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Abstract. The main result of the present paper is the construction of fundamental solutions for a class

of multidimensional elliptic equations with several singular coefficients. These fundamental solutions are
directly connected with multiple hypergeometric functions and the decomposition formula is required for
their investigation which would express the multivariable hypergeometric function in terms of products
of several simpler hypergeometric functions involving fewer variables. In this paper, such a formula is
proved instead of a previously existing recurrence formula.The order of singularity and other properties
of the fundamental solutions that are necessary for solving boundary value problems for degenerate
second-order elliptic equations are determined.
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Introduction

It is known that fundamental solutions have an essential role in studying partial differential
equations. Formulation and solving of many local and non-local boundary value problems are
based on these solutions. Moreover, fundamental solutions appear as potentials, for instance, as
simple-layer and double-layer potentials in the theory of potentials.

The explicit form of fundamental solutions gives a possibility to study the considered equa-
tion in detail. For example, in the works of Barros-Neto and Gelfand [1-3] fundamental solutions
for Tricomi operator, relative to an arbitrary point in the plane were explicitly calculated. In
this direction we would like to note the works [4, 5], where three-dimensional fundamental solu-
tions for elliptic equations were found. In the works [6-8], fundamental solutions for a class of
multidimensional degenerate elliptic equations with spectral parameter were constructed. The
found solutions can be applied to solving some boundary value problems [9-15]. We also mention
papers [16,17] which are devoted to the study of partial differential equations with the singular
coefficients and their solutions.

Let us consider the generalized Helmholtz equation with a several singular coefficients

m n
m 20
L(a)(u) = E Ug;z; + E :?julg =0 (1)
i=1 j=1
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in the domain R := {(z1,...,Zm) : 1 > 0,...,2, > 0}, where m is a dimension of the Euch-
lidean space, n is a number of the singular coefficients of equation (1); m > 2,0 <n < m; «;
are real constants and 0 < 2¢a; <1, j=1,...,n; (a) = (a1,...,0p).

Various modifications of the equation (1) in the two- and three-dimensional cases were con-
sidered in many papers [4,18-27].

Fundamental solutions for elliptic equations with singular coefficients are directly connected
with hypergeometric functions. Therefore, basic properties such as decomposition formulas,
integral representations, formulas of analytical continuation, formulas of differentiation for hy-
pergeometric functions are necessary for studying fundamental solutions.

Since the aforementioned properties of hypergeometric functions of Gauss, Appell, Kummer
were known [28], results on investigations of elliptic equations with one or two singular coeffi-
cients were successful. In the paper [4] when finding and studying the fundamental solutions of
equation (1) for m = 3, an important role was played the decomposition formula of Hasanov and
Srivastava [29,30], however, the recurrence of this formula did not allow further advancement in
the direction of increasing the number of singular coefficients.

In the present paper we construct all fundamental solutions for equation (1) in an explicit form
and we prove a new formula for the expansion of several Lauricella hypergeometric functions by
simple Gauss, with which it is possible to reveal that the found hypergeometric functions have
a singularity of order 1/r™~2 at r — 0. In the present paper, we assume that m > 2 and
0<n<m.

The plan of this paper is as follows. In Section 1 we briefly give some preliminary information,
which will be used later. We transform the recurrence decomposition formula of Hasanov and
Srivastava [29] to the form convenient for further research. Also some constructive formulas for
the operator L are given. In Section 2 we describe the method of finding fundamental solutions
for the considered equation and in Section 3 we show what order of singularity the found solutions
will have.

1. Preliminaries

Below we give definition of Pochhammer symbol and some formulas for Gauss hypergeomet-
ric functions of one and two variables, Lauricella hypergeometric functions of three and more
variables, which will be used in the next section.

A symbol (x), denotes the general Pochhammer symbol or the shified factorial, since (1), = 1!
(le NU{0}; N:={1,2,3,...}), which is defined (for x,v € C), in terms of the familiar Gamma
function, by

(k) = F(IiJrl/):{ 1 (v =0; k € C\{0}),
v k(k+1)...(k+1—-1) (w=1l€eN;re0),

it being understood conventionally that (0), := 1 and assumed tacitly that the I-quotient exists.
A function

F[ o0 x} =3 @iy o

=0 k'(c)k

is known as the Gauss hypergeometric function and an equality

a,b; | T(c)l'(c—a—0b) . L ole—a—
F[ , 1]_F(c—a)r(c—b)’ £0,—1,-2,...,Re( b) > 0 (2)
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holds [31, Ch.I1,2.1(14)]. Moreover, the following autotransformer formula [31, Ch.IT,2.1(22)]

F[a"b; 4:(1—@—@[0—@”’; x} (3)

c; z—1

is valid.
The hypergeometric function of n variables has a form [28, Ch.VII] (see also [32, Ch.1,1.4(1)])

o0
F(n) a, bl, ey bn; T1,. .. T Z (a)m1+~~+mn (bl)ml ce (bn)mn ™ xmn’ (4)
A c Cn; my!...myl(er) (cn) ! "
1y++-9Cnj; Mo =0 1o e n\C1)mqy + -+ \Cn)m,

where |x1|+ -+ |z,] <1, n € N.

For a given multivariable function, it is useful to fund a decomposition formula which would
express the multivariable hypergeometric function in terms of products of several simpler hyper-
geometric functions involving fewer variables.

In the case of two variables for the function

i) < 3 e,
F. zy| = R ol T
{ cres Y Z: ileni(e); Y

was known expansion formula [33]

F2 |: a,bl,b2; ZL’7y:| 72 (a)k(bl)k(bQ)k k kF|: a—|—k b1 +l€ :L':| F|: a—|—k,b2+k; (5)

c1,C2; El(er)w(e2)k c1+ k; co + k;

Following the works [33,34] Hasanov and Srivastava [29] found following decomposition for-
mula for the Lauricella function of three variables

Ff) { a, by, by, bs; x,y,z} _ i (a?iﬂ-j+k(bl)j+k(b2)i+k(b3)i+j N
c1,C2,C3; 5o i3k (1) jan(c)ivr(cs)itj
w githyith it p a+j+k,l?1 +J+k 2| % (6)
c1+ 7+ k;
Y F G+Z+]+l’.€,bz+l+/€; | F a+2+]+k’?,b3‘+l+j; ;
cotitk; ¢z + 1+ 7;

and they proved that for all n € N\{1} is true the recurrence formula [29]

Ff‘n)|:a’ br, ... bn; 1, .. 7$n] _ i (@)mot-+mp (01 mot i, (02)ms - - - (bn) i, %
Cly .-y Cnj e mal. . mp () motetmy, (€2)ms - - - (Cn)m,
o gt me a+mo+ -+ my, by +mo+ -+ my; 21| x (7)
! 2 " 1ty My

><F,(n—l) a+m2+"'+mn7b2+m2a-~~7bn+mn;x x
4 Cot Mo+ s A

Further study of the properties of the Lauricella function (4) showed that the formula (7) can
be reduced to a more convenient form.
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Lemma 1. The following formula holds true at n € N

p(m | @b bo; Ty, Ty| = i (@) () X
A Cl,...,Cn; ’ ym 0 m2,2!m2,3!...mivj!...mnm!
(2<i<i<n) (2<i<i<n) 8)
% ﬁ M2 \Yk) M3 (k,n) Mz(k n)F |: aJrNg(k,n),kang(k,n); .L“k:|
s (k) (i) e + Ma(k,n); ’
where .
+1 n
Zmlk—’_ Z Mk+1,45 Nl(kan)zzzmi,jv
i=k+1 i=l j=i

Proof. We carry out the proof by the method mathematical induction.

The equality (8) in the case n = 1 is obvious.

Let n = 2. Since M3(1,2) = M3(2,2) = Na(1,2) = N3(2,2) = mgz2, we obtain the for-
mula (5).

For the sake of interest, we will check the formula (8) in yet another value of n.

Let n = 3. In this case

M>(1,3) = moo+mags, M(2,3) =maa+ms3, Ms(3,3) =ma3+msgs,
N3(1,3) =maoga +ma3, N2(2,3) = No(3,3) = ma + ma3 + ms3.

For brevity, making the substitutions mso o =14, ma g3 := j, ms3 := k, we obtain the formula (6).

So the formula (8) works for n =1, n =2 and n = 3.

Now we assume that for n = s equality (8) holds; that is, that

00
(s) a,by, ..., b; _ (a)Nz(S,S)
Fy T Xy, Ts | = ' ' ' P X
Cly...,Cs; =0 Mm22:M23: ... M4 j:...Mgs:
(2<i2i<s) (2<i<H<s) (9)

b
« H (bk) Mo (1, 5) 242(k s)F|: a+ No(k,s), b, + Ma(k, s); l'k:|

k1 (Ck)M2(k s) ek + Ma(k, s);

Let n = s + 1. We prove that following formula

o0
F(s+1) a, b17 - ,b3+1; - (a)N2(8+1,3+1)
A U, Tyl | = ' ' | R
Cly.++,Cs41; =g 2,2:M2,35 - M ge e Mg ] 541
i= o
(2<i<i<etD) (2<i<iss+) (10)

f[ o) atahs 1) Mo, SH)F[ a+ No(k,s +1), by + Ma(k, s+ 1); x]
Ty, k

k) Mo (k,s+1) ck + Ma(k,s +1);

is valid.
We write the Hasanov-Srivastava’s formula (7) in the form

s+1 a,b17...,b3+1;
Ff(l )|: Clyen ) Copts xla"'vxs+1:|_
_ i (a)Ng(l,SJrl)(bl)N[2(1,8+1)(b2)m2,2 cee (b8+1>m2,s+1 %

2224120 ma!.. o s111(e1)ar,(1,541) (€2)ma s - (Cs1)ma oy

X

Mz(l 9+1) m22 Mt g CL+N2(]_,S+1),b1+M2(1,S+1); 71| x
a s+1 01+M2(1,S+1); !

(s) [ a+ No(l,s+1),ba+maoa, ..., 011 + Mo gy1;
x Fy

T2, ... ax5+1:| .
C2+M22,...,Cs41 + M2 541;

— 51 —



Tuhtasin G. Ergashev

Fundamental Solutions for a Class of Multidimensional Elliptic Equations. ..

By virtue of the formula (9) we have

(s) |: a+ Nz(l, s+ 1), by + ma 2,
FA

ey bsp1 Mo gpa;
C2 + M2 2,

L2y vy Lol | =
ceey Corl T M2 5115

oo

P m373!m374! [N mi,j'
(3<i<i<at1)
o No(1,s+ 1)+ N3(k,s + 1), b +mo i + Ms(k, s+ 1); -
ek +ma + Ms(k,s+1); g
Substituting from (12) into (11) we obtain

Z (@+ No(1, 8+ 1)) Ny orrsrn) Tp (B 4 12,0 My (ks 1) Makst1)

M1 sl 2 (Ch 4 T, k) M (k,s41)
(3<i<j<s+1)

(12)

F$™ g, by,

ey Ds 15 Cy e Co 1T, e Tyl =
[ee) s+1
o Z (a)Ng(l,s+1)+N3(s+1,s+1) (bk)mQ,k-i-Mg(k,S-i-l) me,k+M3(k75+1) «
=0 m272!m273! . mi,j! . ms+175+1! k1 (Ck)mQ’k+M3(k;’S+1)
i,j= . =
(2<i<)<s41) (2<i<i<s+1)

< F |: G+N2(17S+ 1) +N3(k,8+ 1)?bk +m2,k +M3<ka8+ 1)1

xr .
Ck+m27k+M3(k,3+l); k

Further, by virtue of the following obvious equalities

Ny(1,s+1) 4 N3(k,s+1) = No(k,s+1), 1<k <s+1, s€ N,

ma g + Ms(k,s +1) = Ma(k,s+1), 1<k<s+1, seN,
we finally find the equality (10). The lemma is proved.

O
2. Fundamental solutions
Consider equation (1) in R%". Let x (z1,...,2Zm) be any point and £ := (&1,...,&,) be
any fixed point of R7F. We search for a solution of (1) as follows:
u(z, &) = P(rjw(o), (13)
where
m
U:(Olv -7Un)7 Qg = a1 + '+Oén_1+5,
P(r)= ()"t =) (e - &)
i=1
2 2 ™ 2 7‘2 — 7"]2€
e = (on +&)° + ‘_12#(%‘ —&)°, o= —a k=1,2,...,n.

We calculate all necessary derivatives and substitute them into equation (1)

n n n
ZAkwakUk + Z Z Bk,lwa'k,al +
k=1

n
E Crwe, + Dw =0,
k=1l=k+1 k=1
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where

UV doy, 0o,
Ak:PZ( ‘“) : 2P28’“ Lok#L k=1,...,n
X ! 1:1 Xy

i 820k i 8P 8079 (7] adk
Cp,=P 2 + 2P -
' ; Ti ! 1:1 Z 1 Ti 85'33

" 9°P a; OP
D = — + 2P =2 .
Lo O + Z T, 8xj

i =1

4P(r) x,
A = — 2 g—kak(l—ak), (15)
By, = 4P§T) (Sk + &) ogor, k#1l, 1=1,...,n, (16)
r kT
4P(r & 3
Cp=— Tg ) —sz:l ﬁ i+ i[Qak — Qoo ¢, (17)
j=
D= 40@7]:(7”) Qaj. (18)
r — l‘j
Jj=1

Substituting equalities (15)—(18) into (14) we obtain the following system of hypergeometric
equations of Lauricella [28], which has 2" linearly-independent solutions. Considering those
solutions, from (13) we obtain 2" fundamental solutions of equation (1):

n a/7b1a"'abn;
1{Fg>{ L 0], (19)
LR g (3]
1_01F(n) a+1—ci,b1+1—c1,by,...,bn;
(x1€1> A |: 2—01,62,..-,Cn; 7]
Ol (20)
1’C’F(") a+1—cu,by,....,0,_1,b, +1—cp;
(xnfn) A |: Clyene Cno1,2 — Cns al,
2—c1 —co,b1 +1—c1,b5+1—ca,b3,...,by;
1—c, 1-cy po(n) a—+ 1 2,01 1,02 2,03, .., O3
(2161) ™ (2282) A [ 91,2~ CoiCan . ol
e e () |G+ 2—c1—cp, b1 +1—ci,b2, .., 001,0 + 1 —cp;
(xlgl)l 1($n£n)1 nF,g)|: ! 2—16 c ! C2 2—61’ ’
CZ 1,625---5,Cn—-1, ny (21)

N 2 ey —ca,br,by+1—cobs+1—c3,ba,. .. by

(262)1=2 (255) 1 C3F( yla+ c2 — C3,01,02 + C2,03 + €3, 04 o,
C1,2 —C9,2 —C3,C4y-..,Cn;

($n71€n71)1_07l71 F(n) a+2_Cn71_cnab17"'7bn72abn71+ ]-_Cnflvbn"_]- —Cn; o

(Infn)cn’71 A clu~~-7cn7272_cn7172_cn§ ’
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_ _ n +n—c—-—cp,b1+1—c1,....b, +1—cp;
1 l—ecy ... nnl CnF() a ’ ) 5 ;
{wen (a) o FY , o |,
where |
n!
=ag, bi=a;, c;=2a;, 1<i<n; Ch=——"—— 0<k<n
a = dp a;, ¢ « i<n AT n

It is easy to see that in (19) there is one function, in (20) there are C} = n functions, in (21)
there are C2 = n(n — 1)/2 functions and so on, and therefore

1+Co+C2+ -+ O +1=2"

Taking into account the symmetry property of the Lauricella function FXL) with respect to
the parameters by,...,b,,c1,...,c,, we can reduced the quantity of the fundamental solutions
that are necessary in the study of boundary value problems: from each of the systems (19), (20),
(21) and so on we take only one fundamental solution. Consequently, all n + 1 (non-symmetric)
fundamental solutions of equation (1) can be written in the form which is a convenient for further
investigation:

_ 72&0F(n) d07 A1y ...y Opj 929
qO(xag) YoT A l: 20(1’”"20[’”; i, ( )
b ag, 1 —a 1— oo, «
_ 120 72akF(n) kyl — Q1,00 L — Ok, 41,0, 0p; k=1 2
+¢) V’C_H(”‘"&) A {22041,...,22%2@,@ by 2am; U}’ o (23)
+
where "
dk:E""k_1_a1_"'_ak+ak+1+"'+anv k:]-vnv
~ n k
< —m 1 (Gk) T () ra-ay)
:22ak m J k:o .
T /2 H F(Zozi)H T2 2a,)’ "
i=k+1 j=1 J

3. Singularity properties of fundamental solutions

Let us show that the fundamental solutions (22) and (23) have a singularity at r = 0.
We choose a solution go(x,&) and we use the expansion for the hypergeometric function of
Lauricella (8). As a result, a solution defined by (22) can be written as follows

—2a0 - (dO)Ng(n,n)
qo(,€) = Yor > — , X
mi.;=0 ™m2.2:1M32 3: . mi’j. - My n-
(2€i<i<n) (2<i<y<n)

(24)

H (k) Mz (hn) <1 Tk)MZ(k n)F[ ao + No(k,n), ap + Ma(k,n); i

1—--—=1.
(20) M (k) r2 20 + Ms(k,n); 72

By virtue of formula (3) we rewrite (24) as

N

—Q(lk

qo(,

fo r? rf,...,ri),

where 5
2 2 2\ _ (aO)Nz(n,n)
fo(r,rl,...,rn)— ' ' ' X
e =0 M2 2:1MM2. 3+ = My 52+ = My n-
(2<i<i<n) (2<i<i<n)
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ﬁ (k) Mz (bn) <7“2 B )MZ(k’n)F[2ak—o~zo+M2(k7n)—Ng(km),ak—kMg(k,n); l—ﬁ
it (200) M (k) 20, + My (k,n); r2 ]
Below we show that fo (r?,71,...,72) will be constant at r — 0.

For this aim we use an equality (2) and following inequality

k
No(k,n) — Ma(k,n) : Z me mik | 20, 1<k<n<m.

Then we get

n

. 1 F(Qak)f‘(&o—ak)
lim o2 rd) = — I | .
=0 fo (i ) F”(ozo)k:1 I (o)

Expressions (24) and (25) give us the possibility to conclude that the solution go(z, £) reduces

(25)

to infinity of the order r2~™ at r — 0. Similarly it is possible to be convinced that solutions
qe(7;€), k=1,2,...,n also reduce to infinity of the order r>~™ when r — 0.
It can be directly checked that constructed functions (22) and (23) possess following properties
20; 090 (2, §) .
(xj ]T =0, qn(xa€)|mj:0:07 1<y<n,
J ;=0
a; 0 ; ,
00Ol =0 1<k (VOO o kiigj<n 1gk<a-tL
’ z] ij:O
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dDyH/ITaMeHTaJIbHbIE PellleHns MHOTOMEPHOTO JIJTUNITUIECKOTO
YpaBHEHUS C HECKOJIbKNMU CUHTYJISIPHBIMA KO3 PUImeHTaMu

Tyxracun I'. Dpraren
NMucruryr maremarnkun AxajeMun Hayk Y30eKucTaHa
TarmkenT, Y36ekucran

Annoranusi. OCHOBHBIM pe3yJIbTATOM HACTOANIEH PabOTHI SIBJISIETCS MTOCTPOEHME (DYHIaAMEHTAIbHBIX
pelennit Ijisi OJTHOTO KJIACCa SJITUITUIECKUX YPABHEHUN C HECKOJIBKUMU CHHTYJISPHBIMUA KOI(MDUIIeH-
Tamu. [lockosibKy 9TH pelreHnss HAIPSMYIO CBSI3aHBI C TUIIEPreOMETPUYECKUMHU (DYHKIINSAMI MHOTUX IIe-
peMeHHBIX Jlaypudesuta, TO IS M3yU€HUsI CBOMCTB HaileHHBIX (DYyHIAMEHTAIbHBIX PEIIeHuil Tpebyercs
HaiiTu hopMyITy pa3/IOKeHMsI, KOTOpasl BbIpaxKaja Obl MHOTOMEPHYIO THIIEPreOMETPUIECKYI0 (DYHKITHIO
B BHJI€ CyMMBbI IIDOU3BE/IEHNN HECKOJILKUX O0JIee IIPOCTHIX TUIIEPreOMEeTPUIEeCKNX (PYHKIMI C MEHBIITUM
9HCIIOM II€peMeHHBIX. B 9Toit pabore Takas ¢opMmysa JoKa3aHa BMECTO paHee CyIIeCTBOBABIICH PEKYP-
PeHTHO (POPMYJIIBI U OIpeIeseH MOPSII0K 0COOeHHOCT DYHIAMEHTAIBHBIX DEITIeHNIA.

KuroueBrnle ciioBa: MHOIOMEDPHOE SJUIMITAYECKOE YPABHEHNE C HECKOJIbKUMU CHHIYJISIDHBIME K03 du-
nreHTaMu, pyHJaMeHTaJIbHbIe perteHust, GopMyJIa Pa3ioKeHNUsl.
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