, is also minimax.

3.1. Baranchik-type estimators

Now, consider the estimator given by

1) (XtE_lX)
=|1-——— | X.
% ( Xty-1x ®)
Proposition 3. Under the loss function Lg the risk function of the estimator d4is
P 202
> ai (1 + ZgK) 2,2 2
i— 0|l 0] (X +2K) QS(X +2K)
Ro(04,0) = Tr (D) + E{ = I p 44 (v 44\
@(04,9) (D*) DTk o ¢ (Xpa2x) Coar
2
—2Tr (D) E ¢ Wyia) (ép“K) :
Xp+2K
where K ~ P (||V||2/2)
Proof.
t
10) (XtZ_lX) 10) (XtZ_lX)
—pl|(1-22 2 2 ) x - - = )X -0y =
Rq(04,0) ( Xtn-1x o1 @ Xty-1X ’

¢ (X'S1X)
Xin-1X

Xty-lx
“ [<X ~0)- e

Using the change variable Y = PX.~1/2X where P is an orthogonal matrix and P diagonalizes
the matrix ©/2Q¥1/2, then Y ~ N, (v, I,,) with v = PY~1/2¢ and

Rg(64,0) = E { {21/2131 {(Y —v) — ¢ (YY) YHt Q {21/2131 {(Y —v)— ¢ (Yty)y” } -

—E{ [(X—0) - X

Yty Yty
¢ (YY) ' 1\t y21/2 451/2 p—1 o (YY)
_E“(Yy) viy Y (P~H) S12Qu2P~ (Y —v) - viv Y| (=
_ St
o (Iv17) i o (IVI7)
=B |(Y —v) - ——52Y| PEYV2QEY2P! (Y —v) - ——52Y | 5 =
Y] Y]
_ St
2l (V) 1 .. _— o) 1, 0
= - I T — V) — %5 = ip= b )
Iy )® Iy )®
where |.]| is the usual euclidean norm in RP, PXY/2Q¥'/2pPt = D* = diag(ay,...,a,) and
55 = (1= (o(IIY[I?/IY[]?)) Y. From Proposition 1, we obtain the desired result. O

- 615 —



Abdenour Hamdaoui. . . Baranchick-type Estimators of a Multivariate Normal Mean. ..

Theorem 2. Assume that 04 is given by (5) where p > 3. Under the loss function Lo with
Tr(D*) .

— =221

max (a;)
1<i<p

i) ¢ (.) is monotone non-decreasing;

n-)ow_)@(m_g),

max (a;
1<isp

then d4 is minimaz.

The proof is the same given for the Theorem 1.

3.2. James-Stein estimator

Consider the estimator §, = (1 -b/ (XtZ_lX)) X. Using the Proposition 3, one can show
easily that the risk function of the estimator d; under the loss function L is.

P 262
Z(h‘(l-i- L K)
i=1 9]

(p—2+2K)(p+2K)

Ro(8y,0) = Tr (D*) + b(b+4) B

—2bTr (D) E <(p — 21+ 2K>> ,

where K ~ P (||1/||2 / 2). From the last formula, we deduce immediately that, a sufficient condi-

tion for that ¢, dominating the MLE X is 0 < b < 2 (Tr (D*) /lrga<x a;) — 2) , and the optimal
P

value of b that minimizes the risk function Rg(dp,0) is

08 (Ggram) )
2 ,

b=

where § = E (é ai (1 + (293/\\9”2) K)/(p 24 2K)(p+ 2K)).

For b = b we obtain the James-Stein estimator 05 = 0 = (1 —B/ (XtZ_lX)) X which

minimizes the risk function of d,. Its risk function associated to the loss function L is

0 (g ) - 2/3]2
: |

From formula (6), we note that 0% ¢ dominates the MLE X, thus 0%¢ is minimax.

Rq(97s,0) = Tr (D7) —

4. The simulation results

In this section we take the model X ~ N,(0,I,) where § = (01,61,...,61)" and we recall
the estimators of Baranchick-type and the matrices DY) and D@ given in Example 1, i.e.,

bucr = (L= (IXIP)/IXI7) X, 8y = (1= 0@ (IX]7)/IX]P) X with w0 (|X]*) =
= X127 (1X 1P+ 1), o (I1X]°) =1 = eap(~ X ), DD =diag (i = 1,d2=1/2,....d, = 1/p)
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and D® =diag (dy=1/2,ds = 2/3,...,d,=p/p+ 1). We also recall the form of the James-Stein
estimator ds (: 5o = (1 ~a/ |\X||2) X), where @ = (Tr (D) E (1/ (p — 2 + 2K))/a) — 2 and

P
a=F (Z d; (1 + (293/”9”2) K)/(p —242K)(p+ 2K)> We graph the risks ratios of es-
i=1

timators cited above, to the MLE associated the the losses functions Lpa) and L2y denoted re-
spectively: R(d;s,0)/R(X,0), R(d,),0)/R(X,0) and R(,2,0)/R(X,0) as function of A = 67
for various values of p.

In Figs. 1-4, we note that the risks ratios R(dss,0)/R(X,0), R(6,w,0)/R(X,0) and
R(6,2,0)/R(X,0) are less than 1, thus the estimators d;s, d,0) and 6,2 are minimax for
p =8 and p = 12 under the loss function L), and also minimax for p = 4 and p = 6 under the
loss function L ).

0 2 4 6 8 10

Fig. 1. Graph of risks ratios R(ds,0)/R(X,0), R(6,1),0)/R(X,0) and R(dyw),0)/R(X,0) as
function of A\ = 62 for p = 8 under the loss function L )

James-5tein

1.2
0 2 4 6 8 10
h
Fig. 2. Graph of risks ratios R(dss,0)/R(X,0), R(,0),0)/R(X,0) and R(dy=),0)/R(X,0) as
function of A\ = 62 for p = 12 under the loss function L )
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0.5

2 4 6 8 10
A

Fig. 3. Graph of risks ratios R(d;s,0)/R(X,0), R(d,0),0)/R(X,0) and R(d,=,0)/R(X,0) as
function of A = 07 for p = 4 under the loss function L)

MLE
. 5:5(23

07 ; 5.

r E'"l

1
06 |

i’

i
0.5 ! James-Stein
04

0 2 4 6 8 10

2

Fig. 4. Graph of risks ratios R(dss,0)/R(X,0), R(6,m,0)/R(X,0) and R(dyw),0)/R(X,0) as
function of A = 0% for p = 6 under the loss function L )

5. Appendix

Lemma 3 (Bock [5]). Let X ~ N, (0,1,) where X = (Xq,...

X)) and 0 = (61,...,6,)", then,

For any measurable function h : [0, +o00[ — R, we have

E (h (1X17) x2) = B [0 (2.2 (1007))] +62B [0 (32, (161°))]

where K ~ P (H9||2/202) being the Poisson’s distribution of parameter ||0]* /202
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Lemma 4 (Bock [5]). Let f be a real-valued mesurable function defined on the integer. Let
K ~ P(\/2) being the Poison’s distribution of parameter A\/2. Then

AE[f(K)]| = E2Kf (K -1)],
if both sides exist.

Proof Lemma 2. 1) Using Lemma 3 and the Definition 1, we obtain

E Xi =F 1 +6’FE N_g ! +6?F _
X3 T n01%) \ g g (lo?) \ ) p+2K ‘ p+2+2K )’

where K ~ P (||0H2/2) being the Poisson’s distribution of parameter 0] /2.

From Lemma 4, we have

2
142— K
X2 1 02 2K 6]
= () = ) e ) -
I1X| p+2K 16| p+2K p+2K

ii) Using Lemma 3 and the Definition 1, we obtain

X7 1 2 1

:E<(p2+2flf)(p+2K)) +93E<(p+2K)(;+2”K)>7

where K ~ P (||9H2/2) From Lemma 4, we have

X2\ _ 1 ? 2K B
t <||X|2> _E<(p—2+2K) (p+2K)> " ||0||2E<(p—2+2K) (p+2K)> -

0:
1+2— K
1]

(p—2+2K)(p+2K)

Conclusion

Stein [10], has started to study the estimation of the mean 6 of a multivariate gaussian
random N, (9, 02Ip) in R?, by the shrinkage estimators deduced from the usual estimator. Many
authors continued to work in this field. The majority among them have studied the minimaxity
of these estimators under the usual quadratic risk function, we cite for example [5,7]. Other
authors research the stability of the minimaxity property in the case where the dimension of the
parameter space and the sample size are large, we refer to [3,6]. In this work we studied the
minimaxity of Baranchick-type estimators, relatively to the general loss function. We showed
similar results to those found in the classical case. An idea would be to see whether one can
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obtain similar results of the minimaxity and the asymptotic behavior of risk ratios in the general

case of the symmetrical spherical models.

The authors are extremely grateful to the editor and the referees for carefully reading the

paper and for valuable comments and helpful remarks and suggestions which greatly improved
the presentation of this paper. This research is supported by the Thematic Research Agency in
Science and Technology (ATRST-Algeria).
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OO0 oreHKax pernieHUil 3aJja9n pacHieIlJIeHns IJIsi HEKOTOPhIX

MHOTOMEPHBIX AnddpepeHInaIbHbIX YPaBHEHNIT B YaCTHBIX
IMIPOU3BOHBIX

Abnenyp Xamaayu

VYuusepcurer Hayku u TexHosiorun Opan Moxamen-Bymnad
Opan, Amxup

Yuusepcurer Trnemcena (LSMA)

Tnemcen, Ayup

Abnenbkanep Benxasen

Yuusepcurer Mrocrada Crambymu (LGEO2E)

Mackapa, Amxup

Mekku Tepbeue
VYuusepcurer nHayku u texnogornu Opan Moxamen-Bymmad (LAAR), USTO-MB
Opan, Aykup

Annoramusa. VcciaenoBana mpobjeMa OINEHKH CPEJIHEro MHOTOMEPHOTO HOPMAJIBHOIO PacIpe/iesIeHusT
Pa3IUYHBIMKA THIIAMH OIEHOK yCaaku. Mbl yCTAHOBMJIM MUHMMAKCHOCTDH OLIEHOK THIIA DapaHumka [jis
€IMHUIHONW KOBAPUAIMOHHONW MAaTPHUIIbI, & MaTPUIlA, CBsI3aHHasi ¢ (PYHKIUEN MOTEpPh, SBJISIETCS TUArO0-
HasbHOU. B wactHOCTH, ipemcraBiien kiacc onenku J[xkeiimca-Creitra. Ob6cykmaeTcs obImas CUTyaIust
71t 06eNX YIOMSIHYTBIX BBbIIIE MaTPHII.

KuaroueBbie cjoBa: KOBapHallMOHHAsI MaTpwuila, omneHka JIxkeitmca-CreiiHa, (pyHKIUS TOTEPH, MHOTO-
MepHas TayCCOBCKasd ClydaiiHad BeJIMYHHA, HElleHTPaJIbHOE paclIpejle/leHHe XHU-KBaJIpaT, OIEHKa yCal-
KH.
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