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In this paper under some conditions on parameters of the q-state Potts model on a Cayley tree of order

k we prove existence of the periodic (non translation-invariant) Gibbs measures. Also we give a result

about the number of such measures.
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Introduction

The main problem for a given hamiltonian is the description of all corresponding limiting
Gibbs measures (see f.e. [1,3]). This problem was fully studied for the Ising model on the Cayley
tree. For example, in [4] an uncountable set of extremal Gibbs measures is constructed and in [5]
a necessity and sufficient condition of extremity of unordered phase for Ising model on a Cayley
tree is found.

The Potts model is a generalization of the Ising model. The Potts model is not studied
to the same extent as the Ising model. For example, in [6] a ferromagnetic Potts model with
three-states on a second-order Cayley tree was considered and it was proved that there exists
a critical temperature Tc > 0 such that for T < Tc, there are three translation-invariant and
uncountably many not translation-invariant Gibbs measures. The results of [6] on the Potts
model with finitely many states were generalized to a Cayley tree of an arbitrary (finite) order
in [7].

It was proved [8] that the translation-invariant Gibbs measure of the antiferromagnetic Potts
model with an external field is unique. In [9] the Potts model with a countable number of states
and nonzero external field on a Cayley tree was considered. It is proved that this model has a
unique translation-invariant Gibbs measure.

Other properties of the Potts model on a Cayley tree were studied in [10, p. 105–121]. In [11]
it were showed that the Potts model (with an external field α ∈ R) admits only periodic Gibbs
measure of period two; it was considered the case α = 0, and on the base of the same invariants,
is was proved that all periodic Gibbs measures are neccesarily translation-invariant; it were
found conditions under which the Potts model with a nonzero external field admits periodic
(non translation-invariant) Gibbs measures. In [12] it was fully describe the set of translation-
invariant Gibbs measures for the ferromagnetic q-state Potts model and it is proved that the
number of translation-invariant measures can be up to 2q − 1. In [13] for q-state Potts model
(with an external field α ∈ R) on the Cayley tree of order k = 3 and k = 4 under some conditions
on parameters it was proved existence of periodic (non translation-invariant) Gibbs measures of
period two. In [14] a ferromagnetic Potts model (with zero external field α ∈ R) on a Cayley
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tree of order k > 3 was studied and it was proved that there exists a critical temperature Tc such
that for T < Tc, there exist at least two of periodic (non translation-invariant) Gibbs measures.

In this paper under some conditions on parameters of the q-state Potts model on a Cayley
tree of order k > 2 we shall prove existence of the periodic (non translation-invariant) Gibbs
measures, and we give a lower bound for number of these measures.

1. Definitions and known facts

The Cayley tree ℑk of order k > 1 is an infinite tree, i.e., a graph without cycles, such that
exactly k + 1 edges originate from each vertex. Let ℑk = (V,L, i), where V is the set of vertices
ℑk, L the set of edges and i is the incidence function setting each edge l ∈ L into correspondence
with its endpoints x, y ∈ V . If i(l) = {x, y}, then the vertices x and y are called the nearest
neighbors, denoted by l = 〈x, y〉. The distance d(x, y), x, y ∈ V on the Cayley tree is the number
of edges of the shortest path from x to y:

d(x, y) = min {d|∃x = x0, x1, . . . , xd−1, xd = y ∈ V such that 〈x0, x1〉, . . . , 〈xd−1, xd〉}.

For a fixed x0 ∈ V we set Wn = {x ∈ V | d(x, x0) = n},

Vn = {x ∈ V | d(x, x0) ≤ n}, Ln = {l = 〈x, y〉 ∈ L | x, y ∈ Vn}. (1)

It is known that there exists a one-to-one correspondence between the set of vertices V of the
Cayley tree ℑk and the group Gk that is the free product of k + 1 cyclic groups of second order
with the generators a1, a2, . . . , ak+1.

We consider the model in which the spin variables take values in the set Φ = {1, 2, . . . , q},
q > 2 and are located at the tree vertices. A configuration σ on V is then defined as a function
x ∈ V → σ(x) ∈ Φ; the set of all configurations coincides with Ω = ΦV .

The Hamiltonian of the Potts model is defined as

H(σ) = −J
∑

〈x,y〉∈L

δσ(x)σ(y), (2)

where J ∈ R, 〈x, y〉 are nearest neighbors and δij is the Kronecker symbol: δij =

{
0, if i 6= j
1, if i = j.

Define a finite-dimensional distribution of a probability measure µ in the volume Vn as

µn(σn) = Z−1
n exp

{
−βHn(σn) +

∑

x∈Wn

hσ(x),x

}
, (3)

where β = 1/T , T > 0 is temperature, Z−1
n is the normalizing factor, {hx = (h1,x, . . . , hq,x) ∈

Rq, x ∈ V } is a collection of vectors and

Hn(σn) = −J
∑

〈x,y〉∈Ln

δσ(x)σ(y)

is the restriction of Hamiltonian on Vn.
We say that the probability distributions (3) are compatible if for all n > 1 and σn−1 ∈ ΦVn−1 :

∑

ωn∈ΦWn

µn(σn−1 ∨ ωn) = µn−1(σn−1). (4)

– 298 –



Rustamjon M.Khakimov New Periodic Gibbs Measures for q-state Potts Model on a Cayley Tree

Here σn−1 ∨ ωn is the concatenation of the configurations. In this case, there exists a unique
measure µ on ΦV such that, for all n and σn ∈ ΦVn

µ({σ|Vn
= σn}) = µn(σn).

Such a measure is called a splitting Gibbs measure corresponding to the Hamiltonian (2) and
vector-valued function hx, x ∈ V .

The following statement describes conditions on hx, guaranteeing compatibility of µn(σn).

Theorem 1 ( [8]). The probability distributions µn(σn), n = 1, 2, . . . in (3) are compatible for
Potts model iff, for any x ∈ V the following equation holds:

hx =
∑

y∈S(x)

F (hy, θ), (5)

where F : h = (h1, . . . , hq−1) ∈ Rq−1 → F (h, θ) = (F1, . . . , Fq−1) ∈ Rq−1 is defined as

Fi = ln





(θ − 1)ehi +
q−1∑
j=1

ehj + 1

θ +
q−1∑
j=1

ehj





and θ = exp(Jβ), S(x) is the set of direct successors of x and hx = (h1,x, . . . , hq−1,x) with

hi,x = h̃i,x − h̃q,x, i = 1, . . . , q − 1.

Let Ĝk be a subgroup of the group Gk.

Definition 1. The set of vectors h = {hx, x ∈ Gk} is said to be Ĝk-periodic if hyx = hx for all

x ∈ Gk, y ∈ Ĝk.

The Gk-periodic sets are said to be translation-invariant.

Definition 2. The measure µ is said to be Ĝk-periodic if it corresponds to the Ĝk-periodic set
of vectors h.

The following theorem characterizes periodic Gibbs measures.

Theorem 2 ( [11]). Let K be a normal divisor of finite index in the group Gk. Then for the

Potts model, all K-periodic Gibbs measures are either G
(2)
k -periodic or translation-invariant,

where G
(2)
k = {x ∈ Gk : the length of x is even}.

2. Periodic Gibbs measures

We consider case q > 3, i.e. σ : V → Φ = {1, 2, 3, ..., q}. By Theorem 2, we have only

G
(2)
k -periodic Gibbs measures corresponding to the sets of vectors h = {hx ∈ Rq−1 : x ∈ Gk} of

the form

hx =

{
h, if |x| is even,
l, if |x| is odd.
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Here h = (h1, h2, ..., hq−1), l = (l1, l2, ..., lq−1). From equality (5), we then obtain






hi = k ln

(θ − 1) exp(li) +
q−1∑
j=1

exp(lj) + 1

q−1∑
j=1

exp(lj) + θ

,

li = k ln

(θ − 1) exp(hi) +
q−1∑
j=1

exp(hj) + 1

q−1∑
j=1

exp(hj) + θ

,

i = 1, q − 1.

We introduce the notations exp(hi) = xi, exp(li) = yi. We can then rewrite the last system
of equations for i = 1, q − 1 as






xi =





(θ − 1)yi +
q−1∑
j=1

yj + 1

q−1∑
j=1

yj + θ





k

,

yi =





(θ − 1)xi +
q−1∑
j=1

xj + 1

q−1∑
j=1

xj + θ





k

.

(6)

Remark 1. 1. In the case q = 2, the Potts model coincides with the Ising model which was
studied in [8].

2. In the case k = 2, q = 3 and J < 0, it was proved that all G
(2)
k -periodic Gibbs measures

on base of invariant I = {(x1, x2, y1, y2) ∈ R4 : x1 = x2, y1 = y2} are translation-invariant
(see [11]).

3. In the case k > 1, q = 3 and J > 0, it was proved that all G
(2)
k -periodic Gibbs measures

are translation-invariant (see [11]).

For q > 3, 0 < θ < 1, k > 3, we define

Im = {z = (u, v) ∈ Rq−1 × Rq−1 : xi = x, yi = y, i = 1,m; xi = yi = 1, i = m + 1, q − 1},

i.e. u = (x, x, ..., x︸ ︷︷ ︸
m

, 1, 1, ..., 1), v = (y, y, ..., y︸ ︷︷ ︸
m

, 1, 1, ..., 1) and

I
′

m = {z = (u, v) ∈ Rq−1 × Rq−1 : xi = x, i = 1,m; xi = 1, i = m + 1, q − 1 − m;

xi = y, i = q − m, q − 1; yi = y, i = 1,m; yi = 1, i = m + 1, q − 1 − m; yi = x, i = q − m, q − 1},

i.e. u = (x, x, ..., x︸ ︷︷ ︸
m

, 1, 1, ..., 1, y, y, ..., y︸ ︷︷ ︸
m

), v = (y, y, ..., y︸ ︷︷ ︸
m

, 1, 1, ..., 1, x, x, ..., x︸ ︷︷ ︸
m

). Here 2m 6 q − 1.
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We consider the map W : Rq−1 × Rq−1 → Rq−1 × Rq−1, defined as






x
′

i =





(θ − 1)yi +
q−1∑
j=1

yj + 1

q−1∑
j=1

yj + θ





k

,

y
′

i =





(θ − 1)xi +
q−1∑
j=1

xj + 1

q−1∑
j=1

xj + θ





k

.

We note that the system (6) is the equation z = W (z). Solving the system (6) is therefore
equivalent to finding fixed points of the map z

′

= W (z), where z = (u, v), z
′

= (u
′

, v
′

).

Lemma 1. Sets Im and I
′

m are invariant subsets relatively to the map W .

The proof is similar to that of Lemma 2 in [11].
The case Im. In the case we rewrite the system (6) as






x =

(
θy + (m − 1)y + (q − m)

θ + my + (q − m − 1)

)k

,

y =

(
θx + (m − 1)x + (q − m)

θ + mx + (q − m − 1)

)k
(7)

or {
x = fk(y),
y = fk(x),

where f(x) =
θx + (m − 1)x + (q − m)

θ + mx + (q − m − 1)
, (8)

and fk(x) is k-power of function f(x).
Remark 2. Let π ∈ Sq−1 be a permutation. We shall define the action of π to the vector
x = (x1, x2, ..., xq−1) as π(x) = (xπ(1), xπ(2), ..., xπ(q−1)). Then π(A) = {(πx, πy) : (x, y) ∈ A},
where A = Im or I

′

m is also invariant subset relatively to the map W but in cases π(Im) and
π(I

′

m) corresponding system of equations coincides with (7) and (9) (see below), respectively.
Therefore without loss of generality, we can consider sets Im и I

′

m.

Proposition 1. Let k > 3, 3 6 q < k + 1, θcr =
k − q + 1

k + 1
< 1. Then system of equations (6)

on Im has at least three solutions for 0 < θ < θcr, it has at least one solution for θ = θcr and it
has only one solution for θ > θcr.

Proof. By (8) we obtain
x = g(x) = fk(fk(x)).

We have

f ′(x) =
(θ − 1)(θ + q − 1)

(θ + my + q − m − 1)2
;

g′(x) = k2fk−1(fk(x))f ′(fk(x))fk−1(x)f ′(x).

Consequently, for 0 < θ < 1 the function f(x) decreases monotonically and the equation f(x) = x

has a unique solution x = 1 such that f ′(1) =
θ − 1

θ + q − 1
. We note that g(x) is increasing

and x = 1 is a solution to g(x) = x. If g′(1) = k2(f ′(1))2 =

(
k

θ − 1

θ + q − 1

)2

> 1 then this
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solution is not unique, because in this case for x > 1 the graph of the function g lies above the
bisector and the function g is bounded. Thus a critical value for θ can be found by the equation(

k
θ − 1

θ + q − 1

)2

= 1 which for θ < 1 gives θcr =
k − q + 1

k + 1
. Hence it follows that for 0 < θ < θcr

the equation g(x) = x has at least three solutions x∗
0 < x∗

1 = 1 < x∗
2, i.e. the equation g(x) = x

has at least two roots, which are distinct from roots of the equation f(x) = x. For θ = θcr the
graph of the function g tangents to the bisector in x = 1. This means that in this condition the
equation g(x) = x has at least one solution. Besides it is clear that for θ > θcr the equation
g(x) = x has a unique solution x∗

1 = 1, which it is solution to equation f(x) = x. 2

The case I
′

m. We consider the set I
′

m. We rewrite the system of equations (6) on this set as






x =

(
(θ − 1)y + my + (q − 2m − 1) + mx + 1

θ + mx + my + (q − 2m − 1)

)k

,

y =

(
(θ − 1)x + mx + (q − 2m − 1) + my + 1

θ + mx + my + (q − 2m − 1)

)k

,

(9)

where exp(hi) = xi, exp(li) = yi.
Remark 3. 1. For m = 0 we obtain u = (1, 1, ..., 1), v = (1, 1, ..., 1), which corresponds to the
translation-invariant Gibbs measure. Thus we consider the case m > 1.

2. In the case k = 2, q = 3, m = 1 on I
′

m it was proved that all G
(2)
k -periodic Gibbs measures

are translation-invariant (see [11]).
In the last system substituting k

√
x = z, k

√
y = t, we obtain






z =
(θ + m − 1)tk + mzk + q − 2m

θ + mzk + mtk + q − 2m − 1
,

t =
(θ + m − 1)zk + mtk + q − 2m

θ + mzk + mtk + q − 2m − 1
.

(10)

From the first equation of (10) we find tk, t:

tk =
mzk+1 − mzk + (θ + q − 2m − 1)z − q + 2m

θ + m − 1 − mz
;

t =

(
mzk+1 − mzk + (θ + q − 2m − 1)z − q + 2m

θ + m − 1 − mz

) 1

k

and substitute to the second equation of (10). Then we obtain

f(z) = [(θ + 2m − 1)zk − mzk+1 + mz + q − 2m]k(θ + m − 1 − mz)−
−(mzk + q − m − 1 + θ)k[mzk+1 − mzk + (θ + q − 2m − 1)z − q + 2m] = 0.

(11).

We consider the function f(z). We note that f(0) = (q−2m)k(θ+m−1)+(q−2m)(θ+q−m−1) > 0
for 2m < q. Besides f(1) = 0 and f(z) → −∞ for z → +∞. Consequently it is clear that if
f ′(1) > 0, then the equation (11) has at least three solutions. Therefore we consider

f ′(1) = (k2 − 1)s2 − 2qs − q2 = (k2 − 1)

(
s − q

k − 1

)(
s +

q

k + 1

)
> 0,

where s = θ− 1 < 0. Consequently, if s+
q

k + 1
< 0, i.e. 0 < θ < 1− q

k + 1
= θcr then f ′(1) > 0.

Thus we proved the following
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Proposition 2. Let k > 3, 3 6 q < k + 1, θcr =
k − q + 1

k + 1
< 1. Then the system of equations

(6) on I
′

m:
1) for 0 < θ < θcr has at least three solutions;
2) for θ = θcr has at least one solution;
3) for θ > θcr has only one solution.

Remark 4. It is clear that in Propositions 1 and 2 one of measures corresponds to the so-

lution x∗
1 = 1 which is translation-invariant, the remainning measures are G

(2)
k -periodic (non-

translation-invariant), and in case θ > θcr the measure corresponding to the unique solution
x∗

1 = 1.
Similarly as in [12, p. 6], it is easy to show that for 0 < θ < θcr on each Im and I

′

m, where

m = 1, 2, ..., q, the number of G
(2)
k -periodic (non-translation-invariant) Gibbs measures is not

less than 2 ·
(

q
m

)
and 2 ·

(
q
m

)
·
(
q−m

m

)
, respectively. Consequently, the number on

⋃q
m=1 Im and⋃q

m=1 I
′

m is not less than

2 ·
q∑

m=1

(
q

m

)
= 2q+1 − 2, and 2 ·

[q/2]∑

m=1

(
q

m

)
·
(

q − m

m

)
,

respectively.
Thus we have the

Theorem 3. For k > 3, 3 6 q < k + 1 and 0 < θ < θcr for the Potts model exist at least

2 ·



2q − 1 +

[q/2]∑

m=1

(
q

m

)
·
(

q − m

m

)



G
(2)
k -periodic (non translation-invariant) Gibbs measures.

Remark 5. In [12] the number and the description of all translation-invariant Gibbs measures
for the Potts model were given.
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Новые периодические меры Гиббса для модели Поттса
с q-состояниями на дереве Кэли

Рустамжон М. Хакимов

В данной статье изучается модель Поттса с q-состояниями на дереве Кэли порядка k и показа-

но существование периодических (не трансляционно-инвариантных) мер Гиббса при некоторых

условиях на параметры этой модели. Кроме того, указана нижняя граница количества суще-

ствующих периодических мер Гиббса.

Ключевые слова: дерево Кэли, конфигурация, модель Поттса, мера Гиббса, периодические меры,

трансляционно-инвариантные меры.

– 304 –


