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Asymptotic Behavior at Infinity of the Dirichlet Problem
Solution of the 2k Order Equation in a Layer
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For the operator (—A)Fu(x) + v**u(z) with = € R"(n > 2,k > 2) an explicit fundamental solution is
obtained, and for the equation (—A)*u(z) + v**u(z) = f(z) (for f € C(R™) with compact support)
the leading term of an asymptotic expansion at infinity of a solution is computed. The same result is
obtained for the solution of the Dirichlet problem in a layer in R™*!.

Keywords: asymptotic behavior, elliptic equation, fundamental solution, estimation of solution, G-Meyer
function.

A fundamental solution for the operator (—A)*u(z) + v?*fu(x), * € R*(n > 2,k > 2),
is obtained in [1, Section 3, 2.8.3]. The leading term of an asymptotic expansion at infinity
exponentially decreases and does not contain a rapidly oscillating factor.

In [2] the general form of all solutions of the equation

AU + a AFYU + .+ U = 0,

in a domain is deduced. Here a1, as, ..., ar are complex constants.
In [3] a fundamental solution for the operator

(—8) u(@) + pu(@),

satisfying the radiation condition, is considered.
Let h(§) be the Fourier transform of the function h(z) € Ly (R")

e = FIR(E) = [ e hia)da.

If g € L1(R™), then the inverse Fourier transform is

Frilgl) = [ emglepi.
Lemma. The equation
(—AV*E(z) + 1*E(@) = §(z) z€R" (n>2, v>0) (1)
has a radially symmetric solution E(r) of the form

By = e () @
T A e I ey

here r = \/x3 + 2% + ... + 12, G(-) is the G-Meyer function (in the notation of [4]).
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Proof. The Fourier transform E(¢) of the fundamental solution E(z) of the equation (1) is a
solution of the equation 3
((2mp)** +v*F)E(€) = 1.
Hence,
1

B(©) = E) = oy v

where p = /€2 + €2 + ... + £2.

So
627Tza:§

50 = |,

Using the formulas for the inverse Fourier transform of the radially symmetric function ¥(p)
(see [5, (2.113), (2.114)]), we have:

forn =2p
E(@)) = (=27~ 1im (18),,_1 [277 / o e_sp\I/(p)pJo(QWTp)dp} , (3)
e—+0 \ 7 Or 0
forn=2p+1
E(z)) = (=27)~®=Y lim (18>p_1 {2 / o eap\II(p)psin(Qﬂ'rp)dp] . (4)
e>+0 \ 1 Or r Jo

Notice that in our case for ¢ = 0 the integrals in square brackets in formulas (3), (4) converge.
Therefore, we can consider formally the following expressions, although it is not yet proved that
they define a solution of (1):

forn =2p
1 8 p—1 +oo p
—(—ory—(-1) [ =22 R S —
E(z) = (—2m) (r8r> [QW/O Grp ) T o J0(27rrp)dp} , (5)
forn=2p+1
Lo\ t[2 [t
— (—on)--1) (2 < ot P -
E(z) = (—2n) (7" 37") [7"/0 Grp) 1 o7 sm(27rrp)dp] . (6)

Consider the even dimension case. We calculate the integral on the right hand side of (5) at
k=1,2,3,4, ..., using Mathematica (the licence L. 3298-0846), and construct for it the following
expression for any k:

(7
%v%,mﬁ,b,ﬂ 1 0) ( )

T ook

—+o00 ) 1 k41,0 VQk:,r.Qk
/0 @mp)2k o2 PO PP = g = o ( 2k)2F

Substituting it in (5) and using the formula for differentiation of the G-Meyer function (see [6,
8.2.2.32]) we obtain the function on the right hand side of the expression (2). Let us prove that
this is the expression for the fundamental solution.

Using the well-known asymptotic expansion of the G-Meyer function, we put

m,0 _ ~m,0
Gog (2) = Goy (Z|b1,b2,..‘,bq)'
From Theorem 2 (see [7, 5.9.2]) it follows that (for m < ¢ — 1,argz =0,z — +00):

Ggféo(@ ~ A?’OHp,q(Zem(q_m)) + AZL’OHp,q<Ze_W(q_m))-

- 312 —



Mikhail S. Kildyushov, Valery A.Nikishkin  Asymptotic Behavior at Infinity of the Dirichlet Problem ...

In the case under consideration m =k + 1,p = 0,q = 2k.

2k—1

2r) 2 1\ 2k—1 > =i
Hoan(©) = T exp (= 2003 ) B 37 ¢,
2k} 2
where My =1 ( [7, (5.9.1.13)]),
2%k
AS:LO = (71)k71(2m)7(k71) exp ( —am Z bj)
j=k+1

([7, 5.8.2.2]). Finally, for the G-Meyer function in (7) we obtain

k1.0 [(V2Er2E 227 ( . ) (37T(k -1) 7 )
~ ex —VVrsim —)CoOS\—————VrcosS — ).
02k \ (22 |11 ko2 gro1 k-2 1o )T mE P 2k m 2%

The exponential decrease ensures the convergence of the integrals and the applicability to the
right hand side of (2) of the formula ( [5, (2.108)]) for the Fourier transform of the radially
symmetric function:

v = 2 [ oy (2mpr)dr ®)
pP)= P(n72)/2 0 (n—2)/2 P .

In our case it looks like

(2Kk) 32
(27p) 3 ~1p2k—2

GO (VT 2k dr
0,2k 2%k n=2 n=2 1 n=2 k-1 k=1 k=2 1 :
ok 0 3k TR 3k i T LTS

This integral (see [6, 2.24.4.1]) is expressed via the G-Meyer function and simplified to the form

1 v \2F
1,1
V)= Grppmr i ((%p) ’T) '

Using the integral representation of the G-Meyer function (( [6, Definition 8.2.1]), where the

k—2 k—2
5 % o +100)) and formula ( [8, 3.981(3)]),

+oo
(p) = / 7% Jua (27pr) x
0 2

integration contour L is the straight line (
we find

From here it follows that

1 1.1 14 2k % 1
7G171 o = 7o ok 1 .2k° (9)
o211 \\amp ) iz | = rppi 0%

Finally, the statement is proved for even n.

Let us prove the lemma for odd n. First, for n = 3 we substitute (9) into the inverse
Fourier transform formula (formula (8), where p and r are interchanged). We obtain the integral
(see [6, 2.24.4.1]) and substitute the result in (6). Now we proceed similarly to the case of even n.
The lemma is proved. O

Let us specify the leading term of the asymptotic expansion of u(z) at infinity.
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Theorem 1. Let z € R" (n > 2, v > 0), f(x) be a smooth function with compact support. Let
the solution u(x) of the equation

(=2 u(e) + v*u(z) = f(2) (10)
exponentially decrease at infinity. Then the following representation holds

u(z) = r=™/ 2 gin (vr cos ;—k)e*wsm %Dy (0,..., 00 1)+

(17172 cog (vr cos %)67'/”1“ EDy(01, ..., Op_1) + O(r~ "D/ Zemvrsingi ) (11)

where ®1(01,...,0,,-1),P2(0a,...,0,_1) are differentiable functions on the unit sphere.

Proof. Let f(x) have its support in a ball Qg of radius R . Then for the solution u(x) of the
equation (10) we have the following representation

u(w) = [ Blla = o))

Introduce the following notation = = (z1,xa,...,z,). Suppose that x runs along a ray, we can
turn the coordinate system so that this ray coincides with 1 > 0, 2o = ... =z, = 0. Then

U(m1,0,---,0)=/”E<\/(fm—y1)2+y§+-~-+yi) fy)dy =

= [ B —nh i+ [ B (Ve i k)~ B - ) fd

R R

Denote the integrals on the right hand side of the this equality by J; and Js.
For E(r) we employ the asymptotic expansion

nt1—4k
2 gin (k-1
E(r) ~ #e"” S 2k cos (W — VT cos 27;) r — 400, (12)
)2
and obtain, as 1 — 400,

™

2k

J, = / (|#1 — y1| =™/ sin (v]z1 — y1] cos )e*”‘“*yl‘smﬁcl—i—
R

Har = |12 cos (vlwr =y cos %)e_ym_yll S 3 eyt

+O(jwy — |~V RemvIn TSR f(y)dy =

1-n)/2 . T\ yw sin 2 1—n)/2 T\ —ym, sin 2
:xi n/ sin (vay cos ——)e ”””151“2k03+x§ )/ cos (vay cos o—)e VT 2 oyt

2k 2k
+O($;(n+1)/26_yml sin ﬁ),

where c¢1, ¢, c3, ¢4 are constants.

Turn now to the estimation of .Js.

Using (12) and the mean value theorem we arrive at the following inequalities for some
0<O<:

£ (V- +id k) Bl

X

:‘E/ (xl—y1|+@(\/(ml—y1)2—|—y%+...+y%—|x1—y1|>>
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X (\/(xl—y1)2+y§+--~+y%—|$1—y1|> <

—v|z1—y1|sin & - n;rl —vxy sin Z- *nT-H
< Cpe 2 |21 — Y1) < Cie 2F 14

if |yl < R, 1 > 2R.
Therefore

|J ‘ < Ce_VQTISin%x_nTH
2 X 1

)

where Cy, C1, C are constants.
Going back to initial coordinates, we get the representation (11). O
We shall apply the obtained results to the Dirichlet problem in a layer.
Denote

II={(z,2n41) € R""x € R", 241 € (a,b)}, —00<a<b< oo, n>2.

Consider the problem

k
52k ".H?
(—1)* e+ —3 v+av = h, (z,zpy1) €Il
Ox o
nt1 o \j=1 9% (13)
o7 o’
‘IU — ‘,U = O, ]:0771{:_1
&Cﬁlﬂ Tpt1=0 axﬁlﬂ Tn41=b

Let 0 < A\ < A9 < ... be the eigenvalues and ¢y,

y(2k)(t) + (_1)k+1)\2ky(t
{ v (a) =y (b

(I =1,2,...) be the eigenfunctions of the problem
) = 0, te(ab),
)

(14)
=0, j=0,....k—1.

Put = R/a+ X2k (1=1,2,..).
In[9] (Theorem 6) the solvability of the problem (13) and uniqueness of the solution v was
proved for h(x,x,41) € C*°(II) with compact support and a + A?* > 0, as well as the estimate
(@, Zny1)] < CemWrsinsi=allel (g 5 1) €T, (15)

(here € > 0 is sufficiently small).

Study the proof of the estimate (15) more closely. Denote by © = 9(&1,...,&n, Tny1) the
Fourier transform with respect to x of the function v(x,z,4+1). Then ¥ is a solution of the
one-dimensional boundary value problem in 2,1 on [a,b] with the parameters 1, ..., &, :

(=D)F0** +av + 2n)*ME + ... + &) = Flh], ap41 € (a,b),
99 (a) = 50 (b) 0, j=0,.,k—1.

The singular sets in this case are given by the conditions
—ut = 2m)R(E L+ 2k 1=1,2,3,.... (16)
Put
¢G=Re&, m=Im & (=1,...n), (=), 7=(T1,.., )
To apply Theorem 6 of 9], the intersection of the cylinder (27)?|7|? = 42 with the singular sets

(16) must be empty. We shall find v, for which this condition is fulfilled, that is the following
system has no solutions:

{ @l = 7,

7
m)*(E+ ..+ )k = -k (1=1,2,3,...). (a7)
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This system splits into k systems of the form
@mr)? = A~
(2m)2( + ..+ &) = u} (cos%—}—lsin %) (i1=1,2,3,..),

where s =0,1,....k — 1.
For each s the system consists of the real equations

@m2r2 = 42
@m2(I¢)? = |71?) = pfeos 2T (1=1,2.3,..),
(27)22(¢,7) = pPsin BT (1=1,2.3,..).

The Cauchy-Schwarz inequality implies that the contradiction is achieved if the following condi-

tion is fulfilled: s L
4y (N% cos HTS)W + 72) < i sin? M

k
142
Solving this inequality for v, we obtain v < p; sin %
Thus, if v < pq sin 1, then the system (17) is inconsistent.

2k

Theorem 2. Let h(x,z,41) € C(II) in the problem (13) have compact support, the constant
a satisfy the condition o+ A2% > 0, where \; is the first eigenvalue, and o, be the corresponding
eigenfunction of the problem (14). Let the solution v(x,x,41) of the problem (13) exponentially
decrease at infinity. Then

'U(x7xn+l) = (Sin ( 2k/a + )\%kr COS %)@1(91, ceey Hn_1)+
+ cos (/a4 A3*r cos %)@2(01, . ,Qn_l)) x p(mm)/2e= R/atArsinge o (0 )
+ O(Tf(nJrl)/Qef 2Q/Wrsin ﬁ%
where ®1(01,...,0,_1),P2(0s,...,0,_1) are differentiable functions on the unit sphere.

Proof. Put

b
mm:/hm%ﬂmmwm%%

b
Umﬂz/v@wwﬂ%@mﬂwmb
a

Note that hq(z) has compact support and hy(z) € C*°(R").
The function v; () is a solution of

(=A)fvy (x) + p2*v (x) = hy(z) x € R™
Then for the solution v(x,z,+1) of (13) we have the representation
(@, Tnp1) = v1(2)pr(Tng1) + O(2, Tngr), (18)
and for o(z, z,41), by Theorem 6 of [9], we have the estimate
|8(2, @np1)] < Cem 2ok —olel,

(e > 0 is sufficiently small).
The asymptotic expansion for v(x, z,,41) follows from (18) and Theorem 1. m]
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O6 acumrmiToTUKe pelrieHust 3agaun upuxie njist ypaBHEeHUS
nopsajka 2k B cjioe

Muxana C.KuniabpIiomniosn
Bagnepuit A.Hukumknu

Jas onepamopa (—A)Fu(z) + v u(x) ¢ R™(n = 2,k > 2) noayuen asnviti eud dyndamenmartnozo

pewenus, a daa ypasnenus (—A) u(z) + v¥u(z) = f(x) (c Purummnot Geckonewno Juddepernyupyesor

Ppymnryuet f) — nepevili wien acumnmomuky pewerus na beckoneunocmu. Hsywaemes maxoice 3adaua
Jupuzse 6 caoe uz R

Karoueswie crosa: acumnmomuka, srsunmuveckoe ypasrerue, GyroamenmarsoHoe PeuteHue, ouenky pe-
wenul, G-¢pynryua Metepa, caot.
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