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For systems of nonlinear algebraic equations in Cn, based on a multidimensional logarithmic
residue, formulas were previously obtained for finding power sums of the roots of a system without
calculating the roots themselves (see [1–3]). For different types of systems, such formulas have
different forms. On this basis, a new method for the study of systems of algebraic equations in
Cn is constructed. It arose in the work of L.A. Aizenberg [1], and its development is continued in
monographs [2,4]. Its main idea is to find power sums of roots of systems (for positive powers) and
then using one-dimensional or multidimensional recurrent Newton formulas (see [5]). Unlike the
classical method of elimination, it is less labor intensive and does not increase the multiplicity
of roots. It is based on a formula (see [1]) obtained using the multidimensional logarithmic
residue, to find the sum of the values of an arbitrary polynomial in the roots of a given systems
of algebraic equations without finding the roots themselves.

For systems of transcendent equations, formulas for the sum of the values of the roots of the
system, as a rule, cannot be obtained, since the number of roots of a system can be infinite and
a series of coordinates of such roots can be diverging. Nevertheless, transcendent systems of
equations arise, for example, in the problems of chemical kinetics [6,7]. Thus, the urgent task is
to consider such systems.

In the works [8–15] power sums of roots are considered for a negative power for different
systems of non-algebraic (transcendent) equations. To compute these power sums, a residue
integral is used, the integration of which is carried out over skeletons of polycircles centered at
zero. Note that this residue integral is not, generally speaking, a multidimensional logarithmic
residue or a Grothendieck residue. For various types of lower homogeneous systems of functions
included in the system, formulas are given for finding residue integrals, their relationship with
power sums of the roots of the system to a negative degree is established.

Article [16] investigated more complex systems in which the lower homogeneous parts are
decomposed into linear factors and integration cycles in residue integrals, and are constructed
from these factors.

In [15], a system is studied that arises in the Zel’dovich–Semenov model (see [6,7]) in chemical
kinetics.
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The object of this study is transcendent systems of equations in which the lower homogeneous
parts of the functions included in the system form a non-degenerate system of algebraic equations:
formulas are found for calculating the residue integrals, power sums of roots for a negative power,
their relationship with the residue integrals is established. See [16,17].

Let f1(z), . . . , fn(z) be a system of functions holomorphic in a neighborhood of the origin in
a multidimensional complex space Cn, z = (z1, . . . , zn).

We expand functions f1(z), . . . , fn(z) into Taylor series in a neighborhood of the origin and
consider a system of equations of the form

fi(z) = Pi(z) +Qi(z) = 0, i = 1, . . . , n, (1)

where Pi is the lower homogeneous part of the Taylor expansion of the function fi(z). The degree
of all monomials (in the totality of variables) included in Pi, is mi, i = 1, . . . , n. In functions Qi,
the degrees of all monomials are strictly greater than mi.

The expansion of the functions Qj , Pj , j = 1, . . . , n, in a neighborhood of zero in Taylor
series converging absolutely and uniformly in this neighborhood has the form

Qj(z) =
∑

∥α∥>mj

ajαz
α, (2)

Pj(z) =
∑

∥β∥=mj

bjβz
β , (3)

j = 1, . . . , n,

where α = (α1, . . . , αn), β = (β1, . . . , βn) are multi-indices i.e. αj and βj are non-negative
integers, j = 1, . . . , n, ∥α∥ = α1 + . . . + αn, ∥β∥ = β1 + . . . + βn, and monomials zα = zα1

1 ·
zα2
2 · · · zαn

n , zβ = zβ1

1 · zβ2

2 · · · zβn
n .

In what follows, we will assume that the system of polynomials P1(z), . . . , Pn(z) it is non-
degenerate, i.e. its common zero is only the point 0, the origin. Consider an open set (special
analytic polyhedron) of the form

DP (r1, . . . , rn) = {z : |Pi(z)| < ri, i = 1, . . . , n},

where r1, . . . , rn are positive numbers. Its skeleton has the form

ΓP (r1, . . . , rn) = ΓP (r) = {z : |Pi(z)| = ri, i = 1, . . . , n}.

These sets play an important role in the theory of multidimensional residues (see, for exam-
ple, [2]).

For sufficiently small ri, the cycles ΓP lie in the domain of holomorphy of functions fi,
therefore, the series ∑

∥α∥>mi

|ajα|r
α1
1 · · · rαn

n

converge, i = 1, 2, . . . , n. Then on the cycle ΓP (tr) = ΓP (tr1, tr2, . . . , trn) for sufficiently small
t > 0, we have

|Pi(tr)| =

∣∣∣∣∣∣
∑

∥β∥=mi

biβ(tr)
β

∣∣∣∣∣∣ =
∑

∥β∥=mi

t∥β∥|biβ |rβ = tmi

∑
∥β∥=mi

|biβ |rβ , i = 1, . . . , n,

and

|Qi(tr)| =

∣∣∣∣∣∣
∑

∥α∥>mi

aiα(tr)
α

∣∣∣∣∣∣ 6
∑

∥α∥>mi

t∥α∥|aiα|rα = tmi+1
∑

∥α∥>mi

|aiα|rαt∥α∥−(mi+1).
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Therefore, for sufficiently small t on the cycle ΓP (tr) the inequalities hold

|Pi(z)| > |Qi(z)|, i = 1, 2, . . . , n. (4)

Thus,
fi(z) ̸= 0 на ΓP (tr), i = 1, 2, . . . , n.

In what follows, we assume that t = 1, that is, that the inequality (4) is valid on the cycle
ΓP (r1, . . . , rn).

We introduce the concept of residue integral Jγ (see [18]). Define

Jγ =
1

(2π
√
−1)n

∫
ΓP

1

zγ+I
· df
f

= (5)

=
1

(2π
√
−1)n

∫
ΓP

1

zγ1+1
1 · zγ2+1

2 · · · zγn+1
n

· df1
f1

∧ df2
f2

∧ . . . ∧ dfn
fn

,

where γ = (γ1, . . . γn) is a multi-index. This residue integral is defined if r1, . . . , rn is chosen
so that the inequality (4) holds and the cycle ΓP does not intersect with the coordinate planes.
Note that this integral is not a multidimensional logarithmic residue or a Grothendieck residue.

Recall some concepts from the space of the theory of functions Cn
which equal to the product

of n copies of Riemann spheres CP1, i.e. Cn
= CP1 × · · · × CP1.

Let zj : wj be homogeneous coordinates in the j-th factor of the space Cn
and let

Fj(z1, w1, . . . , zn, wn) = 0, j = 1, . . . , n (6)

be a system of equations consisting of polynomials Fj homogeneous for each pair of variables
(zk, wk), k = 1, . . . , n. We will consider only those roots (z1, w1, . . . , zn, wn) systems (6) for which

(zk, wk) ∈ C2 \ {(0, 0)}, k = 1, . . . , n.

The roots of the system (6) with pairs having proportional coordinates determine one root
(z1 : w1, . . . , zn : wn) in Cn

.
Let

a = (z
(0)
1 : w

(0)
1 , . . . , z(0)n : w(0)

n )

be the root of the system (6) for which all w(0)
k neq0. Then the point (z1, 1, . . . , zn, 1) is the root

of the system
Fj(z1, 1, . . . , zn, 1) = 0, j = 1, . . . , n,

in Cn. Roots of a for which some w
(0)
j are equal to zero correspond to infinitely remote roots in

Cn
.
For a given system of equations of the form (1) for which all fj(z) are polynomials, then

in order to find the infinitely remote roots of this system in Cn
, you must first go to homoge-

neous coordinates, substituting the zk/wk relationship instead of zk and discarding the resulting
denominator, thereby obtaining a system of type (6). Solving it, we find ordinary roots and
infinitely remote roots of the system (1).

We return to the consideration of the system (1). Assume that, in addition to non-degeneracy,
the system P1(z), . . . , Pn(z) does not have infinite roots in the space Cn

.
We now consider as functions Qi(z), i = 1, . . . , n, polynomials of the form

Qi(z) =
∑

∥α∥>mi

aiαz
α. (7)
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Suppose that for each i-th equation in (1) the conditions

degzi Pi < degzi Qi, degzj Pi > degzj Qi, j ̸= i. (8)

Here degzi P (z) is the degree of the polynomial P in the variable zi for the remaining variables
We have degPi = mi. Denote degQi = si, а degzj Pi = mj

i , degzj Qi = sji . Then mi < si,

mi
i < sii, i = 1, . . . , n. In addition, mj

i > sji for j ̸= i. Cases when
n∑

j=1

mj
i > mi.

In all functions, we write fi(z) = Pi(z) + Qi(z), i = 1, 2, . . . , n, and replace zi =
1

wi
, i =

1, . . . , n, assuming that all wi ̸= 0. We get

Pi

(
1

w1
, . . . ,

1

wn

)
=

∑
∥β∥=mi

biβ
1

wβ1

1

· · · 1

wβn
n

=
1

w
m1

i
1

· · · 1

w
mn

i
n

∑
∥β|=mi

biβw
m1

i−β1

1 · · ·wmn
i −βn

n ,

and

Qi

(
1

w1
, . . . ,

1

wn

)
=

∑
∥α∥>mi

aiα
1

wα1
1

· · · 1

wαn
n

=
1

w
s1i
1

· · · 1

w
sni
n

∑
∥α∥>mi

aiαw
s1i−α1

1 · · ·wsni −αn
n .

We have

fi

(
1

w1
, . . . ,

1

wn

)
= Pi

(
1

w1
, . . . ,

1

wn

)
+Qi

(
1

w1
, . . . ,

1

wn

)
=

=
1

w
m1

i
1 · · ·wsii

i · · ·wmn
i

n

·
(
P̃i(w) + Q̃i(w)

)
,

(9)

where P̃i are homogeneous polynomials

P̃i(w1, . . . , wn) = w
m1

i
1 · · ·wsii

i · · ·wmn
i

n · Pi

(
1

w1
, . . . ,

1

wn

)
=

= w
sii−mi

i
i

∑
∥β∥=mi

biβw
m1

i−β1

1 · · ·wmn
i −βn

n = w
sii−mi

i
i · ˜̃Pi,

and ˜̃Pi are homogeneous polynomials

˜̃Pi =
∑

∥β∥=mi

biβw
m1

i−β1

1 · . . . · wmn
i −βn

n .

In ˜̃Pi, neither w1, . . . , nor wn.
The polynomials Q̃i have the form

Q̃i(w1, . . . , wn) = w
m1

i
1 · · ·wsii

i · · ·wmn
i

n ·Qi

(
1

w
, . . . ,

1

wn

)
=

= w
m1

i
1 · · ·wsii

i · · ·wmn
i

n · 1

w
s1i
1

· · · 1

w
sni
n

∑
∥α∥>mi

aiαw
s1i−α1

1 · · ·wsni −αn
n =

= w
m1

i−s1i
1 · · · [wi] · · ·w

mn
i −sni

n ·
∑

∥α∥>mi

aiαw
m1

i−α1

1 · · ·wmn
i −αn

n .
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Denote by f̃i the functions

f̃i(w) = P̃i(w) + Q̃i(w) = w
sii−mi

i
i · ˜̃Pi + Q̃i(w), i = 1, 2, . . . , n. (10)

We have
deg P̃i > deg Q̃i, i = 1, . . . , n. (11)

Consider a system of equations of the form (1) with polynomials Qi(z) satisfying the condi-
tions (8).

Let ΓP̃ = ΓP̃ (ε) denote the cycle

ΓP̃ = {w ∈ Cn : |P̃i| = εi, εi > 0, i = 1, . . . , n}. (12)

This cycle does not intersect with the coordinate planes for almost all εi, i = 1, . . . , n.
Consider the residue integral J̃γ of the form

J̃γ =
1

(2π
√
−1)n

∫
ΓP̃

wγ+I df(1/w)

f(1/w)
,

where wγ+I = wγ1+1
1 · · ·wγn+1

n , f(1/w) = f1(1/w1, . . . , 1/wn) · · · fn(1/w1, . . . , 1/wn), df(1/w) =
= df1(1/w1, . . . , 1/wn) ∧ . . . ∧ dfn(1/w1, . . . , 1/wn).

In fact, J̃γ is obtained from the integral Jγ (5) using the substitution in the integrand zj =
1/wj , j = 1, . . . , n, and replacing ΓP by ΓP̃ . But the equality of these integrals needs to be
proved.

Since the inequalities (11) hold for functions from the system (10), and the system of functions
P̃1(w), . . . , P̃n(w) is non-degenerate, the well known Bezout theorem says that the system of
equations

f̃j(w) = 0, j = 1, . . . , n, (13)

has a finite number of roots (counting each root so many times what its multiplicity is) and this
number is equal to the product of the degrees of the polynomials P̃j(w).

We cite the theorem from [16].

Theorem 1. The following equality holds:
p∑

j=1

1

zγ1+1
j1 · zγ2+1

j2 · · · zγn+1
jn

=

=
∑

∥α∥6∥γ∥+n

(−1)||α||
∫
ΓP̃

[
∆̃ · wγ1+1

1 · wγ2+1
2 · · ·wγn+1

n · Q̃α1
1 · Q̃α2

2 · · · Q̃αn
n

P̃α1+1
1 · P̃α2+1

2 · · · P̃αn+1
n

]
dw,

where ∆̃ is the Jacobian of the system (10).

For what follows, we need a generalized Grothendieck residue transformation formula (see [19],
as well as [4, Ch. 2]).

Theorem 2 ( [19]). Let h(w) be a holomorphic function, and the polynomials fk(w) and gj(w),
j, k = 1, . . . , n, be related by

gj =

n∑
k=1

ajkfk, j = 1, 2, . . . , n,

the matrix A = ∥ajk∥nj,k=1 consists of polynomials. Let us consider cycles

Γf = {w : |fj(w)| = rj , j = 1, . . . , n}, Γg = {w : |gj(z)| = rj , j = 1, . . . , n},
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where all rj > 0.
Then the equality is valid:

∫
Γf

h(w)
dw

fα
=

∑
K,

n∑
s=1

ksj=βs

β!
n∏

s,j=1

(ksj)!

∫
Γg

h(w)

detA
n∏

s,j=1

a
ksj

sj dw

gβ
, (14)

where β! = β1!β2! . . . βn, β = (β1, β2, . . . , βn), the summation in the formula is over all integer

non-negative matrices K = ∥ksj∥ns,j=1 with the conditions that the sum
n∑

s=1
ksj = αj , then βj =

=
n∑

j=1

kjs.

Here fα = fα1
1 · · · fαn

n , gβ = gβ1

1 · · · gβn
n .

From this theorem, a statement is obtained in [16].

Theorem 3. The formulas are valid
p∑

j=1

1

zγ1+1
j1 · zγ2+1

j2 · · · zγn+1
jn

=
(−1)n

(2π
√
−1)n

∫
ΓP̃

wγ1+1
1 · wγ2+1

2 · · ·wγn+1
n · df̃1

f̃1
∧ df̃2

f̃2
∧ . . . ∧ df̃n

f̃n
=

=
∑

∥α∥6∥γ∥+n

(−1)n+∥α∥

(2π
√
−1)n

∫
ΓP̃

wγ1+1
1 ·wγ2+1

2 · · ·wγn+1
n ·∆̃ · Q̃α1

1 · Q̃α2
2 · · · Q̃αn

n dw1 ∧ dw2 ∧ . . . ∧ dwn

P̃α1+1
1 · P̃α2+1

2 · · · P̃αn+1
n

=

=
∑

∥K∥6∥γ∥+n

(−1)∥K∥+n
n∏

s=1

(
n∑

j=1

ksj

)
!

n∏
s,j=1

(ksj)!
M


wγ+I · ∆̃ · detA ·Qα

n∏
s,j=1

a
ksj

sj

n∏
j=1

w
βjNj+βj+Nj

j

 ,

where ∥K∥ =
n∑

s,j=1

ksj, and the functional M maps the Laurent polynomial to its free term.

In fact, in Theorem 3, analogues of the classical Waring formulas for finding power sums of
the roots of a system of algebraic equations are obtained.

Note that in [20] general algebraic systems of equations were considered, decompositions
of their solutions in hypergeometric series were obtained. In addition, it proves analogues of
Waring’s formulas for systems of the form

y
mj

j +
∑

λ∈Λ(j)∪{0}

x
(j)
λ yλ = 0, λ1 + . . .+ λn < mj , j = 1, . . . , n,

those higher homogeneous parts are monomials. We considered other (more general) systems of
equations with functions of the form (10).

Consider a more general situation. Let the functions fj be meromorphic and have the form

fj(z) =
f
(1)
j (z)

f
(2)
j (z)

, j = 1, 2, . . . , n, (15)

where f
(1)
j (z) and f

(2)
j (z) are entire functions in Cn that decompose into infinite products uni-

formly converging in Cn, f (2)
j (0) ̸= 0,

f
(1)
j (z) =

∞∏
s=1

f
(1)
j,s (z), f

(2)
j (z) =

∞∏
s=1

f
(2)
j,s (z),
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moreover, each of the factors has the form Pj,s(z) + Qj,s(z), and Qj,s(z) satisfy conditions (8),
s = 1, 2, . . ..

For each set of indices j1, . . . , jn, where j1, . . . , jn ∈ N, and each set of numbers i1, . . . , in,
where i1, . . . , in are equal 1 or 2, systems of nonlinear equations

f
(i1)
1,j1

(z) = 0, f
(i2)
2,j2

(z) = 0, . . . , f
(in)
n,jn

(z) = 0, (16)

have a finite number of roots not lying on coordinate planes.
The roots of all such systems (not lying on the coordinate planes) are no more than a countable

set. Renumber them (taking into account multiplicities):

z(1), z(2), . . . , z(l), . . . .

Denote by σβ+I the expression

σβ+I =
∞∑
l=1

εl

zβ1+1
1(l) · zβ2+1

2(l) · · · zβn+1
n(l)

. (17)

Here β1, . . . , βn, as before, are non-negative integers, and the sign εl is +1, if in a system of
the form (16), the root which is z(l), includes an even number of functions f

(2)
js

; and is equal to
−1 if in a system of the form (16), the root which is z(l), includes an odd number of functions
f
(2)
js

.
For a system (16) composed of functions of the form (15), the points z(l) are roots or singular

points (poles). All functions fj are holomorphic in a neighborhood of zero and are defined for
them integrals Jβ , since they have the form (1).

Theorem 4. For a system of equations with meromorphic functions (15) the series (17) abso-
lutely converges, and

Jβ = (−1)nσβ+I .

Example 1.
Consider a system of equations in two complex variables{

f1(z1, z2) = z1 − z2 + az21 + bz31 = 0,

f2(z1, z2) = 1 + cz2 = 0.

We make the change of variables z1 =
1

w1
, z2 =

1

w2
. Our system will take the form{

f̃1 = w2
1w2 − w3

1 + aw1w2 + bw2 = 0,

f̃2 = w2 + c = 0.
(18)

The Jacobian of the system (18) ∆̃ is

∆̃ =

∣∣∣∣2w1w2 − 3w2
1 + aw2 w2

1 + aw1 + b
0 1

∣∣∣∣ = 2w1w2 − 3w2
1 + aw2.

It is clear that {
Q̃1 = aw1w2 + bw2,

Q̃2 = c.{
P̃1 = w2

1w2 − w3
1,

P̃2 = w2.
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Since
w3

1 = a11P̃1 + a12P̃2,

w2 = a21P̃1 + a22P̃2,

it is easy to show that the elements aij of the matrix A are equal

a11 = −1, a12 = w2
1,

a21 = 0, a22 = 1.

Thus, detA = −1.
By Theorem 3

J(0,0) =
∑

∥K∥=k11+k12+k21+k2262

(−1)∥K∥ · (k11 + k12)! · (k21 + k22)!

k11! · k12! · k21! · k22!
×

×M

[
(3w2

1 − 2w1w2 − aw2) · (aw1w2 + bw2)
k11+k21 · ck12+k22 · (−1)k11 · (w2

1)
k12 · 0k21 · 1k22

w
3(k11+k12)+1
1 · w(k21+k22)−1

2

]
.

Simple calculations give that
J(0,0) = c2.

Recall the well-known decomposition of the sine function into an infinite product:

sin z

z
=

∞∏
k=1

(
1− z2

k2π2

)
,

which uniformly and absolutely converge on the complex plane and has a growth order of 1.
Consider the system of equationsf1(z1, z2) = z1 − z2 + az21 + bz31 = 0,

f2(z1, z2) =
sin z2
z2

= 0.

Using the formula obtained above and the known sum, we obtain that the integral J(0,0) is
equal to the sum of the series

J(0,0) = 2

∞∑
s=1

1

π2s2
=

1

3
.

Example 2. Consider a system of equations in two complex variables{
f1(z1, z2) = z1z2 + b1z1 + b2z2 = 0,

f2(z1, z2) = 1 + a1z1 + a2z2 = 0.
(19)

We make the change of variables z1 =
1

w1
, z2 =

1

w2
. Our system will take the form

{
f̃1 = 1 + b2w1 + b1w2 = 0,

f̃2 = w1w2 + a2w1 + a1w2 = 0.
(20)

The Jacobian of the system (24) ∆̃ is

∆̃ =

∣∣∣∣ b2 b1
w2 + a2 w1 + a1

∣∣∣∣ = b2w1 − b1w2 + (a1b2 − a2b1).
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Notice that {
Q̃1 = 1,

Q̃2 = a1w2 + a2w1.
(21)

{
P̃1 = b1w2 + b2w1,

P̃2 = w1w2.
(22)

We calculate detA :
Since

w2
1 = a11P̃1 + a12P̃2,

w2
2 = a21P̃1 + a22P̃2,

where P̃1 = b1w2 + b2w1, P̃2 = w1w2.
Therefore, the elements of aii are equal

a11 =
w1

b2
, a12 = −b1

b2
,

a21 =
w2

b1
, a22 = −b2

b1
.

Hence,

detA =
w2

b2
− w1

b1
=

w2b1 − w1b2
b1b2

.

Notice that
Q̃1 = 1, Q̃2 = 1.

Carrying out the same calculations as in the previous example, we obtain

J(0,0) = −2(a1 + b2)

∆̄
.

Example 3.
Consider a system of equations in two complex variables{

f1(z1, z2) = a1z1 − a2z2 + z21 = 0,

f2(z1, z2) = b1z1 + b2z2 + z22 = 0.
(23)

It satisfies the conditions (8) on Qj(z). We assume that a1b2 + a2b1 ̸= 0, i.e. the system of
lower homogeneous polynomials is non-degenerate.

We make the change of variables z1 =
1

w1
, z2 =

1

w2
. Our system will take the form{

f̃1 = −a2w
2
1 + a1w1w2 + w2 = 0,

f̃2 = b2w1w2 + b1w
2
2 + w1 = 0.

(24)

This system has 4 roots, on the coordinate planes there is one root, (0,0).
The Jacobian ∆̃ of the system (24) is equal to

∆̃=

∣∣∣∣−2a2w1 + a1w2 a1w1 + 1
b2w2 + 1 2b1w2 + b2w1

∣∣∣∣= −2a2b2w
2
1 − 4a2b1w1w2 + 2a1b1w

2
2 − a1w1 − b2w2 − 1.

Notice that
Q̃1 = w2, Q̃2 = w1. (25)
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P̃1 = −a2w
2
1 + a1w1w2, P̃2 = b2w1w2 + b1w

2
2. (26)

To find the matrix A, we use Example 8.3 from [4].
We introduce the matrix

Res =


−a2 a1 0 0
0 −a2 a1 0
0 b2 b1 0
0 0 b2 b1

 .

The determinant ∆ of the matrix Res is equal to ∆ = a2b1(a2b1 + a1b2).
We calculate some minors according to Example 8.3 from [4]:

∆̃1 =

∣∣∣∣∣∣
−a2 a1 0
b2 b1 0
0 b2 b1

∣∣∣∣∣∣ = −a2b
2
1 − a1b1b2, ∆̃2 = −

∣∣∣∣∣∣
a1 0 0
b2 b1 0
0 b2 b1

∣∣∣∣∣∣ = −a1b
2
1,

∆̃3 =

∣∣∣∣∣∣
a1 0 0
−a2 a1 0
0 b2 b1

∣∣∣∣∣∣ = a21b1, ∆̃4 = −

∣∣∣∣∣∣
a1 0 0
−a2 a1 0
b2 b1 0

∣∣∣∣∣∣ = 0.

∆1 = −

∣∣∣∣∣∣
0 −a2 a1
0 b2 b1
0 0 b2

∣∣∣∣∣∣ = 0, ∆2 =

∣∣∣∣∣∣
−a2 a1 0
0 b2 b1
0 0 b2

∣∣∣∣∣∣ = −a2b
2
2,

∆3 = −

∣∣∣∣∣∣
−a2 a1 0
0 −a2 a1
0 0 b2

∣∣∣∣∣∣ = −a22b2, ∆4 =

∣∣∣∣∣∣
−a2 a1 0
0 −a2 a1
0 b2 b1

∣∣∣∣∣∣ = a22b1 + a1a2b2.

Therefore, the elements aij of the matrix A are equal

a11 =
1

∆

(
∆̃1w1 + ∆̃2w2

)
=

1

∆

(
(−a2b

2
1 − a1b1b2)w1 − a1b

2
1w2

)
,

a12 =
1

∆

(
∆̃3w1 + ∆̃4w2

)
=

a21b1w1

∆
, a21 =

1

∆
(∆1w1 +∆2w2) =

−a2b
2
2w2

∆
,

a22 =
1

∆
(∆3w1 +∆4w2) =

1

∆

(
−a22b2w1 + (a22b1 + a1a2b2)w2

)
.

Then, it is easy to verify that

w3
1 = a11P̃1 + a12P̃2, w3

2 = a21P̃1 + a22P̃2.

We calculate detA :

detA =
1

∆

(
a2b2w

2
1 − a2b1w1w2 − a1b1w

2
2

)
.

By Theorem 3

J(0,0) =
∑

∥K∥62

(−1)∥K∥ · (k11 + k12)! · (k21 + k22)!

k11! · k12! · k21! · k22!
×

×M

[
∆̃ · detA · Q̃k11+k21

1 · Q̃k12+k22
2 · ak11

11 · ak12
12 · ak21

21 · ak22
22

w
3(k11+k12)+1
1 · w3(k21+k22)+1

2

]
.
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Denote ∆̄ = a2b1 + a1b2. Cumbersome but simple calculations (using the definition of the
functional M) give that

J(0,0) =
1

∆̄
− 2a1b2

a2b1∆̄
+

6a21b
2
2

a2b1∆̄2
− b32

b1∆̄2
+

a31
a2∆̄2

+
8a1b2
∆̄2

− 4

a2b1
=

a31
a2∆̄2

− a1b2
∆̄2

− 3a2b1
∆̄2

− b32
b1∆̄2

.
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О некоторых примерах систем трансцендентных
уравнений

Александр М. Кытманов
Ольга В. Ходос

Сибирский федеральный университет
Российская Федерация

Аннотация. В данной статье рассматриваются примеры трансцендентных систем уравнений обще-
го вида. Интегралы вычетов определяются по циклам, связанным с системой. Приведены формулы
для их расчета, и установлена связь со степенными суммами корней системы.

Ключевые слова: трансцендентные системы уравнений, интегралы вычетов, степенные суммы
корней.
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