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Introduction

There are currently no methods to study the general systems of partial differential equations.
Therefore it is necessary to investigate special classes of equations. For example, the linear
systems of homogeneous first order differential equations with one unknown function form one
of well-studied classes [1,2].

In the beginning of the twentieth century, French mathematicians Riquier, Janet, and Cartan
made significant progress in studying a broad class of partial differential equations [3-5]. Over the
past several decades, new tools and terminology coming from differential geometry, differential
and commutative algebra began to be applied in the formal theory of differential equations [6-8].
It is now becoming increasingly important to consider algorithmic problems of the theory of
differential equations [9,10]. Some algorithms are implemented in computer algebra systems
such as Maple, Reduce, Mathematica.

In the papers [11,12], we used tools from the algebraic geometry and Grébner bases to study
local properties of analytic partial differential equations. Here we consider smooth case. Some our
notions can be explained by means of an example. Consider the n + m-dimensional real space
R™t™ equipped with the natural coordinate functions z1,...,Zn,y1,...,Ym and the standard
topology. Denote by §(V') the algebra of smooth functions on an open set V' C R™* and denote
by §. the algebra of germs of smooth functions at a point a € R"*™. A subset B = {f1,..., fm}
of F(V) is called a normalized set, if each function f; € B is of the form

fi =i + gi(x),

where the function g; can depends only on 1, ...,z,. We say that an ideal of the algebra §(V)
is soft if it is generated by an normalized set. It is easy to give analogous definitions in the case
of the algebra §,.
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The goal of this paper is to present an algebraic technique for studying compatibility of
smooth partial differential equations. Section 1 deals with the infinite-dimensional space R” of
all the maps T — R equipped with the product topology (where T is a countable set). To each
open set V of the space R” one associates an algebra F (V') of smooth functions on V' depending
only on finitely many variables. The set of all germs of these functions at a point a € R” forms a
local algebra F,. Next we define the appropriate normalized sets and soft ideals in the algebras
F(V) and F,. It turns out that every normalized set leads to a manifold in R”".

Let N be the set of all non-negative integers and N, = {1,...,k}. In Section 2 we consider the
infinite jet space J = R? with T = N,,U(N,,, x N"), then a system of partial differential equations
is a subset of the algebra F (V). We define passive systems of partial differential equations at
a point and on an open set in J. These notations are analogous to Grobner bases [13], but our
definition does not apply any ranking.

In Section 3 we introduce the basic tools for study passive systems. One of these is a stratified
set which is given by a partition and a monoid acting on the set. Any stratified set must satisfy
certain compatibility conditions. The monoid (N",4) acts on the algebras F(V') and F, by
means of derivations. The stratification allows us to introduce reductions of functions as well as
reductions of germs modulo differential systems and to define reducibility conditions at a point
and on an open set in J.

The crucial theorems are given in Section 4. We prove that if a differential system S is a
normalize set and satisfies reducibility conditions at a point, then it generates a soft ideal and
it is passive. Furthermore, if the system satisfies reducibility conditions on an open set, then
the orbit of S leads to a manifold in the infinite jet space J. At the end of our paper we give
examples of passive systems dealing with sinh-Gordon equation.

1. Normalized sets in an algebra of smooth functions

We shall use the following notations R, for the set of all real numbers, N, for the set of all
non-negative integer, N, for the set {1,2,...,k}. Let T be a denumerable set; the space of
maps z : T —> R is denoted as RT and equipped with the product topology. In this case a
neighbourhood base for any point a € R” is given by

Ular,p) ={z €RT : |z, —ay,| < pi, i € Ny}, (1.1)
where t; € T, p; > 0, p = (p1,---,Pk), ar = {a1,,...,as,} is a set of k coordinates of the
point a; z,,...,2, are k coordinates of the point z. The functions y; : RT — R defined by

ye(z) = z(t), t € T, are the standard coordinate functions (variables). The set Y = {y; }ter is
the standard coordinate system on RT.

Let V be an open set in R” and let F (V') be the R-algebra of real functions on V that depend
on finitely many variables and are smooth (i.e. they have derivatives of all orders) as functions
of a finite number of variables. Suppose a function f € F(V) depends on some set of variables,
then this set denotes by ivf. When H is a subset of F(V'), we shall use the notation

iwH = {ivf: fe H}. (1.2)

The family {F(V)}y crr gives rise to the sheaf F of smooth functions on R”. For each point
a € R a stalk F, of the sheaf is a R-algebra of germs of smooth functions at a. Given a function
f € F(V), then its germ at a is denoted as fa or f for simplicity.

Each stalk F, of the sheaf F is a local algebra. Indeed, if f € F, and f(a) # 0, then 1/f € F,
and f does not belong to any proper ideal of the algebra. Hence the set

Mo ={f € Fuo: fla) =0} (1.3)
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is a unique maximal ideal of F.

We shall say that a germ f € F, depends on g; if there is a neighborhood V' of a such that
any representative f of f depends on y; in every neighborhood V' C V of a. Assume a germ
f € F, depends on a set of variables, then this set denotes by ivf.

Definition 1.1. 2.1. A set B C F(V) is called normalized if the following conditions hold:

(i) any function f € B can be written f = y; + g, where the coordinate functions y; form a
set L and the functions g do not depend on elements of L;

(i) if f1 =y + 91, fo =yt +go € B, then fi1 = fo. The elements of the sets L and Y \ L are
called principal and parametric respectively.

We shall give a similar definition for germs. Let Y, denote the set of germs of the coordinate
functions at a.

Definition 1.2. A set B C F, is called normalized if the following conditions hold:

(i) every germ f € B can be written f = §i + §, where the germs 4; form a set L C Y, and
the germs g do not depend on elements of L;

(i) if f1 =G + G, f2 = ¢ + G2 € B, then f1 fa. The elements of the set L are called the
principal variables and elements of the set Y, \E are parametric variables.

Proposition 1.3. Suppose fl =Y, + Gi, © € Ny, are some elements of a normalized set BCF,
and a germ F' € F, depends on yy,, ..., vyi,. Then there exist germs qi,...,qx € Fo and a unique
germ T € F, which does not depend on yi,, ...,y such that

Proof. Suppose the germs F, fl, ceey fk depend on y;,,...,y;,. From the Mather division
theorem [15], we obtain

\z
ﬁl

(1.4)

F=dgqfi+m,
where 1 € F,; 71 € F, does not depend on ¥, . Using this theorem to the germ 73 yields
F= q~1f1 + (fzfQ + 7o,
where 75 does not depend on ¥, ,4;,. Continuing in the same way, we derive (1.4). ~
One needs to verify uniqueness of 7. Assume there exists another representation of F

k
F=> g fi+7. (1.5)

It follows from (1.4) and (1.5) that

with f =7 — 7, h; = ¢ — G;*. Let f, h;, f; be representatives of the germs f, h;, f; . Then there
is a neighborhood of a such that
k
f:Zhifi~ (1.6)
i=1

Next we introduce new variables

yél = fl,...,ygk = fr. (1.7)
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Since f; = yi, + g; in some neighborhood of a, we can find y;, from (1.7) and substitute in the
expression (1.6). Then we may write

k
=1

where hi,. .., hj are some smooth functions while f can only depend on Ytyins - -+ Yt, - Assuming
that

Yi, =0,...,y;, =0,
we have f = 0 and therefore 7 = 7*. m|
Proposition 1.4. Let B C F(V) be a normalized set. Assume that a function F € F(V) is
a polynomial in some principal variables yi,,...,yt, of B with coefficients depending only on

parametric variables. Then there is a unique function r € F(V) not depending on the principal
variables and some functions qi1,...,q € F(V) such that

F=> qfi+r (1.8)
where f; =y, +9; € B.

Proof. The function F is a polynomial in the principal variables v, , ...,y and the functions
f1,- .., fx are polynomials of the first degree with coefficients 1. Then we can obtain (1.8) using
the multivariate division with remainder [13], although F(V') is not a field. Moreover, the
function r does not depend on the principal variables and lies in F (V).

The uniqueness of r can be proved as in Proposition 1.3. Suppose that the function F' is
written in the other form

F=Y g+, (19)

where the function v’ does not depend on the principal variables. Then from (1.8) and (1.9) we

have
=Y "dl i (1.10)

with 7"/ =7 — 1" and ¢/ = ¢, — ¢;. Under the transformation

y21:f17~-~,y£k:fk~ (111)

the relation (1.10) becomes
=" gy,

where ¢7,...,q; € F(V), while the function " does not depend on y;,, ...,y . Setting

ygl 207"'ay7§k20a

we obtain 7" = 0. O
Remark. Inserting the values y;, = —gi1,...,%, = —gr in the function F, we obtain the
function r.

A general definition of a smooth manifold is in [14], but we shall only consider embedded
submanifolds of RT.

Definition 1.5. Let V be an open set in RT. A map ¢ : V — R is called smooth on V if for
all t € T the functions ¢y = y; 0 ¢ are smooth on V.
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Let V, V' be open sets in RT. We say that a map v : V. — V' is a diffeomorphism if ¢
carries V. _homeomorphically onto V' and if v and ¢~ are smooth. If T* C T, then a set

Cr- ={zcRT: 2(t) =0,Vt € T}

is called a coordinate subspace of RT. We shall assume that any subset Q@ C RT is equipped with
a topology induced from that of RT.

Definition 1.6. A subset M C R” is called a smooth manifold if for any a € M there are a
neighborhood V. C RT', an open subset V' C RT', and a diffeomorphism ¢ : V. — V' such that

H(VNM)=V"NCr,
where Cp+ is a coordinate subspace of RT .

Proposition 1.7. Assume that {g;}rers is a family of smooth function on an open subset W C
RT" with T" = T\ T" and denote by V the open set W x RT" in RT. Then the set B =
= {ys + gt }rerr C F(V) is normalized and the set

Z(B)={2€V:f(2)=0,f e B}
is a manifold in RT.
Proof. Let ¢ : V — RT be a map given by
Yt = Ye + G, vo=vys VteT'VseT".
Then the inverse map is of the form
Yo =Y — 9 Ys = Y-

It is easy to see that .
o(VNZ(B)=VnR",

and hence Z(B) is a manifold. a

2. Passive differential systems

We now introduce the basic notions concerning compatibility of partial differential equations.

Definition 2.1. (i) We say that a proper ideal I of an algebra F(V') is soft if there is a normalized
set B C F(V) to generate the ideal. The set B is called a normalized system of generators of I.
(i) Let J be a proper ideal of an algebra F,. A normalized subset BC F, generating the
ideal J is called a normalized system of generators of J and we say that the ideal is soft.
We recall that a derivation in an algebra A over R is a map D : A — A such that

D(ab) = aD(b) + D(a)b, D(kia+ kob) = k1D(a) + k2 D(b)
for all a,b € A and for all k1, ks € R.
The next proposition describes an arbitrary derivation of the algebra of germs F,.

Proposition 2.2. Let D, D be derivations of the algebra F, such that D(y;) = D(y:) for all
yt €Y. Then D =D and

D)= Y G2 D). Vi€ 7 (2.1)
teT
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Proof. Repeating the proof Theorem 4.2 (a variant of Hadamard’s lemma) in [15], we see
that the set Y of germs {#; }ser at a € RT generates the maximal ideal (1.3). It follows from the
Proposition 8.16 [16] that D = D. It is easy to see that the expression (2.1) gives the derivations
of F,. Even though the formula (2.1) involves an infinity summation, when applying D to any
germ f , only finitely many terms are need.

Now we proceed to consider differential equations. Further, assume that

T =N, U(M x N"),
where M = N,,, or M = N. By J denote the space R” and call it the jet space. The standard

coordinate functions on J are denoted by z1,...,%,, ul, where i € M, € N*. The standard
coordinate system Y on J is decomposed into two sets
X ={x1,...,zn}, U= {ug}geé\%n. (2.2)
The elements e; = (1,0,...,0),...,e, = (0,...,1) are generators of the monoid N”. Intro-
duce derivations Dy, ..., D, on the algebras F(V), F, so that
0 of . - of of -~
Dif = aaf + > %ugﬁj, Dif = 6;{ + > f Uae,- (2.3)
[ GFEM,aENn «@ 7 jEM,aEN? 8ua
Thus F(V) and F, became differential algebras. O

We, following Ritt’s terminology [17], call the coordinate functions uf the indeterminates and
u!, the partial derivatives of uy.

Definition 2.3. We shall say that a subset S C F(V) is a differential system on an open set
V C I if any function f € S depends on at least one of the partial derivatives. If Ml = N,,, then
we say that S is a system with finite number of indeterminates, but if M = N then we get a
system in infinitely many indeterminates.

Let W be an open set in R™ and let h : W — RM be a smooth map with components h,, for
m € M. Then a map h*> : W — J whose components are z;, h, = D*(hy,) fori € N,, m € M,
a € N” is called the infinite prolongation graph of h.

Definition 2.4. Let S be a differential system on an open subset V. C J. A smooth map
h:W — R is called a solution of a differential system S if the following conditions hold:

1) R°W)CV, (2) foh®=0, ¥fes.

Remarks. In other words, the map h is a solution of the system S if under substitution of
D<(h;) for u’, every function f € S vanishes. A germ of a solution is defined in the obvious way.

An ideal of the algebra F(V') generated by a set {D*(f) : f € S,« € N"} we shall denote by
((S)). Similarly, let S, be a set of germs of functions in S C F(V) at a. An ideal of the algebra
F, generated by the set {D*(f) : f € S,a € N}, denoted by ((S)).

It is obvious that a map h is a solution of a differential system S if and only if foh®> = 0 for all
f € ({(S)). There are some cases in which it is convenient to deal with other differential system
S’ such that ((S")) = ((9)). In particular, such examples arise when we consider compatible
systems of differential equations of the first order for a single unknown function [2].

Recall that if G and H are sets, then G acts on H in case there is a mapping ¢ : Gx H — H.
The mapping 1 is called a action. When v is fixed, then gh denotes ¢ (g,h). The monoid
(N™ 4, 0) acts on the algebras F(V), F, by

af =Df,  af =D*f, VaeNWfeFV)VfeF,.

The sets - -
O(f)={D*f:aeN"}, O(f)={Df:aeN"}

are orbits of a function f and a germ f under (N, +,0).
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Definition 2.5. (i) A germ f e F, of the form f = Ui, + g is called solvable with respect to i,
if the germ § does not depend on elements of the orbit O(at)).

(ii) A function f = u’, € F(V) is solvable with respect to ul, if the function g does not depend
on elements of the orbit O(u’).

Suppose a germ f € F, is solvable with respect to @’,. Then the germ i}, is denoted by st f.
Let S, be a set of solvable germs at a point a, then we shall use the notation stS = {stf : f € S,}.
The same notation is used for functions.

Definition 2.6. A differential system S C F(V) is called passive at a € V if the ideal ((S))q
is smooth, the set S, consists of solvable germs, and a set of principal variables of a normalized
system of the ideal ((S))q coincides with the orbit O(stS,). The system S is passive on V if
every function in S is solvable, the ideal I = ((S)) is smooth, and a set of principal variables of
a normalized system of the ideal I coincides with the orbit O(stS).

3. Stratified sets and reductions

We need a convenient criterion for recognizing passive systems. For this purpose, we shall
introduce additional tools. Recall that a preorder < is a binary relation that is reflexive and
transitive. A strict partial order < is a binary relation that is irreflexive and transitive.

In what follows, we shall deal with a well-ordered set I'. Every partition {H, },cr of a set H
gives rise to a preorder and a strict partial order on H as follows:

hi1 =< ho = 3’}/1,’}/2 S F(’yl <7 A hy € H’n Ahg € H’Yz)’ (31)

hi <hy <= dy,¥yc€ F(71 <7y Ahy€ H’n Ahy € H’Yz)' (32)

In this case we say that the set H is equipped with a induced strict partial order. We also say
that a monoid G acts on the set H if there exists a map (g,2) — gz of G x H into H satisfying

eh =h, (9192)h = g1(g2h) Vh € HVg1,92 € G,

where e is the identity of G.

Definition 3.1. Suppose {H.} cr is a partition of a set H equipped with a induced strict partial
order, G is a monoid acting on H. We shall say that H is a stratified G-set if for all g € G it
satisfies the following conditions :

1) V9Vh1Vhe3y'(h1,he € Hy = ghy, ghs € H.);

2) h1 < hy = ghy < gha;

3) h<gh Vh € HYge G (g #e),

where e is the identity of G.

Remark. The above definition is a generalization of ranking [6].
Define an action of the monoid (N”, +) on the set of coordinate function U by the rule

Bul, :“ﬁx—&-ﬁ Vo, € N'Wie M

with M = N,;, or M = N. It is easy to see that U = |J
gives an example of stratified N™-set.
Let V be an open set in J and X is given by (2.2). We consider two sets

nen Un with U, = {ul, € U : |a] = n}

FW)x ={feFWV):iwfcX}, FV)=FV)\FV)x. (3.3)
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We shall indicate how a partition {U, },er of the set U leads to a partition of F(V)).
Consider sets
v,=xu( U Uy), 0=minfyer} (3.4)
Yoy <Y

which form an ascending chain of subsets of Y. The sets
J'={z€el:y(z)=0,Vye (Y\Y,)}, (3.5)

FIV)={feFV):iv(f) CY,} (3.6)

also form ascending chains of subspaces and subalgebras respectively. This chain of subalgebras
generates a partition {®7(V)},cr of the set (V') , where

V) =FW\( U FW), o) =Frr)\ F(V)x. (3.7)

Yo <y’ <y

Let us consider three set of germs
Fl={feFariv(f) CY,}, (3.8)

Fox ={f€Fa:ivfCc X},  Fo=Fa\ Fax. (3.9)
A partition {®] },er of the set F, is given by

oy =FN\C U F) e =Fr\Fux (3.10)

Yo<v' <y

Lemma 3.2. Suppose that the set U (2.2) is a stratified N"-set. Then the sets F(V) and F,
are also stratified N™-sets.

Proof. 1t suffices to check three requirements of a stratified set for generators of the monoid N".
At first, we consider the set F(V). To prove first property of a stratified set it will suffice to
show the following statement. If fi, fo € ®7(V), then there exists an element 7' € T' such that

functions Dy (f1), D (f2) given by (2.3) lie in & (V). We remark that if 5)—{ vanishes on some

open set € in J then the function f does not depend on u?, in Q. Since f1, fo € ®7(V), then
there are variables v}, ué € U7, and points a1,as € V such that

of of
aul (a1) #0, a—é(aﬂ 0.

It follows from assumption of our Lemma that for all uf, ué € U” there exists 4" € I" such that

. . ’ a . a 1 ’
Dirul,, Dkufg liein U™ . Thus, we clearly obtain 65’1 Upypeps ?ﬁufﬂek € &7 (V) and furthermore,
« B

Dif1,Drfs € CIW'(V). In a similar manner, one can prove two other properties. ~
We shall now prove that F, is also a stratified N"-set. At first, we show that if f € ®7 then
for any representative f of the germ f there exists a an neighborhood V* of a such that for every

. 0
neighborhood V' C V* of a there are a variable v}, € U and a point b € V' with a—{(b) # 0.
u

. «
Suppose this is not the case. Then there exists a representative f of the germ f such that for

every neighborhood V* of a there is a neighborhood V' € V* of a in which BT{(b) = 0, for

3 o
any variable u!, € U7 and every point b € V'. Therefore, the function f does not depend on
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variables u!, € U” in neighborhood V’. We thus get a contradiction to f € ®7. This implies

(o3

Let us prove the first property of a stratified set for F,. Suppose that fl and fg lie in ®7. It
suffices to show that Dy f; and Dy f5 lie in &) for some 4’ € T'. From assumption of this lemma,
there is an element «" € T" such that

Dy, = ﬂ‘ix—&-ek? ’Dkﬂ]ﬁ = ﬂjﬂ+5k Vfbg,ﬂ?@ eU".

It follows as above that there are variables u?,, ufi € U7, an element 4’ € T and a number k € N

8f~1 ~i an ~j

ot Uatey %ub’ﬁ-ek
@ B

such that germs lie in @g/. Hence Dy, fl, Dy, fg € @g/. The other properties

are proved in the same vein. A R
In what follows we shall suppose that F(V) and F, are stratified N"-sets equipped with a
induced strict partial order. O

Definition 3.3.

(i) A function f = ul, + g € F(V) is called orderly solvable (with respect to ut ), if g < ul,.
The variable ul, is denoted by Itf and is called leading term of f.

(i) A germ f = @, + g € Fq is called orderly solvable (with respect to ul,) if g < al,. The
germ @}, is denoted by Itf and is called leading term of f.

Proposition 3.4. Let FeF,bea germ depending on 11}3 Suppose that f =a’ +§ is a orderly
solvable germ with respect to U}, and there exists § € N" satisfying 3 = o+ 6. Then there exists
a unique germ 7 € F, and a germ q € F, such that

F=GD’f+7, i ¢ivF (3.11)
q=F, rxF. (3.12)

Proof. The germ D‘Sf is equal to d}g +D%G, where D%g < a}i Then from the Mather theorem
[15], we obtain (3.11). The uniqueness 7 is proved just as in the second part of Proposition 1.3.
It is clear that

w(§) C (iw(F)Uivn(D’g)), w(F) C (iw(F)Uiv(D’g)), i, ¢ ivF.

Since It(D%§) = @, it follows that D°G < F. The last relations lead to (3.12). a

If the assumptions of Proposition 3.4 are satisfied, then we say that the the germ F reduces
to 7 modulo f at a, denoted by F' — 7.

f
Proposition 3.5. Let F' be a polynomial in u% with coefficients that lie in F(V) and do not

depend on ug. Assume that f = u’, + g is a orderly solvable function with respect to u®, and &
is a element in N" satisfying 8 = o+ §. Then there exists a unique function 7 € F(V) and a
function g € F(V) such that

F=qD’f+r, ul ¢ivr (3.13)

g=F, r=<F (3.14)

Proof. The relation (3.13) follows from Proposition 1.4. The inequalities (3.14) are proved just
as in the second part of Proposition 3.4. O

If the assumptions of Proposition 3.5 are satisfied, then we say that the the function F reduces
to the function r modulo f on V, denoted by F ? r.
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Definition 3.6. A differential system S C F(V) is called weakly solvable if every function f € S
is orderly solvable. We write ItS = {ltf: f € S}.

It is clear that if a germ f € F, is orderly solvable with respect to @', then it is solvable with
respect to uy, in terms of Definition 2.5. In the future, we suppose that stf = Itf in this case.
Furthermore, we assume that stS = [tS for every weakly solvable system.

Definition 3.7. Let S C F(V) be a weakly solvable differential system.
(i) Let a be a point in V. We shall say that a germ F € F, reduces to a germ 7 € F, modulo
Sa, written F' — 7|, if there exists a consequence of germs 71,...,T,_1 € F, such that

S

F—oif — o —— i —F
fi f2 fr—1 fr

with fl,...,fk S ga.

(i1) Let S be a normalized set in F(V). Suppose that F € F(V) is a polynomial in O(ItS)
with coefficients being in F(V) and depending only on variables in O(Y \ ItS). We say that
F reduces to a function v € F(V) modulo S, written F ? r if there exists a consequence of

functions r1,...,7k—1 € F(V) such that

F—r— —rp_1—r
f1 f2 fr—1 fr

with fi,..., fx € S.

Let us define a binary operation ¢ on N™ by

aoﬂ: (Mla"'vﬂn)a

where a = (ai,...,an), B = (B1,...,8n), wi = max(a;,B;) — ;. Suppose that functions
f1, f2 € F(V) are orderly solvable with respect to g, uj respectively and f1, fo are their germs
at a € V. Then we define two differences

T(fi, f2) = D*Pfy = D% fo,  7(fi, fo) = D*P f; — DP° fy. (3.15)

Definition 3.8. Let S C F(V) be a weakly solvable differential system.
(i) The system S satisfies reducibility conditions at a € V' if

7(f1, f2) e 0f, (3.16)
for each pair of functions fi, fo € S such that ltfy = ul,, ltfo = uf@
(ii) Let S be a normalized set in F(V'). We say that S satisfies reducibility conditions on V
if
7(fi.f2) 50 (3.17)
for each pair of functions fi, fo € S such that It fy = ul,, It f» = uj.

Denote by D an algebra of operators such that every element of D can be written as a finite
sum

P=> a,D* (3.18)

with a, € R. Let RU be a vector space over R consisting of finite sums
5= Z b’fufg, b’ eR. (3.19)
Define an action of D on RU by letting
PufB = Zaaug+ﬁ,

and extending P to RU by linearity.
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Definition 3.9. Let y be an k-tuple (yi,,...,Ys,) of variables y;, € U. An k-tuple d =
= (dy,...,dy) of operators in D is called syzygy of y, if

diye, + -+ diyr, = 0.
The syzygies of the k-tuple y constitute a D-module denoted by Syz y.

Suppose y = (ys,, - - -, ys,) € U* with y;, = ul, and y,, = ulﬁ, then
Oij = D(xoﬁei — Dﬁoaej (320)

is a syzygy of y. It is easy to show (see [11]) that the syzygies (3.20) generate the D-module
Syz y if a number of the indeterminates uj € U is finite.

Example. Assume m=1 and n=2, so that U={u ;) : 4,7 € N}; take y = (u(o,1), %(0,2), U(1,1))-
It is obvious that (D3, —1,0), (D1,0,—1) and (0, Dy, —Ds2) are syzygies of the 3-tuple y.

4. Passivity criterion of differential systems

In this section we give sufficient conditions for a differential system to be passive. Further-
more, we prove that any passive system generates a manifold in the jet space.

Let S € F(V) be a weakly solvable differential system. We call a point a € J equivalent to a
point b € J, written a ~ b, if y(a) = y(b) for all coordinate functions y € Y\ O(itS).

Theorem 4.1. Let S = {f1,...,fx} C F(V) be a differential system with finite number of
indeterminates. Suppose that S is a normalized set and satisfies reducibility conditions (8.16) at
a € V. Then the following properties hold:

(1) there is a unique point b ~ a such that

Def(b) =0, VfeSVaeN (4.1)
(2) the system S is passive at any point ¢ ~ a.

Proof. Since S is a normalized set, we conclude that the orbit O(.5) is a weakly solvable differential
system. This gives rise to the uniqueness of the point b satisfying the condition (4.1).

We have shown above that a partition {U, },er of the set U provides the ascending chain of
subspaces J7 (3.5), the chains of subalgebras F7(V) (3.6), F7 (3.8) and leads to the partitions
{@7(V)}yer (3.7), {®)}yer (3.10) with z € V. We also recall that Y, is defined by (3.4).
Consider linear mappings 7., : J — J7, where the coordinates of 7., (z) are given by

y(my(2)) =y(z) Yy eYsy; y(my(2)) =0 VyeY\Y,.

Recall that S, is a set of germs of functions in S at the point z. We shall use the following
notion:

Yo =min{y el : O(Sa) N ey # 0},

0] =0(S.)NnF), C]=0(S,)Nno].
It is obvious that
or=cru( |J o (4.2)
YoSY<7Vx

for any v, > 9. Let (O7) be an ideal of the algebra F) generated by O7.
We shall use transfinite induction to prove that for all v > ~q the following properties hold:
(i) there exists a point b, ~ 7, (a) such that f(b,) =0 for all f € O;’v;
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(ii) there exists a normalized system B of generators of the ideal (O)) for any point ¢ ~ 7 (a).

Assume that v = vy then two cases arise:

1. All leading terms of germs in C° are distinct.

2. There exist at least two germs fz, f] € C7° such that ltfZ = ltfj

It is clear that in the first case there is a point by, ~ 7., (a) such that f(b,,) = 0 for
all f e C’gfo. Furthermore, the properties (i) and (iii) are satisfied because B> = C2° is a
normalized system of generators of the ideal (OY°) and B = S7 is a normalized system of
generators of the ideal (OV(’). In the second case, there must be germs f;, fj € C"YO such that
ltfl = ltfj Then fl f] € .7-"'Y where 7' < 79, and fl — f] ? 0 according to the conditions of

our theorem. Since O;/ is the empty set then we have f; = f]

Assume that our statement is true for all v with 79 < v < 74 and prove its for 7 = v,. As
above, we need to distinguish two cases:

1. All leading terms of germs in C7* are distinct.

2. There exist two germs f,§ € CJ~ such that Itf = Itg.
In the first case, the property (i) is trivially satisfied. According to the assumption of induction
and the formula (4.2), the set

ar=cru( |y B
YoSY<Vx

is a system of generators (not necessarily normalized) of the ideal (O}*) for any point ¢ ~ 7, (a).

In the second case, there are two germs f7 g € C) with It f = [tg. Then there exist two
germs fp, fq € S, such that

Itf =ItD" f, = Itg = ItD" f,,

where D¥ = D{* ... DFn and D" = D" --- D" are some differential monomials. Therefore, we
have

D#(ltfp) = Dn(ltfq)- (4.3)

Denote by y an n-tuple constructed from all elements of the set 1tS,. Assume that the elements
ltfp and ltfq are the i-th and j-th items in y. It follows from (4.3) that d = D*e; — D"¢; is a
syzygy of y. It is easy to see that there is differential monomial D" such that d = D"0;;, where
oi; is one of the sygyzies (3.20) generating D-module Syz y.

The difference f — § reduces to the zero germ modulo S,. Indeed, the system S satisfies
reducibility conditions at a by assumption, then we have

DVUz‘j(JFpaJEq) =f-g ? 0.

Next, we include any one of the germs f ,g in a new set gen)* while the other is not. In the
same way we inspect all pairs of germs in C)* with equal leading terms, form the set gen)* and
obtain a system of generators

Gy =genu( |J B

YoV <V«

for the ideal (O)*).

We now prove the existence of a normalized system of generators for ideal (O)*). Any germ
f e G NdY is of the form f= al, + h with h € F, and v < v*. According to Proposition 1.3
and the assumption step of 1nduct10n the germ h is represented by

=qGife, + +dpfi, + 7,
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where fti € thq} € FJ, and the germ 7 € F,) does not depend on principal variables of Bg
Then the germ f* = @}, + 7 is included in a set ben)*. To do so with every germ in GJ* N @~
we obtain an normalized system of generators

BY = ben)* U ( U Bg)
Yoy <V
for the ideal (O)*).

Let us take a point ¢ ~ m,, (a), then the ideal (O}*) is isomorphic to the ideal (O2*) of the
algebra F)*. Indeed, if a function f lies in S, then f, = @ |, + §o and f. = @ |, + §. because
S is a normalized set. Since ¢ ~ m,, (a), then g, = §. and the ideal (O}*) is isomorphic to the
ideal (O*). Therefore, the ideal (O2+) has a normalized system of generators.

It is easy to show that a point b, such that m,(b) = b, for all v € I, satisfies (4.1) and the set

B.= |J B!
Yo

is a normalized system of generators for the differential ideal ((S)). of F.. Therefore, the ideal
({(S)) is soft. By construction, we see that the set B, coincides with the orbit O(ItS.). Thus S
is a passive system at ¢ ~ a and the theorem is proved. O

Theorem 4.2. Let S = {f1,...,fx} C F(V) be a differential system with finite number of
indeterminates. Suppose that S is a normalized set and satisfies reducibility conditions (3.17)
on V. Then the system S is passive on V and the set

M={zeV:f(z)=0,fe€0(9)} (4.4)
s a manifold in J.

Our proof is almost the same as the proof of Theorem 4.1. We employ the following denota-
tion:
Yo =min{y €T : 0O(S)N®" (V) £0}, O =0(S)NF(V),

C7=0(S)Nd(V), S¥=0(S)NFI(V).

Let (O7) be an ideal of the algebra F7(V') generated by O7.

Using transfinite induction, we prove that for all v > 7o there exists a normalized system
of generators of the ideal (O7). Just as in the above theorem, we see that O is a normalized
system of generators of the ideal (O7).

Suppose that for each 79 < v < 74 there exists a normalized system of generators B” of the
ideal (O7). We need to check the existences of such a system for v = 7,. At first one obtain a
special system of generators G7* of the ideal (O7+). For this purpose, we consider the two cases
again:

(1) All leading terms of functions in C7* are distinct.

(2) There exist at least two functions f;, f; € C7* such that Itf; = ltf;.

In the first case the set
ar=cru( |J B)

YosSY<7Vx

is a system of generators of the ideal (O7+) In the second case there exist functions f,g € C7*
such that ltf = ltg. Thus there exist functions f,, f; € S and elements ;, v € N" satisfying

Itf = D*(itf,) = D"Itf, = Itg.
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It follows from condition of our theorem that the difference f — g reduces to the zero function
modulo S. One of the functions f, g is included in a set gen”*. In the same way we search for
all pairs of functions in C"* with equal leading terms, form the set gen”* and obtain a system

of generators
G+ = gen* U ( U B“’)
Yoy <V«
for the ideal (O7*).

We can then construct the set B7* as follows. Any function f € G+ is the form u + h,
where h € F7(V) with v < ~,. Furthermore the function h is a polynomial in principal variables
of BY and coefficients of this polynomial depend only on parametric variables.

Using Preposition 1.4, we write

h=Y afi+m

where fi, € BY, ¢; € F7(V), and the function r € F7(V') depends only on parametric variables.
We include then the function f* = w!, + r in a set ben” . To do so with every function in
G~ N @7+, we obtain an normalized system of generators

B = ben™ U ( U BV)

VoY <V«
for the ideal (O"). The set
B=|J B
Yoy

is a normalized system of generators for the ideal ((S)) of (V') and this ideal is soft. It is easy
to see that the set B coincides with the orbit O(It.S). Thus the system S is a passive on V. From
Proposition 1.7 it follows that the set (4.4) is a manifold in J and the theorem is proved.

5. Examples

We exhibit some examples assuming that n = 2, m = 1 and denoting by u the variable ugg.
The sets U, = {u;; : i + j = n} form a partition of U = {u;;}; jen. We shall sometimes apply
the usual terminology of differential equations.

The smooth function

f =111 —sinhu (5.1)

corresponds to the partial differential equation
Uge — sinhu = 0. (5.2)
It is known (see [19]) that vector fields

1 0 5 5 3 0
X1 = (uoz — 5“81)% +ees X = (uos — UG uos — Suogy + gugﬁa +-

are higher symmetries of the equation (5.2).
1.
Let Sy be a differential system consisting of the functions f and hy = w3 — 5“81' We want

to show that the ideal I = ((S;)) is soft. For this purpose we shall construct a passive system
generating the ideal I. The functions f and h; are orderly solvable with respect to u;; and
upg respectively. It is a straightforward calculation to check that the function 7(f, k1) (given by

1
(3.15)) reduces to the function f; = ugs — §u§1 tanh(u) modulo S;. Then an easy calculation
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shows that the function 7(f, f1) reduces to the function fo = ujg — 2 cosh(u)/ug; modulo f. It is
easy to see that the function 7(f1, f2) reduces to 0 modulo the system S = {f1, fo}. Furthermore
the system S generates the ideal I and is passive.

We now find solutions of the system S. The function f; produces the ordinary differential
equation

1
Ugy — iui tanh(u) =0

having the first integral u, / cosh? u. Using this integral and the equation

coshu
Uy = 2 s
Ug
we obtain the implicit solution
du
——— =cx —2t/c+
| v /

with ¢,c; € R.

. . . ) 5
Consider now the system S, consisting of the functions f and hy = ugs — 5’11%111403 — §u01u32+

3
—&—gugl. A direct calculation shows that the function 7(f, he) reduces to the function

1 3 3
f3 = up4 — uprug3 tanhu + §u32 tanhu — §uglu02 + gugl tanh u

modulo S3. Then the function 7(f, f3) reduces to

4(ud; — 2up3) coshu

f4 - 1o + 8U01U03 — 4U(2)2 - 3%%1
modulo S35 = {f3, f4}. It is possible to check that the function 7(f3, f4) reduces to 0 modulo
S4 = {fs, fa}, the system Sy is passive and it generates the soft ideal ((S3)).

The next example is closely connected with the equation (5.2) as well. The set

20,0
T2 Lt 5 =0, r,s € R,

Vgax
is invariant manifold of the partial differential equation
Vp = Ugy /U
as shown in [20]. Using the transformation v = exp w we rewrite the last equations as
Wagz + Welyy — Wy + 7 exp(3w) + sexp(—w) =0,  w; — (wye +w3) exp(—w) = 0.
These equations correspond to two functions
f5 = w03 + uo1uoz — ugy +rexp(3u) + sexp(—u), fo = u1o — (uoz + ugy) exp(—u).

It is easy to check that the system S5 = {fs, f¢} generates a soft ideal ((S5)) and is passive.
The function Dy (fs) reduces to the function f7 = w11 +rexp(2u) + sexp(—2u) modulo f5. This
function lies in ideal ((Ss)) and corresponds to equation

Uty = sinh(2u)

with r = —1/2 and s = 1/2.
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6.

Conclusion

We defined the concept of a passive system of equations using algebraic constructions. It

is proved that such systems are manifolds in an infinite-dimensional space of jets. Moreover,
the space is equipped with the Tikhonov topology. We prefer to use the term passive system
as it is classical and the word involution is used in different senses. The passivity criterion is a
generalization of the classical case. However, we do not prove the existence of a solution to the
passive system since we are dealing with smooth systems.

This work was financially supported by the Russian Foundation for Basic Research (Grant

no. 17-01-00332-a,).
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N peasbl, mopoxkjaeHHbIe auddepeHnnaabHbIMU
ypaBHEHUSIMU

Ouger B. Kanmos
MNucruryT Bhraucanresnsaoro mogenuposanns CO PAH
Kpacnosipck, Poccuiickas @eneparnus

Awnnorausi. B pabore npejiaraercst HOBBIN ajarebpandecKuil MMojaxol K UCCIeJOBAHUI0 COBMECTHOCTH
muddEepPEeHITNATBLHBIX YPABHEHUN. DTOT MOAXO]T MUCIOIB3yeT METOIbI KOMMYTATUBHOM aarebpbl, aareb-
pamdeckoit reomerpun u 6asucoB ['pebuepa. Mbl mosrydaeM JO0CTATOYHbBIE YCJIOBUS ITACCUBHOCTHA CHCTEM
YpaBHEHMII B YaCTHBIX MMPOU3BOJIHBIX W JOKA3bIBAEM, YTO TAKUE CUCTEMbI TIOPOXKIAIOT MHOroo6pa3usl B
pocTpaHcTBe cTpyii. [IpescraBieHbl IpUMepPbl UCCIIEI0BAHNS TACCUBHOCTU CUCTEM, MTOPOXKIEHHBIX CHM-
MerpusiMu ypasuenus sinh-Cordon.

KuaroueBbie cioBa: nuddepeHImaibHble KOTbIla U uaeasbl, 6asuc ['pebHepa, ypaBHEHUs] B YaCTHBIX

TTPOU3BOTHBIX.
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