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Abstract. Many tasks of digital signal processing require the implenientation of matrix operations
in real time. These are operations of matrix inversion or sélving systems of linear algebraic or dif-
ferential equations (Kalman filter). The transition to the implementation of digital signal processing
on programmable logic device (FPGAs), as a rule, involves calculations based on the representation of
numbers with a fixed point. This makes solving spatio‘temporal processing problems practically im-
possible based on conventional computational methods. Thepdrticle discusses the implementation of
spatial-temporal signal processing algorithms in satellite broadband systems using QR decomposition.
The technologies of CORDIC computations required/for reeurrent QR decomposition when used together
in systolic algorithms are presented.
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Introduction

Modern satellite broadband radi6 communication systems have a significant drawback - low
noise immunity. The solition”to this problem is based on the use of phased array antennas.
Such antennas are controlled using adaptive algorithms, the parameters of which can be quickly
changed in accordanceswith the emerging interference environment.

To work effectivelytin‘real conditions of parametric a priori uncertainty and a dynamic change
in the statistical characteristics of interference, adaptive systems are required, the parameters
of which can be quickly changed in accordance with the interference environment. Currently,
theoretically substantiated and tested in practice, the methods of the Markov theory of optimal
filtration. This-theory has been fully and strictly developed in a number of books and articles

*tyapkin58@Qmailizu
Tdmitriev121074@mail.ru https://orcid.org/0000-0001-6438-6094
ta-glonass@yandex.ru
$peterl676@mail.ru
© Siberian Federal University. All rights reserved

- 160 —



Valeriy N. Tyapkin, Dmitriy D. Dmitriev. .. A Recursive Algorithm for Estimating the Correlation. ..

[1-12]. In [6, 10, 11], the solution to the problem of adaptive filtering of signals based ‘on ‘the use
of the lemma on the inversion of the correlation matrix (MIL) of input signals ofran adaptive
filter is considered. This solution leads to a recursive least squares (RLS) algorithim.

The same problem can also be solved by reducing the matrix of input samples of théwadaptive
filter signals to a triangular form. In this case, the range of numbers involved inthe calculations is
reduced by comparing the solution to this problem with the estimation of thelinverse correlation
matrix of interference using MIL. This increases the stability of QRD RLS,algorithms.

Assume that the signal and interference affect the input of a miiltichannel M-element
phased array antenna. The set of signals from the outputs of the M-element antenna array
is described by the time function w(¢),y2(t),...,ym(t) and form a column vector yi(t) =
= [y1(t),92(t), ..., ym(t)]T. Moreover, a single-channel reception (M==wl) is considered as a
special case of multi-channel.

Discretization of the received useful and interference signals is performed at the radio fre-
quency fo. A feature of this is the small sampling interval At/ which.i$ approximately half the
period of the carrier frequency Ty = 1/fo, At =~ 1/2fy = To/2wDiscrete interference values
obtained from the antenna are random numbers that are ¢onveniently represented as a column
vector y; = [y;(kAt)] = [y:(k)], k = 1, L, where L determinés,the duration of the observation
interval T — L = T'/At. In the case of multichannel reception, the vector of received oscillations
will have the following form Y = (Y1Y2... Yy ... Y7)T and dimension (T x M).

Most QR decomposition algorithms are based on Householder reflection and Givens rota-
tions [13]. For the implementation of space-time processing, the most useful is the recursive
version of the Givens method, which provides updates to' the solutions at the rate of arrival of
the input samples of the signal. High real-time perfermance provides a systolic version of the
QR algorithm using pipelined implementation of Givens rotations on FPGA. High speed fixed-
point number calculations on FPGAs are provided\by the CORDIC processor. The principle of
its operation differs significantly from the.arithmetic-logical devices of existing processors. To
implement Givens rotation, 10 shift-addition éperations are sufficient. In this case, an accuracy
sufficient to achieve an interference suppressiow ratio of more than 50 dB is ensured.

Thus, the development of this researchnarea promises a significant improvement in the quality
of reception and processing of broadband ’signals and noise immunity based on the existing
element base and is relevant. Consider the implementation of spatial-temporal signal processing
algorithms using QR decomposition. To solve the problem of recurrent QR decomposition, we
will develop CORDIC computing ‘technology in systolic algorithms.

1. Recursive adaptation algorithm using QR decomposition

A recursive adaptation algorithm using QR decomposition estimates the filter coefficients at
the current time step through the calculated filter coefficient at the previous step. Due to its
recursive nature, the.algorithm is called QRD — a recursive QR decomposition algorithm. QR
factorization consists in reducing a linear system to a triangular one. For this, the original matrix
is represented as the,product of the upper triangular matrix R and the orthogonal matrix Q.

Consider a/system of linear equations

A, =D, (1)

where A/— (n"% m) is the matrix, x is the vector of derivatives (for example, weights for the
adaptive'antenya array), b is the m-vector. The QR decomposition of matrix A of size (n x m)
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for any n > m can be described as:

Q is a unitary matrix: Q- Q" =1, where I is the identity matrix, R is (n x m)/thelupper right
triangular matrix. Equation (2) can be written in divided form:

A:QR;QFﬁFKhQAﬁHZQJm, 3)

where Ry is the (m x m) triangular matrix, Q; is the (m x n) matrix and Qo is the ((n—m) xm)
matrix.

In the spatio-temporal processing of broadband signals, the system of equations is usually
redefined because n > m. Solution (2) minimizing the norm of the residual ||Ax — b|| has the
form x = (ATA)"'AThb.

Substitution of equality A = QTR gives the following forni

A=RT'QTQR)'RTQTb =R QW

Here the triangular (m x m)-matrix is subject to circulatien, which requires (m?)/2 opera-
tions of addition and multiplication. Let us synthesize a recursive algorithm for estimating the
correlation matrix of interference based on QR decomposition From the theory of matrices it is
known that there exists a unitary matrix Qg (k), that for any Ay, matrix can be obtained by
decomposition

Q?AM4:[ (4)

Fu
0<T—M)M] ’
where F is the upper triangular square matrix;.called the Cholesky decomposition, O¢7_ppyas is
the zero rectangular matrix. The superscript H means complex conjugation and transposition.

For the unitary matrices Qg(k), the €qualities Qi (k) - QF (k) = QF (k) - Qr(k) = I and

QI (k) = Q; " (k).

If designated
Asfr =AY (k)Y 3 (K), (5)
where

Ak—1 0 0 O

0 Ak—2 0 O
A2'5:diag{m,VAk_g,"'VAl>1}: : 0 0o (6)

0 0 VA 0

0 0 0 1

The parameter X is used to weight the signals and allows you to take into account changes
in the statistics of-signals if they are non-stationary and their statistical parameters change over
time. The parameter )\ is also called the exponential weighting parameter or the "orgetting
factor" parameter:ults value is usually limited by the limits (1 — 0.4K) < A < 1 [14,15]. For
example, at A = 09, )\o = 1, )\1 = 09, /\2 = 0.81, /\3 = 072, /\4 = 0667 /\5 = 0597 . .,/\10 =
0.35, ..., A40. = 0012, ... ;) A3 = 0.04, ..., g0 = 0.015,..., A\50 = 0.005, ..., A190 = 0.000027, that
is, the parameter \ determines the "memory" of the algorithm for solving the recursive problem.

For 0 < A < 1 and small values of the difference k — i, the summed terms are weighted
with large weights, and for large values of this difference, with smaller weights. For A = 1 this
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"memory" is equal to k samples of the observed signals. For 0 < A < 1, the contribution, of/the
same i-th samples to the sum is different for different \. This contribution is greater for large A
and smaller for smaller A. That is, with decreasing A, the effective memory degteases and vice
versa. Substituting equation (5) in (4) we obtain

QAL Y (h) = | ], )
where . °
Yan AL (s Qulh) = [ ") | — [ 0.0 S ®)

Reducing the matrix Ry (k) to a triangular form using the observation matrix Y%, (k) can
be performed in various ways, the main of which is Givens rotation. The matrix f{M(k) can be
obtained recursively in time, performing calculations for the k-thiliteration using the results from
the previous, (k — 1)-th iteration. This is as follows.

Let us assume that at iteration k-1 there is a decomposition:

Ry (k-1
Q= DAL (k= DY ey =1 = = 1) o)
(k—=1—M)M
and conversion is required
Ry (k
Qff ()AL (W)Y 1] (T L} w >]. (10)
(k—M)M
Using the result of (9), we define the matrix
~ 05—
Q) (2ol 0], (1)
k-1

If the matrix A)-° (k)Y (k) multiplied frém left on the matrix (11), this operation modifies
equation (9), adding it to the matrix in/the right side of (k4 1) — w (bottom) row:

Qi (AR, ()Y L, (k) = Qff (k)

AOSALD (k= 1) Y H oy (k — 1)]

Y (k)
05R(k — (12)
QL NOPAYS (kS A)YH (k= 1)] XS Rr(k — 1)
Y (k) = | O@-1-a)Mm
N Y (k)

To perform the tramsformation (10), in equation (12) it is necessary to zero the last line.
From equations (10)-and (12) it follows that

QEMR ()Y 1. (k) = QY (1) QE (R)AL® (R)Y 1, (k) =

MOS5R s (k — 1) R (k) . (13)
Q Ry (k
= Qi (k)= | Ou-1-an | = [Op-1-ann | = {O o ] ;
Y3 (k) 0, (k=D)M
where theamatrix Qf (k) is the product of two matrices
QI (k) = QI (WAL (k). »
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Thus, the reduction of matrix A (k)Y 1, (k) to a triangular form using the matrixe@QF (k)
(10) at iteration k can be done by zeroing the last row in the matrix (12) using the result of
reducing the matrix A?, (k — 1)Yﬁ(k_1)(k —1) to a triangular form obtained at iterationy k — 1.
This zeroing is carried out using matrix QkH (k), which is a product of matrices comiposed of
Givens rotation matrices.

The recursive relationship between R (k—1) and R (k)in a more compact fornd, i.e., when
k matrices with a fixed number of elements (M + 1) x (M + 1) are used at-each iteration, can
be represented using the following equation

-]

where matrix G, (k) is unitary. This matrix can be formed using Givens spins. The structure
of matrices G, (k) is a “compressed” to size (M + 1) x (M +/1) matrix Qf (k) with a variable
number of elements (k) x (k).

Garah) [ il |

The elements of Givens matrices are determined from eduation (15), where

M
Garr () = [ ] Ghg (0)- (16)

Givens Gi (k) transformation is determined by the plane rotation matrices of the form:

1

0

1

(17)

Matrix G;; with fixed values of ¢, € {1,2,...,m — 1} differs from the identity n-matrix

E in that in it the 2 X, 2ssubmatrix E occupying the cell formed by the intersection of the i-th
~ c —s*

and j-th rows and columns ig replaced by the submatrix G; = ( ) , with elements ¢ and

s ¢

s satisfying the condition
2+ =1 (18)

With this fiormalization condition, matrix G; and matrix G; are orthogonal. The elements
c and s can be 1nterpreted as the cosine and sine of a certain angle of rotation transformation.

Using a sequence of such orthogonal transformations, matrices G1, Go, . .., G,,—1 of the form
(17) can/be reduced to the right triangular form by sequentially canceling the subdiagonal ele-
ments inithe first, second, ..., (n — 1)-st columns. We consider the first of N steps leading to
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transformation (15), for which matrix G5\?+1(k) is used. Then

cualk) 0 0 =Sy, (k)
ASRy (k — 1) oo
1 TRy . .
Gs\/[)+1(k) X S0V H = : o In_3 : X
Yy (F)
0 o .- 1 0
SM'J(k) 0 tee 0 CMJUC)
A5 Raraa(k — 1) AO'SI:%MJQ(k -1 .- >\0'5]?M,1(M—1)(k —1) )\0'5-Z?M,1M(k' - 1)]
0 )\O'SRALQQ(/C — 1) e )\O'5RM_’2(M_1)(]€ — 1) )\0'5RM,2M(]€ — 1)
« : : - : A : _
0 0 o Ry ov—1yov—1)(k —1) RA{,(MA)M(’€ -1)
0 0 0 Ry m(k—1)
~(0)* ~(0)* ~(0)= ~(0)=
ey (k) Bs®) )™ Bt ar ()
A5 Ry a1 (k) >\0'5R;M,12(k5 -1 - )\0'51:%1\4,1(1\471)(16 —1) )\0'5]:%1VI,1M(]€ —1)7
0 /\0'5RM722(]€ — 1) e )\O'5RM,2(M,1)(]€ - 1) )\0'5RM,2M(/€ — 1)
0 0 e RM,(M—I)(M—I)(k —1) RJ\{,(M—nM(k -1)
0 0 0 Rarans(k—1)
~(1)* ~ (s ~(1)*
L0 Bs®) e NG () k)
(19)
In equation (19), vector Yg\(,))H(k:) is defined ‘as
(0)H ~(0)* ~(0)* ~(0)*
Y (k) = [ T30, - 9 e ()] = YR (B). (20)
The superscript in parentheses means the number of the transformation performed on variable
gjg\g): (k) with number ¢ in the vector. Suely a conversion over gjg\g)f(k) is performed once (after
the first time the variable is reset), over ng\g);(k) — twice (after the second time, the variable is
~(0)*

reset), etc. and over g, (k) — M times (after the M-th time, the variable is reset).
From equation (19) it follows, that

ear 1 (YA Rar 11 (k = 1) = 371 (k)F571 (k) (k) = Raraa (k) (21)
and
Sy (KA Rag 11 (k — 1) + epr ()75 () = 0. (22)
Performing similar_conversion of all 1 =1,2,..., M, can be established that
ear) (BN Rapii(k — 1) — sy ()55 (k) = Rarai(k), (23)
0.5 P ~(1—1)* o
sai(R)A" " Rarai(k — 1) 4+ cpp (k) gy, (k) = 0. (24)

Then from equation (22) we can determine that

-1

sari(k)=—ca (RN ()N Ragaa(k — 1)
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and, given that ¢ + ss* = 1, from the equation

) * S -1 ~(1—1)x* ~ -4
A (k) + eari(R)FS D ()P Ragss (ke — 1)) eara(R)a, " (R)INP Rapaa(k — A)) )=

— 2 ()N Rarai (k= 1)) + &2, i<k>[y5\z DR (k) = (25)
= & (DR (k= 1)+ g G DI (k- 1)) =1

can determine that

eara(k) =JAR%4 alk=1) [A% k= 1)+ 35 RO ®)] =

(26)
71 R N
VBl 1 Mol — D T WD 1] =X R D R ),
where
RM 17, \/)‘RM 7,2 ?71(\14 zl) (k)yl(\ll 21)(k) (27)

It is taken into account that the diagonal elements R, ,(B)of the matrix R, (k) are real
numbers. Then, using (26) in equation (24), we can defermine

~ - -1
swalk) = =X Rag 5k = DR (0) + 357, ) DR s (k= 1)) =

= g\ TRy (k). (28)

Thus, equations (26)—(28) allow us to calculate the cosine and sine of a certain rotation angle.
According to (19), they calculate the elements of the i-th row of matrix R,,(k) , zero out the
i-th element of vector Yy{l)H(k), and modify.the remaining nonzero elements of this vector as

0,0,..,0,0,55% (k). ,ggmm} ie.

D (g = [o, O L0 T () S T (R, gm*(k)} (29)
and
(1) H ~(7)* ~(7)*
Y k) 20,07 0,0, 5005 () 57, ()] (30)

These transformations for each value of i include calculations (26)—(28), and for all j =
=1+1,..., M, calculationswgimilar to (23) and (24), i.e.

Rir.ijdon= cari(k)A> Rag.ij(k — 1) — siy,(K)ay7 D" (k) (31)
and
G50k = 21,0 ()N Rag.j (k — 1) + epp i (k)75 31) (k). (32)

Thus, transformation (13) can be performed either as QkH(k)Agﬁ(k)Yﬁk)(k), applying a
k x k matrit QIAk) to a k x M matrix A2'5(I<:)Yﬁk)(k) at each iteration, or using a matrix

M5R (k — 1)
QH (k) +# H EM)( k) applied to a k x M matrix | Og;—1—n)m
~ Y3 (k)
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2. Parallel implementation of the QR algorithm
in a triangular systolic array
Givens transformation has good properties for use in a triangular systolic array. The archi-

tecture of the basic computations of the algorithm using such calculators is given in [16] and in
Fig. 1.

Fig. 1. Block diagram of a triangular systolic array

The systolic array is based on, theéfiethod of triangular complex rotations and allows to obtain
a significant performance gain in ¢omparison with the method of complex rotations of Givens.

In the system of a triangular systolic array, there are individual processing cells located in an
ordered structure. Each/individual cell of the system has its own processing functionality and
local memory. Only neighboring cells are connected to each other and there is no direct connec-
tion between cells that aresnot adjacent. When data is fed into the systolic array system, the
processing cells at the front end of the system will process the data, store them in local memory,
and then forward tliém to adjacent cells. This processing and transfer of the processed data in
each cell continues until the data stream reaches the end of the system, where the final calcula-
tion results are obtained. The proposed architecture provides a significant reduction in the time
required to perform QR decomposition using the same computing resources (CORDIC compu-
tational cells). Amother advantage of the proposed scheme is that during QR decomposition,
the upper triangular matrix R has only real diagonal elements. This simplifies the subsequent
inversion of the matrix R using the backward substitution algorithm, which requires division by
the diagenal elements of the matrix R .
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Algorithm (15) shows that the application of Givens rotations in a post-array to multiply
matrices on the left side of the preliminary array allows one to obtain a triangular-matrix and
zero out the input vector Y (k). The number of elements in the input vector Y (k)fcorresppnds to
the number of antennas. The number of required Givens rotation operations is the samie as the
number of elements in the input. That is, each rotation of Givens will reset exXactly one element
of the input vector. Thus, the algorithm for generating a radiation pattern with /A antennas
requires the Givens rotation operation K in the calculation of the post-arzay.

In calculations, the Givens rotation operation can be performed in/parallel, because there
is no data dependence between the Givens rotation operation at one‘of the inputs and the
Givens rotation operation at the same position in subsequent iterations. Thus, Givens rotation
operations can be performed in parallel.

Conclusion

The proposed architecture of the triangular systolic array usitig.the method of the triangular
complex rotations optimized for implementation in large-stale integrated circuits, allowing you
to effectively perform the operation QR-decomposition of/complex matrices. Compared with the
QR-RLS algorithm, the proposed architecture can provide a gain of up to 35% in the time of
calculating the QR decomposition. The synthesized/algerithm will make it possible to imple-
ment the methods of spatio-temporal processing of broadband signals of satellite communication
systems.

This work was supported by the Ministry of Science and Higher Education of the Russian
Federation in the framework of the Federal target program «Research and development on pri-
ority directions of development of the scientificstechnological complex of Russia for 2014-2020»
(agreement no. 05.605.21.0185, unique ID projecb RFMEFI160519X0185).
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PexkypcuBHBIil aJroputM olE€HWBaHIS KOPPEJIaIIMOHHOM
MAaTPHUIIbI ITIOMeX, OCHOBaHHBI Ha QR-pa3iaoxkeHnn

Bagnepuit H. Tankun
HAvurpuit . JImurpuen
Aunpnpeit B. I'nagpiiies
ITéTp FO. 3Bepen

Cubupckuii deiepaibHbIil yHUBEPCUTET
Kpacnosipck, Poccuiickas @eneparims

AnHoTamusi. MHorue 3aua4im1udpoBoit 06paboTKN CUTHAJIOB TPEOYIOT BBITOJIHEHUS] MATPUIHBIX OIlE-
paruii B peskuMe peajbHOrO BpeMEHU. DTO Olepaliuy OOPaIeH!sI MATPUITHI WU PEITIeHUs] CUCTEM JIHeH-
HBIX anrebpamaecknx wi Anddepenmmanbubix ypasaenuii (buasrp Kanmvana). Ilepexon k peanusanum
1 poBoii 06pabOTKN CHIHAJIOB HA IPOrPAMMHPYEMbIX JOIMYECKHX HHTerpaibHbix cxemax (IIJIVIC),
KaK MPaBUJIO, ITPEJINOJIaraeT PacyeTbl, OCHOBAHHbBIE Ha MTPEICTABIEHUN YHUCel ¢ (PUKCUPOBAHHOMN TOYKOM.
DTO JenaerT MPaKTHIECKH, HEBO3MOYKHBIM PEIIeHne 3a/1ad MPOCTPAHCTBEHHO-BPEMEHHON 00paboTKU Ha
OCHOBE TPAJVIMOHIBIX BBIUUCIUTEIbHBIX METOIOB. B crarbe paccMaTpuBaeTcsi peajn3aliys ajirOPUTMOB
MIPOCTPAHCTBEHHO-BPEMEHHOM 0OpabOTKM CUTHAJOB B IIMPOKOMOJIOCHBIX CIIYTHHKOBBIX CHCTEMAX C WUC-
nosb3oBanueM AJR-paznoxkenns. [Ipencrasienst rexunosiorun Boraucienniit CORDIC, neobxomumbie st
nosropaoro JR~passioxkeHust npu COBMECTHOM HCHOJIbL30BAHUN B CHCTOJIUYECKUX aJrOPUTMaX.

KuroueBbie ciioBa: (hasmpoBaHHasi aHTEHHAsl pellleTKa, aJalTUBHbIE aaropuTMmbl, dunrstp Kanvana,
PEKYPCUBHbBIITAITOPUTM IO KPUTEPUIO HAMMEHBINNX KBaApaToB, QR-pasioxkenne, cucromieckne ajiro-

PUTMBI.
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