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Introduction

Generalized coherent risk measures represent the generalization of the classical coherent risk

measures, which best known examples are Expected Shortfall [1] and Distorted probabily [2].

The paper [3] presents a procedure of calculating risk measure values using a given acceptance

set and a norm in the space of risks. But the question of defining an acceptance set according

to individual preferences is still open.

This paper considers one of the possible ways of defining such set, which is based on some

assumptions of preference properties and on using a functional of risk aversion.

1. Preference relation and its properties

Consider a probability space (Ω,A, P ), where Ω is a reference set, A is a σ-algebra specified

on Ω, P is a probability measure, specified on the sets of A.

A Risk X on (Ω,A) is any measurable mapping from Ω to R (a random variable).

The values of risks can be interpreted as profits or losses earned by a certain person.

The set of all risks on (Ω,A) we denote by X .

Partial order relation 6 on a certain set M is a reflexive transitive antisymmetric binary

relation on this set. If an order relation is moreover a complete relation the order is called linear.

There are several ways of defining orders on the set X .
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1.1. Stochastic dominance

Denote by F the set of all distribution functions, by FX the distribution function of a random

variable X:

FX(x) = P (X 6 x).

Let Fk be a set of all distribution functions with finite values of k-th moments:

Fk = {F ∈ F : |µF
k | < ∞}, µF

k =

∫ ∞

−∞

tkdF (t).

For a given F ∈ F specify a sequence of functions F (k), k = 1, 2, . . . :

F (1)(x) = F (x), F (k+1)(x) =

∫ x

−∞

F (k)(t)dt, −∞ < x < ∞.

Suppose F,Q ∈ Fk. We say that Q has k-order stochastic dominance over F (F 6k Q),

if

F (k)(x) > Q(k)(x), −∞ < x < ∞.

We can also introduce strict stochastic dominance. Suppose F,Q ∈ Fk. We say that Q

strictly dominates F with the order k (F <k Q), if

F 6k Q and ∃ x ∈ R : F (k)(x) > Q(k)(x).

By means of first-order stochastic dominance we can determine an order relation 61 (<1) on

X . Risk Y (strictly) stochastically dominates over risk X: X 61 Y (X <1 Y ) if

FX 61 FY (FX <1 FY ).

1.2. Coordinatewise order on the set of risks

Suppose |Ω| = n. Then we can submit a σ-algebra A in the form of A = 2Ω. Probability

measures P on a measurable space can be represented as elements of the standard simplex in

R
n:

Sn = {P = (p1, . . . , pn) ∈ R
n :

p1 > 0, . . . , pn > 0, p1 + · · · + pn = 1}.
The set of all risks X is isomorphic to R

n. Renumbering elements of Ω in some arbitrary

way: Ω = {ω1, . . . , ωn} , we denote P (ωi) = pi, X(ωi) = Xi, i = 1, . . . , n. We identify random

variables X ∈ X with vectors X = (X1, . . . ,Xn) ∈ R
n.

We assume that X 6 Y if Xi 6 Y i for all i = 1, . . . , n. This order is also partial.

If a probability space (Ω,A, P ) with finite Ω is fixed, then the orders 6 and 61 on X are

consistent — from X 6 Y follows that X 61 Y .

1.3. Risk measures consistent with preferences

A Preference relation � on a certain set M is a complete transitive binary relation on M .

An equivalence relation is defined as follows:

X ∼ Y, if X � Y и Y � X. (1)
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Suppose that a preference relation � on X reflects an individual attitude to risk of a certain

investor.

Usually market insiders strike for higher returns, thus we claim that preference relation should

be consistent with the order 6 on X : for any X,Y ∈ X : X 6 Y the inequality X � Y should

be fulfilled.

An arbitrary functional ρ : X → R is called a risk measure.

We say that a preference relation is represented on X by a measure ρ : X → R if one of the

following conditions holds:

ρ(X) 6 ρ(Y ), if X � Y, X, Y ∈ X ; (2)

ρ(X) 6 ρ(Y ), if Y � X, X, Y ∈ X . (3)

Hereinafter we deal with risk measures that represent preference relations like in (2). From

(1) and (2) it follows that for X ∼ Y ρ(X) = ρ(Y ).

2. Risk aversion

For most preferences a property that is called risk aversion is typical. We can informally

define it as a disposition of a person to accept a bargain with an uncertain payoff and the mean

a rather than another bargain with a certain value a.

Preference relation � possesses the property of risk aversion if for any arbitrary nonde-

generate risk ∆ : E∆ = 0 and an arbitrary a ∈ R it holds:

a + ∆ ≺ a. (4)

In terms of a risk measure ρ that represents the preference � on X we can note: ρ(a + ∆) <

ρ(a).

For any a ∈ R we denote Wa the distribution function of a degenerate distribution P (ξ =

a) = 1. If � is consistent with stochastic dominance 61, then Wa � Wb when a < b. We assume

that the strict preference relation Wa ≺ Wb also holds.

Preference relation � on F is called regular if it is consistent with the first stochastic

dominance 61, for all a, b ∈ R : a < b it holds that Wa ≺ Wb and in every equivalence class

K ∈ F/ ∼ there is only one degenerate distribution.

If regular preference relation on X is defined by the risk measure ρ then

ρ(a + ∆) = ρ(a − c), c > 0.

The value c (which usually depends on a and ∆) can be used as a quantitative estimator of

risk aversion which was presented in [4].

3. Generalized coherent risk measures

Suppose |Ω| = n. Then risk X = (X1, . . . ,Xn) is a vector in R
n.

A risk is called acceptable for an investor if he agrees to work with it without investing any

capital. The set of all acceptable to an investor risks we denote by A (A ⊂ X ).

An acceptance set A satisfies the following axioms:

A1: C+ ⊂ A, C+ = {X ∈ X : X > 0}
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A2: A
⋂

C− = ∅, C− = {X ∈ X : X < 0}
A3: A is a convex cone (if X ∈ A, Y ∈ A, then α1X + α2Y ∈ A, α1, α2 > 0).

A generalized coherent risk measure fA, associated with A is determined by

fA(X) = fA,‖·‖(X) = δA(X) inf
Y ∈∂A

‖X − Y ‖,

δA(X) =

{

1, X ∈ A,

−1, X ∈ Ac
,

(5)

where ∂A is a boundary of A.

The functional fA(X) exhibits the following properties:

M) monotonicity:

fA(X) 6 fA(Y ), ∀X,Y ∈ X ,X 6 Y ;

PH) positive homogeneity:

fA(λX) = λfA(X), ∀λ > 0,X ∈ X ;

S) superadditivity:

fA(X + Y ) > fA(X) + fA(Y ), ∀X,Y ∈ X ;

Sh) the shortest path property:

∀X ∈ X ∃ X ′(X) ∈ ∂A that ‖X − X ′(X)‖ = inf
Y ∈∂A

‖X − Y ‖ and

fA(X + λu(X)) = fA(X) + λ, −∞ < λ 6 λA(X), where λA(X) > 0,

A vector of the shortest path is determined as the follows:

– for the case of a strictly convex norm:‖ · ‖ u(X) = δA(X)
X − X ′

A(X)

‖X − X ′
A(X)‖ ;

– for the norm ‖ · ‖∞ u(X) = I = (1, 1, . . . , 1);

– for the norm ‖ · ‖1 u(X) = ei,

where ei — any of the vectors of the standard basis of the space R
n, which complies with

kei(X) = inf
kjej

{‖X − (X + kjej)‖ : (X + kjej) ∈ ∂A}.

For the given generalized coherent risk measure f(X) we can define an associated acceptance

set as follows:

Af = {X ∈ X : f(X) > 0}. (6)

A border of an acceptance set associated with f can be determined as

∂Af = {X ∈ X f(X) = 0}.

Coherent risk measure is a particular case of generalized coherent risk measures corresponding

to the norm || · || = || · ||∞.
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3.1. Risk aversion for generalized coherent risk measures

For generalized coherent risk measures

ca,∆ =

{

a − f(aI+∆)
f(I) , aI + ∆ ∈ A,

a + f(aI−∆)
f(−I) , aI + ∆ 6∈ A

In particular,

c0,∆ =
fA(∆)

fA(−I)
(7)

Since f(aX) = af(X), a > 0, then

c0,a∆ = a · c0,∆,

hence we can limit ourselves to studying the risk aversion functional at ∆ : ‖∆‖ = 1 to examine

the functional.

In the special case when generalized coherent risk measures degenerate into classical coherent

risk measures by the translation invariance property [5] we get ρ(a + ∆) = ρ(∆) + a, and

ρ(a − c) = a − c.

This means that for coherent risk measures the value of risk aversion doesn’t depend on a:

c∆ = −ρ(∆).

4. Inverse problem of risk theory for generalized coherent

risk measures

The inverse problem can be described as a risk measure development in accord with individ-

ual preferences using some known preference characteristics. This problem can be reduced to

selection of the most appropriate representative of a considered class.

In this paper the regarded problem is being solved for the class of generalized coherent risk

measures. From the Definition 5 it follows that it suffices to define the appropriate acceptance

set and to choose the appropriate norm in X .

The axiomatic characterization of an acceptance set describes its most general properties

and defines an extensive class of all possible acceptance sets. To select an explicit sample we

should narrow down the examined class as much as possible, relying on the investor’s preferences

properties.

4.1. Properties of acceptance sets for some preferences

The papers [6] and [7] present the following properties of acceptance sets for preferences

consistent with stochastic dominance:

I. Symmetry for the uniform distribution . If P =
(

1
n
, 1

n
, . . . , 1

n

)

and vector X =

(X1,X2, . . . ,Xn) ∈ A, then any vector Y with the components found by permutation of the

vector X components also lies in A (the cone is symmetric with respect to the axes of coordinates).

Remark 4.1. As it follows from the definition, risk is a mapping from (Ω,F) to R and in general
terms doesn’t depend on probability P defined on the sets of F . But there are some characteristics
of risks which depend on the values of probability measure — for example distribution functions.
Thus if the preferences are consistent with stochastic dominance then for different probability
measures risks may be differently ordered by preference, that may influence on the acceptance set
configuration.
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II. Dependence of a probability measure . We denote by XP and XQ the same set of all

risks X , but considered with different probability measures P and Q, and the acceptance sets

we obtain in these cases by AP and AQ. By XP we denote vector (X1, . . . ,Xn) ∈ XP , by XQ

vector (X1, . . . ,Xn) ∈ XQ.

Then if P 6= Q and ∃ XP such that XP <1 XQ (or XQ <1 XP ), we have AP 6= AQ.

III. Reduction of a cone dimensionality . For an acceptance cone AP , corresponding

with a probability measure P = (p1, . . . , pk−1, 0, pk+1, . . . , pn), is valid that:

X = (X1, . . . ,Xk−1,Xk,Xk+1, . . . ,Xn) ∈ AP ⇒
⇒ Y = (X1, . . . ,Xk−1, y,Xk+1, . . . ,Xn) ∈ AP ∀y ∈ R.

IV. Confluence of a cone to a semispace . An acceptance cone AP , corresponding with

P = (p1, . . . , pn), where pk = 1; pi = 0, i 6= k, may be defined by the inequality

Xk
> 0.

For a preference, possessing the risk aversion property, the following property holds:

V. Positivity of mean values for acceptable risks. For all X ∈ A,X 6= 0 it holds, that

EX > 0.

5. Elliptic acceptance cone

Consider preferences consistent with stochastic dominance and possessing the property of risk

aversion.

It is clear from the properties II, III, IV that an acceptance set is not constant — it changes

when the dimension of the risk space and the probability measure change.

There is the following idea: to develop such a model of an acceptance set that will allow only

once estimating required parameters for a concrete individuum, automatically reconstruct his

acceptance cone when the probability measure and the dimension of the risk space change.

It is quite obvious that the greater is the probability of some result (pi) the less preferable

are the negative values of profit corresponding to such result (Xi).

It can be assumed that the most preferable for an investor risks lie on the half line λP, λ > 0.†

While in the axiomatics of generalized coherent risk measures we determine acceptance of

a risk by its farness from the acceptance cone border, in case of validity of the mentioned

assumption we may estimate a risk by its distance to the half line λP . We consider the risk is

the "better" the nearer it lies to the risk of the same hyperplane (P,X) = λ on the half line

λP . For taking into account the influence of pi on acceptance of Xi we should assign a weight

number inversely related to pi to an permissible deviation of acceptable risks in the line of i-th

compoment.

We define an acceptance set as a convex cone with hyperplane sections (P,X) = a, a > 0

which appear to be ellipsoids with semiaxis r(pi), i = 1, . . . , n.

According to the geometric interpretation of the function r(p), p ∈ [0, 1] we call it an axial

function. It is the only characteristic of the cone that reflects an individual attitude to risk and

defines the dependence of such attitude on probabilities.

†In the strict sense, vector P = (p1, . . . , pn) of probabilities is a vector of the space X ∗, dual to X , that is why
hereinafter we denote by P the vector in X , with the same components as the vector of probability in X∗.
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5.1. Elliptic acceptance cone for the norm ‖ · ‖2 in the space of risks

For the case ‖ · ‖ = ‖ · ‖2 an elliptic cone can be defined by the inequality

n
∑

i=1

(Xi − (P,X)npi)
2

r2(pi)
6 (P,X)2, X ∈ R

n (8)

Theorem 5.1. If the following hypothesis

1. (P,X) > 0;

2. r(p) >

√

n

p2
+ n3p2.

(9)

holds, an elliptic cone A, defined by (8), is an acceptance cone for some preference.

Proof. To prove that A is an acceptance cone it suffices to show that the Axioms A1–A3

hold.

1. First we prove that A satisfies A2: A ∩ C− = ∅. Consider an arbitrary X ∈ C−

Xi < 0 ∀i = 1, 2, . . . , n ⇒ (P,X) < 0,

therefore, X doesn’t satisfy (9).

2. Then we prove A3: A is a convex set.

Let X ∈ A. Then (P,X) = a > 0 and

n
∑

i=1

(Xi − anpi)
2

r2(pi)
6 a2 (10)

The set {Y : (P, Y ) = a} also satisfies (10) and it forms a n-dimensional ellipsoid Ea, which

is a convex set.

Suppose that X ′ = λX, λ > 0. Then (P,X ′) = λa. X ′ also belongs to A (It can be

verified by substituting in(8)).

Moreover, it belongs to the ellipsoid Eλa

(X1 − λanp1)
2

r2(p1)
+ · · · +

(Xn − λanpn)2

r2(pn)
6 λa2, (11)

like all other vectors Y ′ = λY, Y ∈ Ea. Hence, A is a cone and all its hyperplane sections

(P,X) = a, a > 0 are ellipsoids.

Therefore, A is a convex set.

3. At last we prove A1: C+ ⊂ A.

Consider a basis e = {ei, i = 1, . . . , n : ei
i = 1, ej

i = 0}.
Any vector X ∈ C+ can be represented as a convex linear combination of the elements of

the basis e:

X = X1e1 + X2e2 + · · · + Xnen, Xi
> 0, i = 1, . . . , n

Since Axiom A3 is satisfied, we can assert that C+ ⊂ A, if ei ∈ A ∀i = 1, . . . , n.

Then we prove that e1 ∈ A (for the rest ei the proof is similar). Substitute coordinates of

e1 in (8):
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(1 − np1
2)2

r2(p1)
+

(np1p2)
2

r2(pn)
+ · · · +

(np1pn)2

r2(pn)
=

1 − 2np1
2 + n2p4

1

r2(p1)
+ n2p2

1

(

p2
2

r2(p2)
+ · · · +

p2
n

r2(pn)

)

6

6
1 − 2np2

1 + n2p4
1

n
p2
1

+ n3p2
1

+ n2p2
1

(

p2
2

n
p2
2

+ n3p2
2

+ · · · +
p2

n

n
p2

n
+ n3p2

n

)

6
p2
1

n
+ n2p2

1

n − 1

n3
= p2

1 = (e1, P )2

Hence, ej ∈ A j = 1, . . . , n, thus, C+ ⊂ A. 2

6. Elliptic acceptance cone for the norm ‖ · ‖1 in the space

of risks

Consider a set
n
∑

i=1

|Xi − (P,X) · n · pi|
r(pi)

6 (P,X) (12)

Suppose it fulfils the conditions

1. (P,X) > 0

2. r(p) >
n

p
(1 + np2)

(13)

Theorem 6.1. The set of risks A, defined by (12) and (13) is an acceptance set for some
preference.

Proof.

1. C− ∩ A = ∅. The proof is similar to the proof of 1. in theorem 5.1

2. We can prove, that A is a convex cone.

Suppose X : (P,X) = a > 0 and X ∈ A, that means

n
∑

i=1

|Xi − a · n · pi|
r(pi)

6 a.

Consider a set Aa = {Y ∈ A : (P, Y ) = a}.
We demonstrate that Aa is a convex set.

Consider any X,Y ∈ A, that fulfil the condition (P,X) = (P, Y ) = a and examine the risk

(1 − α)X + αY, α ∈ [0, 1].

n
∑

i=1

|(1 − α)Xi + αYi − (P, (1 − α)X + αY ) · n · pi|
r(pi)

=

=

n
∑

i=1

|(1 − α)(Xi − anpi) + α(Yi − anpi)|
r(pi)

6 (1−α)

n
∑

i=1

|Xi − anpi|
r(pi)

+α

n
∑

i=1

|Yi − anpi|
r(pi)

= a

So, (1 − α)X + αY ∈ Aa, hence the set Aa is convex.

Using the positive homogeneity property for norms, we can demonstrate that for X ∈ A

risks λX ∈ A if λ > 0.

Hence, A is a cone with hyperplane sections (P,X) = a > 0, which are convex sets.

Thus, A is a convex cone.
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3. We prove that C+ ⊂ A.

Since A is a convex cone, if e1, . . . en ∈ A, then also λ1e1 + . . . λnen ∈ A ∀λi > 0.

Let us show that e1 ∈ A (For the rest ei the proof is similar):

Substituting coordinates of e1 in (12) and denoting the result by D we obtain:

D =
|1 − np2

1|
r(p1)

+
np1p2

r(p2)
+ · · · +

np1pn

r(pn)
=

|1 − np2
1|

r(p1)
+ np1

(

p2

r(p2)
+ · · · +

pn

r(pn)

)

Denote D1 =
|1 − np2

1|
r(p1)

.

Suppose that 1 − np2
1 > 0.

D1 6
1 − np2

1
n
p1

(1 + np2
1)

<
p1

n
.

If 1 − np2
1 < 0, then

D1 6
np2

1 − 1
n
p1

(np2
1 + 1)

<
p1

n
.

Consider a function h(p) =
p

n
p
(1 + np2)

=
p2

n(1 + np2)
.

h′(p) =
2pn(1 + np2) − 2n2p3

n2(1 + np2)2
=

2p

n(1 + np2)2
,

h′(p) = 0 ⇐⇒ p = 0, h′(p) > 0 p ∈ (0, 1].

The function h(p) is nonincreasing on (0, 1] and reaches a minimum in p = 1.

h(1) =
1

n(1 + n)
⇒ h(p) 6

1

n(1 + n)
.

D 6
p1

n
+ np1

(

p2

r(p2)
+ · · · +

pn

r(pn)

)

6
p1

n
+ np1

n − 1

n(1 + n)
= p1

n2 + 1

n2 + n
< p1 = (P, e1).

Hence, e1 ∈ A. 2

7. Elliptic acceptance set for the norm ‖ · ‖∞ in the space

of risks

Consider a set

max
i=1,...,n

|Xi − (P,X) · n · pi|
r(pi)

6 (P,X). (14)

Suppose that it fulfils the conditions:

1. (P,X) > 0,

2. r(p) >
1 + np2

p
.

(15)
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Theorem 7.1. A set of risks A, defined by (14) and (15) is an acceptance set for some preference.

Proof.

1. C− ∩ A = ∅. C− ∩ A = ∅. The proof is similar to the proof of 1 in Theorem 5.1.

2. A is a convex cone.

Suppose X : (P,X) = a > 0 и X ∈ A, i. e.

max
i=1,...,n

|Xi − a · n · pi|
r(pi)

6 a.

Consider a set Aa = {Y ∈ A : (P, Y ) = a}.
We can prove that Aa is a convex set.

Consider arbitrary X,Y ∈ A, which fulfil (P,X) = (P, Y ) = a and examine the risk

(1 − α)X + αY, α ∈ [0, 1].

max
i=1,...,n

|(1 − α)Xi + αYi − anpi|
r(pi)

= max
i=1,...,n

∣

∣

∣

∣

∣

(1 − α)(Xi − anpi)

r(pi)
+

α(Yi − anpi)

r(pi)

∣

∣

∣

∣

∣

6

6 max
i=1,...,n

(1 − α)
|Xi − anpi|

r(pi)
+ max

i=1,...,n
α
|Yi − anpi|

r(pi)
= a .

Then (1 − α)X + αY ∈ Aa, hence the set Aa is convex.

Using the positive homogeneity property for norms, we can demonstrate that for X ∈ A it

also holds that λX ∈ A if λ > 0.

Thus, A is a cone with hyperplane sections (P,X) = a > 0, which are convex sets.

So, A is a convex cone.

3. We prove that C+ ⊂ A.

As A is a convex cone if e1, . . . en ∈ A, then also λ1e1 + . . . λnen ∈ A ∀λi > 0.

We demonstrate, that e1 ∈ A (for the rest ei the proof if similar). Substitute e1 in (14)

and denote the result by D:

D = max

{

|1 − np2
1|

r(p1)
,
np1p2

r(p2)
, . . . ,

np1pn

r(pn)

}

.

If D =
|1 − np2

1|
r(p1)

, then using the condition (15) we get:

D 6
|1 − np2

1|
1 + np2

1

p1 6 p1.

If D =
np1pk

r(pk)
, where k = 2, . . . , n, then

D 6 p1

np2
k

1 + np2
k

6 p1.

We obtain, that e1 fulfills (14). 2
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8. Axial function determination by the functional of risk

aversion

If we take an axial function r(p) complied with (9) from some one-parameter family, then it

is sufficient to know the value of the function only at one point for complete definition of the

corresponding elliptic acceptance cone.

Let us take p =
1

n
in place of such a point. We determine the value

r0 = r

(

1

n

)

examining the elliptic cone corresponding to the uniform distribution P =
(

1
n
, . . . , 1

n

)

(we can

call such cone a sphere cone).

For the norms ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞ a sphere cone can be defined by the inequality

∥

∥

∥

∥

X − (I,X)

n
I

∥

∥

∥

∥

6
(I,X)

n
r0.

8.1. Axial function for the norm ‖ · ‖2

In [6] it was proved that

r0 =

√

1 − nc2
0,∆

c0,∆
. (16)

If we know a risk aversion value in the zero risk we can find a value of r(p) at p =
1

n
, then

determine the unknown parameter of r(p) and define a corresponding acceptance cone.

It was shown that as an axial functions for the cone (8) we can take one of the following:

1. Power axial function

r1(p,m1) =

√
n + n3

pm1
, m1 > 1 .

2. Exponential axial function

r2(p,m2) =
√

n + n3 · e
m2(1−p)

p , m2 > M ≈ 0.203 .

3. Logarithmic axial function

r3(p,m3) =
n2

p
ln

(

m3(1 − p)

p
+ e

)

, m3 > 0 .

All the considered functions decrease by p and increase by mi.

A function R(p) =

√

3

p2
+ 33p2 — defines an infimum of axial functions values.
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8.2. Axial function for the norm ‖ · ‖1

Consider I = (1, 1, . . . , 1). Its norm is equal to ‖I‖ = n.

Lemma 8.1. For the risk I the nearest (in the sense of the norm ‖ · ‖1) risk I ′ lying on the
border ∂A, can be obtained by translation of I along one on the standard basis vectors:

f(I) = ‖I − I ′‖, I ′ = I − r0n

2(n − 1) + r0
ej (j ∈ {1, 2, . . . n}).

Proof. Denote

φ =
r0n

2(n − 1) + r0
. (17)

Fix arbitrary index j. Consider a vector I ′ = I − φej .

‖I − I ′‖ = φ.
∥

∥

∥

∥

∥

I ′ −
(I ′, I)

n
I

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

I − φe − j −
(I − φej)

n
I

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

I −
(I, I)

n
I +

φ

n
I − φej

∥

∥

∥

∥

∥

=
φ

n
‖I − nej‖ =

=
φ

n
(|1 − n| + 1 + · · · + 1) =

φ · 2(n − 1)

n
= r0 ·

2(n − 1)

2(n − 1) + r0
.

(I ′, I)

n
r0 =

(I − φej , I)

n
r0 =

(I, I)

n
r0 −

φ

n
r0 =

r0

n
(n − φ) = r0 ·

2(n − 1)

2(n − 1) + r0

We get that

∥

∥

∥

∥

∥

I ′ −
(I ′, I)

n
I

∥

∥

∥

∥

∥

=
(I ′, I)

n
r0, hence, I ′ ∈ ∂A.

Now we prove that I ′ is a vector of∂A, the nearest to I.

Consider any vector Y = I − α1e1 − · · · − αnen, such that ‖I − Y ‖ = ‖α1‖+ · · ·+ ‖αn‖ < φ.
∥

∥

∥

∥

∥

Y −
(Y, I)

n
I

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

I − α1e1 − · · · − αnen −
(I − α1e1 − · · · − αnen, I)

n
I

∥

∥

∥

∥

∥

=

=

∥

∥

∥

∥

∥

I −
(I, I)

n
+

α1 + · · · + αn

n
I − α1e1 − · · · − αnen

∥

∥

∥

∥

∥

=

∣

∣

∣

∣

(1 − n)α1 + α2 + · · · + αn

n

∣

∣

∣

∣

+ · · ·+

+

∣

∣

∣

∣

α1 + · · · + αn−1 + (1 − n)αn

n

∣

∣

∣

∣

6
1

n
((n−1)|α1|+|α2|+· · ·+|αn|+· · ·+|α1|+· · ·+(n−1)|αn|) =

=
2(n − 1)

n
(|α1| + · · · + |αn|) <

2(n − 1)

n
φ.

(Y, I)

n
r0 =

(I − α1e1 − · · · − αnen, I)

n
r0 =

r0

n
(n − (α1 + · · · + αn)) >

r0

n
(n − (|α1| + |αn|)) >

>
r0

n
(n − φ) =

2(n − 1)φ

n − φ
·
n − φ

n
=

2(n − 1)

n
φ.

So,
∥

∥

∥

∥

∥

Y −
(Y, I)

n
I

∥

∥

∥

∥

∥

<
(Y, I)

n
r0,
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thus Y ∈ A \ ∂A. 2

Now then, f(I) =
r0n

2(n − 1) + r0
. Note that f(I) > 1 (If follows from(13) and (17)).

Now pass on to detecting a relationship between r0 and risk aversion.

Theorem 8.1. For an elliptic acceptance cone in the space of risks with the norm ‖ · ‖1

r0 =
2(n − 1)(1 − c0,I∆

)

c0,I∆

. (18)

Proof.

Let for definiteness ej = en.

I ′ = I − f(I)en.

I ′ = (1, . . . , 1, 1 − f(I)); ‖I ′‖ = n − 1 + |1 − f(I)| = n + f(I) − 2.

(I, I ′) = n − 1 + 1 − f(I) = n − f(I).

By the shortest path property f(I + βen) = f(I) + βen, β 6 0.

Consider such a vector I∆ = I + βen, that (I, I∆) = 0 (it means, that it lies in the plane

EX = 0):

(I, I + βen) = 0 ⇒ β = −n, I∆ = (1, . . . , 1, 1 − n).

On the other hand, I∆ = I ′ − ‖I ′ − I∆‖en, that is why f(I∆) = f(I ′) − ‖I ′ − I∆‖.
By the risk aversion definition for generalized coherent risk measures

c0,I∆
=

f(I∆)

f(−I)
=

‖I∆ − I ′‖
n

⇒ ‖I∆ − I ′‖ = c0,I∆
· n,

‖I∆‖ = n − 1 + |1 − n| = 2(n − 1).

‖I − I∆‖ = n,

‖I − I ′‖ = ‖I − I∆‖ − ‖I∆ − I ′‖ = n(1 − c0,I∆
).

But earlier we got that ‖I − I ′‖ = f(I) =
r0n

2(n − 1) + r0
. That establishes the theorem. 2

8.3. Axial function for the norm ‖ · ‖∞
Theorem 8.2. For an elliptic acceptance cone in the space of risks with the norm ‖ · ‖∞

r0 =
1

c0,∆
. (19)

Proof. Consider a risk ∆ : E∆ = 0, ‖∆‖∞ = 1. Since the vector I = (1, , . . . , 1) is the vector

of the shortest path for the norm ‖ · ‖∞, the nearest to ∆ vector in ∂A is ∆′ = ∆ + f(∆)I.

(∆′, I) = (∆, I) + f(∆)(I, I) = f(∆)n = c0,∆n.

Suppose ∆̃ =
(I,∆′)

n
I.

Since ∆′ ∈ ∂A,
∥

∥

∥
∆′ − ∆̃

∥

∥

∥
=

(∆′, I)

n
r0 = c0,∆r0.
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Since (∆,∆ − ∆′) = 0, (∆̃, ∆̃ − ∆′) = 0, (∆̃,∆) = 0,

∆ = ∆′ − ∆̃ ⇒ ‖∆‖ = ‖∆′ − ∆̃‖ = c0,∆r0.

This yields the proposition of the theorem. 2

Power axial function

r(p,m) =
np + 1

pm
, m > 1. (20)

We show now that this function can be used as an axial function for defining an acceptance cone

in the space X with the norm ‖ · ‖∞. Function r(p,m) fulfills the condition (15) because:

1. For p ∈ (0, 1]
np + 1

pm
−

1 + np2

p
=

np(1 − pm) + (1 − pm−1)

pm
> 0.

2. lim
p→0

(

np + 1

pm
−

1 + np2

p

)

= lim
p→0

np + 1 − pm−1

pm
= +∞.

Thus, a cone with an axial function (20) is an acceptance cone.

8.4. Example of defining an acceptance set by the given risk aversion

value

Suppose that somebody’s preference relation possesses the risk aversion property, is consistent

with stochastic dominance and can be characterized by the norm ‖ · ‖∞ in the space of risks.

We propose an investor to take a lottery ticket for k$. By the lottery he may either gain 2k$

or gain nothing with the same probability . The investor should measure the minimal value of

premium, he would demand for buying such a lottery ticket.

Let the investors answer be α = 0.25$.

This game corresponds to a risk ∆ with distribution:

∆ –1 1

P 0.5 0.5
.

E∆ = 0, ‖∆‖ = 1, hence c0,∆ = α/k. It follows that the value of an axial function at the

point p = 1/n is

r0 =
1

c0,∆
= 4.

If the investors preferences could be defined by an axial function r(p,m) =
np + 1

pm
, m > 1,

then

m =
ln c(np + 1)

ln p
= 1.

It is clear that the given as an example procedure of risk aversion estimating only by one

investor’s answer is not enough reliable because the procedure presumes the exact match of the

investor’s answer to his individual attitude to risk.

For implementation of the discussed method of inverse problem solving we should define

a more reliable procedure for risk aversion detecting either by using statistics of earlier made

decisions, or by more explicit questionnaires.
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Conclusion

The method of inverse problem solving presented in this paper allows to define individual

acceptance sets and therefore individual functionals of generalized coherent risk measures utilizing

one of the preferences characteristics — value of risk aversion. Individual risk measures can be

used in solving different applied problems when the individual attitude to risk should be taken

into account, for example, in portfolio building.
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Неприятие риска для нахождения эллиптических конусов
приемлемых рисков в модели обобщенных когерентных
мер риска

Татьяна А. Кустицкая

В рамках модели обобщенных когерентных мер риска исследованы свойства множеств приемле-

мых рисков. Предложен класс эллиптических конусов для описания индивидуальных предпочте-

ний. Построена методика нахождения эллиптического конуса приемлемых рисков по значениям

функции неприятия риска (для случая гельдеровых норм в пространстве рисков).

Ключевые слова: обобщенные когерентные меры риска, неприятие риска, множество приемлемых

рисков, отношение предпочтения, эллиптический конус.
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