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10. Let us assume that C[m ×m] is the space of complex matrices of size [m ×m]. Direct
multiplication of n matrices is denoted by C

n[m×m].
The set

B(1)
m,n =

{

Z = (Z1, ..., Zn) ∈ C
n [m×m] : I(m) − 〈Z,Z〉 > 0

}

is referred to as matrix ball of the first type (see [6]). Here 〈Z,Z〉 = Z1Z
∗

1 +Z2Z
∗

2 + ...+ZnZ
∗

n is
the "dot" product, I is the unit matrix of size [m×m], Z∗

ν = Z ′
v is the conjugate transpose of

matrix Zν , ν = 1, 2, ..., n, and I − 〈Z,Z〉 > 0 means that a Hermitian matrix is positive definite
that is all matrix eigenvalues are positive.

Matrix ball the second type B
(2)
m,n has the following form (see [7]):

B(2)
m,n =

{

Z = (Z1, ..., Zn) ∈ C
n [m×m] : I(m) − 〈Z,Z〉 > 0, Z

′

ν = Zν , ν = 1, ..., n
}

.

Let us denote the Shilov boundary of a matrix ball B
(2)
m,n by X

(2)
m,n, that is,

X(2)
m,n = {Z ∈ C

n [m×m] : 〈Z,Z〉 = I, Z ′

v = Zν , ν = 1, 2, ..., n} .

This domain was originally considered in [7] and a group of holomorphic automorphisms of

B
(2)
m,n was described. The purpose of this paper is to find kernels of the integral Bergman and

Cauchy- Szego formulae in the matrix ball of the second type. The integral Bergman formula
for the matrix ball of the first type has been found in [6 ].

20. Let us consider a point P = (P1, P2, ..., Pn) ∈ B
(2)
m,n. Mapping

Wk = R
−1

(I(m)− < Z,P >)−1
n
∑

s=1

(Zs − Ps)Gsk, k = 1, .., n, (1)

that transforms point P into 0 is an automorphism of the matrix ball B
(2)
m,n (see [7 ]). Here R

is a matrix of size [m ×m] and G is a block matrix of size [m × n]. They satisfy the following
relations

R′(I(m)− < P,P >)R = I(m), G′(I(mn) − P ∗P )G = I(mn). (2)
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Lemma 1. Real Jacobean JR of the mapping W = ϕp(Z) at the point Z = P is

JRφP =

(

det(I(m)− < P,P >)
∣

∣det(I(m)− < Z,P >)
∣

∣

2

)

(m+1)(n+1)
2

.

Proof. Let us find the real Jacobean JR of the mapping W = ϕp(Z) at the point Z = P . It
follows from (1) that

dWk = R
−1

(I(m)− < Z,P >)−1
n
∑

i=1

dZiP
∗

i (I(m)− < Z,P >)−1
n
∑

s=1

(Zs − Ps)Gsk+

+R
−1

(I(m)− < Z,P >)−1
n
∑

s=1

dzsGsk.

dWk |Z=P = R
−1

(I(m)− < Z,P >)−1
n
∑

s=1

dZsGsk.

dZ ⊗G = (dZ1, ..., dZn)







G1k

...
Gnk






, k = 1, n,

dW = R
−1

(I(m)− < Z,P >)−1dZ ⊗G.

Then we have
ϕ

′

P (P ) = R
−1

(I(m)− < Z,P >)−1 ⊗G,

where ϕ
′

P is the Jacobi matrix of the mapping ϕP . The sign ⊗ means the Kronecker product of
two matrices. Taking into consideration properties of the Kronecker product (see [3]) and using
relation (2), we obtain

detϕ
′

P (P ) = (detR′)
m+1

2 (detG′)
m+1

2 n
.

Then applying the result of Theorem 2.1.2 from (see [2, p.37]), we find the real Jacobean of
the mapping ϕZ .

Since

JRϕZ =
∣

∣

∣detϕ
′

P

∣

∣

∣

2

then
JRφZ(Z) = det

m+1
2 (RR′)det

m+1
2 ·n(GG′) = det−

(m+1)(n+1)
2 (I(m)− < Z,Z >). (3)

Taking into account relations (2), we obtain

det(I(m)− < W,W >) = det(R
−1

(I(m)− < Z,P >)−1) det(I(m)− < Z,Z >)×

×det((I(m)− < P,Z >)−1R′−1) =
det(I(m)− < Z,Z >)

det((I(m)− < Z,P >)R) det(R′(I(m)− < P,Z >))
=

=
det(I(m)− < Z,Z >)

det(I(m)− < Z,P >) det(I(m)− < P,Z >) det(RR′)
=

=





I(m)− < P,P >= R′−1R
−1

= (RR′)−1

det(I(m)− < P,P >) = det(RR′)−1

det(RR′) = det−1(I(m)− < P,P >)



 =
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=
det(I(m)− < Z,Z >)

det(I(m)− < Z,P >)(det(I(m)− < Z,P >))∗(det(I(m)− < P,P >))−1
=

=
det(I(m)− < Z,Z >) det(I(m)− < P,P >)

∣

∣det(I(m)− < Z,P >)
∣

∣

2 ,

det(I(m)− < W,W >) =
det(I(m)− < P,P >) det(I(m)− < Z,Z >)

∣

∣det(I(m)− < Z,P >)
∣

∣

2 . (4)

Mapping ψu = ϕW ◦ϕP ◦ϕ−1
Z conserves 0. Therefore it is a generalized unitary mapping and

the absolute value of the Jacobian determinant equals 1, i. e., ϕP = ϕ−1
W ◦ ψu ◦ ϕZ .

Then from relations (3) and (4) we obtain

JRφP =
det

(m+1)(n+1)
2 (I(m)− < W,W >)

det
(m+1)(n+1)

2 (I(m)− < Z,Z >)
=

(

det(I(m)− < W,W >)

det(I(m)− < Z,Z >)

)

(m+1)(n+1)
2

=

=

(

det(I(m)− < P,P >)
∣

∣det(I(m)− < Z,P >)
∣

∣

2

)

(m+1)(n+1)
2

. (5)

2

30. Let us consider the normalized Lebesgue measures ν in the ball B
(2)
m,n and σ on the Shilov

boundary X
(2)
m,n, i.e.

∫

B
(2)
m,n

dν(Z) = 1 and

∫

X
(2)
m,n

dσ(Z) = 1.

Following the procedure given in [6] for B
(2)
m,n, the Bergman kernel is defined as follows:

K(Z,W ) =
1

det
(m+1)(n+1)

2 (I(m)− < Z,W >)
, Z ∈ B(2)

m,n.

In particular, when n = 1, this kernel coincides with the Bergman kernel for the classical
region of the second type (see [2]).

The Hilbert space of holomorphic functions in B
(2)
m,n that are square integrable with respect

to Lebesgue measure dν is designated as H2(B
(2)
m,n), i.e., f ∈ H2(B

(2)
m,n) if f is a holomorphic in

B
(2)
m,n fuction and

∫

B
(2)
m,n

|f(ζ)|
2
dν(ζ) < +∞.

L2(X
(2)
m,n, dµ) signifies the space of scalar functions f that are square integrable with respect

to the normalized Haar measure dµ on the Shilov boundary X
(2)
m,n of the matrix ball B

(2)
m,n.

Theorem 1. For each functionf ∈ H1(B
(2)
m,n) the following relation is true

f(Z) =

∫

B
(2)
m,n

f(W )K(Z,W )dν(W ), Z ∈ B(2)
m,n, W ∈ X(2)

m,n.

Integral in this relation defines the orthogonal projection from space L2(B
(2)
m,n) to space

H2(B
(2)
m,n).

– 307 –



Gulmirza Kh.Khudayberganov, Uktam S.Rakhmonov The Bergman and Cauchy–Szego Kernels for Matrix...

Proof. Let us consider a point P ∈ B
(2)
m,n. Let us assume first that the function f ∈А(B

(2)
m,n)

(f is holomorphic function in B
(2)
m,n and it is continuous function on the closure B

(2)

m,n). Let us
consider the following function

g(Z) =
K(Z,P )

K(P, P )
f(Z).

Then g ∈А(B
(2)
m,n) and

f(P ) = g(P ) = (g ◦ ϕ−1
P )(0). (6)

Expanding f in a series of homogeneous polynomials and integrating it over the ball, we
obtain

f(0) =

∫

B
(2)
m,n

f(W )dν(W ).

Taking into account this relation and relation (5) we have

f(B) =

∫

B
(2)
m,n

g(ϕ−1
P (W ))dν(W ). (7)

After the change of variables ϕ−1
P (W ) = U in (7), we obtain

f(P ) =

∫

B
(2)
m,n

g(U)JRϕP dν(U) =

∫

B
(2)
m,n

f(U)K(P,U)dν(U).

Due to the completeness of the matrix ball the space of functions А(B
(2)
m,n) is dense in the

space H2(B
(2)
m,n). Then the theorem holds for functions f ∈ L2(B

(2)
m,n). 2

40. Let us build the Cauchy–Szego kernel for the matrix ball of the second type.
We define the Cauchy–Szego kernel C(Z,W) as follows

C(Z,W ) =
1

det
(m+1)n

2 (I(m) − 〈Z,W 〉)
, Z ∈ B(2)

m,n, W ∈ X(2)
m,n. (8)

At n = 1 the Cauchy–Szego formula coincides with the Cauchy–Szego kernel for the classical
region of the second type [2].

This kernel is defined for all pairs (Z,W ) ∈ Cn[m×m] × Cn[m×m] such that the matrix

I(m) − 〈Z,W 〉

is not degenerate matrix. In particular, the kernel is defined for Z ∈ B
(2)
m,n, W ∈ X

(2)
m,n.

The kernel C(Z,W ) is a holomorphic function with respect to elements of the block matrix
Z and it is a antiholomorphic function with respect to elements of the block matrix W .

If f ∈ L1(B
(2)
m,n) on X

(2)
m,n one can introduce the following integral

C[f ](Z) =

∫

X
(2)
m,n

C(Z,W )f(W )dσ(W ), Z ∈ B(2)
m,n, W ∈ X(2)

m,n. (9)

Let us designate C[f ] as Cauchy integral with respect to f . The operator that transforms f
into C[f ] we designate as Cauchy transform.

Lemma 2. Cauchy transform commutes with the action of the unitary group ψu, namely,

C[f ◦ ψu] = (C[f ]) ◦ ψu, f ∈ L1(σ).
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Proof. Let us show that the following equality is true

C(Z,ψ−1
u W ) = C(ψuZ,W ). (10)

In fact, UU∗ = I(m), V V ∗ = I(mn) are unitary and block unitary matrices. Then we have

C(Z,ψ−1
u W ) =

1

det
(m+1)n

2 (I(m) −
〈

Z,ψ−1
u W

〉

)
=

1

det
(m+1)n

2 (I(m) − 〈Z,U−1WV −1〉)
=

=
1

det
(m+1)n

2 (I(mn) − Z∗ · U∗WV ∗)
=

1

det
(m+1)n

2 (V V ∗ − V V ∗Z · U∗WV ∗)
=

=
1

det
(m+1)n

2 (I(mn) − (UZV )∗W )
=

1

det
(m+1)n

2 (I(m) − 〈UZV,W 〉)
= C(ψuZ,W ).

Here we use the equality

det(I(m) − 〈Z,W 〉) = det(I(mn) − Z∗ ·W ),

which is true by virtue of Theorem 2.1.2 (see [2, p. 37]) for arbitrary Z = (Z1, ..., Zn) and
W = (W1, ...,Wn). Since the measure σ is invariant with respect to ψu then

C[f ◦ ψu] =

∫

X
(2)
m,n

C(Z,W )f(ψuW )dσ(W ) =

∫

X
(2)
m,n

C(Z,ψ−1
u W )f(W )dσ(W ) =

=

∫

X
(2)
m,n

C(ψuZ,W )f(W )dσ(W ) = (C[f ]) ◦ ψu.

2

Theorem 2. For each functionf ∈ H1(B
(2)
m,n) the following relation is true

f(Z) =

∫

X
(2)
m,n

f(W )C(Z,W )dσ(W ), Z ∈ B(2)
m,n, W ∈ X(2)

m,n. (11)

Proof. Let us assume that f ∈ H1(B
(2)
m,n) and Z ∈ B

(2)
m,n. Let us express a point ζ ∈ Cn[m×m]

as ζ = (′ζ, ζn), where ′ζ = (ζ1, ..., ζn−1). By the lemma we can assume without loss of generality
that Zn = 0, i.e. Z = (′Z, 0).

Let us introduce the following function

g(ζ) = C(Z, ζ)f(ζ), ζ ∈ B(2)
m,n.

Because Zn = 0 then the Cauchy–Szego kernel in B
(2)
m,n coincides with the Bergman kernel

B
(2)
m,n:

C(Z, ζ) = K(′Z,′ ζ).

Further, for any W ∈ X
(2)
m,n function g(′W, ζn) is the holomorphic function with respect to ζn

in the matrix circle 5
WnW

∗

n − ζnζ
∗

n > 0, (12)

and it is continuous function in the closure of the circle.
Therefore, it follows from [2, c. 91] that

g(′W, 0) =

∫

Sn

g(′W,Wn)dσ(Wn), (13)
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where Sn is the Shilov boundary of matrix disk (12) and dσ(Wn) is the invariant Haar measure

on Sn. Let us integrate relation (13) over B
(2)
m,n−1.

According to Fubini’s theorem, on the right-hand side we obtain

∫

X
(2)
m,n

gσ(W ) = C[f ](Z).

Because g(′W, 0) = K(Z,′W )f(′W, 0) then it follows from Theorem 1 that the integral on the
left-hand side of (13) is f(′Z, 0) = f(Z).
The theorem is proved. 2
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Ядра Бергмана и Коши-Сеге для матричного шара
второго типа

Гулмирза Х. Худайберганов

Уктам С. Рахмонов

С помощью голоморфности автоморфизмов матричного шара второго типа доказана справедли-

вость интегральных формул Бергмана и Коши–Сеге.

Ключевые слова: матричный шар, ядро Бергмана, ядро Коши-Сеге, автоморфизм матричного

шара.
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