Journal of Siberian Federal University. Mathematics & Physics 2020, 13(1), 26-36

DOI: 10.17516/1997-1397-2020-13-1-26-36
VIIK 532.5.013.4

On the Asymptotic Behavior of the Conjugate Problem
Describing a Creeping Axisymmetric Thermocapillary
Motion

Victor K. Andreev*

Evgeniy P. Magdenko!
Institute of Computational Modelling SB RAS
Krasnoyarsk, Russian Federation

Siberian Federal University
Krasnoyarsk, Russian Federation

Received 04.03.2019, received in revised form 10.11.2019, accepted 08.12.2019

Abstract. In this paper the conditions for the law of temperature behavior on a solid cylinder wall
describes, under which the solution of a linear conjugate inverse initial-boundary value problem describing
a two-layer axisymmetric creeping motion of viscous heat-conducting fluids tends to zero exponentially
with increases of time.
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1. Introduction and preliminaries

In work [1], the linear conjugate inverse initial boundary value problem describing a two-
layer creeping motion of viscous heat-conducting fluids in a cylinder with a solid side surface
r = Ry = const and interface r = h(t), 0 < h(t) < R was considered

1
Ve = 1 ('Ulrr + ; 'Ulr> + fl(t), 0<r< Ry, (1)
1
Vgt = o <U2rr + - v2r) + fo(t), Ry <r < Ry, (2)
R1 RZ
v (R1,t) = va(Ry,t), / ruy (r, t)dr + / rug(r, t)dr =0, (3)
0 Ry
p1vir (R, t) — pover(Ri,t) = —2ea;1 (R, 1), (4)
[v1(0,1)| < 00, wa(Ra,t) =0, (5)
U1 (T7 O) = Ov UQ(T7 O) = 07 (6)
2%&1 (Rl, t)

p1rf1(t) = pafo(t) — R
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and the closed conjugate problem for functions a;(r,t) is described the following equations:

ajt = X (ajrr + i%‘r) ; (8)

aj(r,0) =aj(r), la1(0,t)] < oo, (9)
az(Ra,t) = a(t), (10)

a1(R1,t) = as(Ry,t), ka1, (Ry,t) = kaas,(Ra,t). (11)

The interface is described by the formula

h(t) = Rl + Mha(8)], ha(t) = —Ril /O ror (Ry, £)dt. (12)

1

Here M = @a'R3/p1x1 is Marangoni number, a! = max |a(t)|. Note that M — 0 since the

te[0,T]
creeping motion considers in this paper.

In paper [1] the priori estimates were obtained for the functions v;(r,t), a;(r,t), f;(t). In
this paper, it will be proved that under certain conditions which set for the temperature on the
cylinder surface, the solution of the problem (1)—(11) tends to zero exponentially with increasing
time.

2. The behavior of the solution under ¢t — oo

A priori estimates for the function a;(r,t) satisfying the problem (8)-(11) have form [1]

1
t) <2 O+ mg———7r At Ay ()M 9 13
o101 < 2| . o0+ (s e (A + om0 (1)
1 1/4
as(r )] < o) +2 [ ———— A Ayt , 14
ealr0)] <10l +2 (g ADM)) (1)

where

At) < <\/AT, +% /0 t G(T)ew):—?nt, (15)

Ry Ro t Ro
A(t) =k / r(al,)? dr + ko / r(as,)? dr + pacp, / / rga(r,t) drdt. (16)
0 Ry 0 JR,

Here Aq is value of function A(t) at ¢ = 0 and

1/2 ; .Ra 1/2
G(t) = max (pjip») (/R rgs dr) , (17)
o (r, 1) = as(r, 1) — m, (18)
2x2a(t) Ry o (r— Ry)?
92(T7t) = (R2 2_ R1)2 (2 - 7,) - (R2 — R1)2 . (19)
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If the function a(t) and its derivatives o/(t), ' (t), o/”'(t) are defined for all ¢ > 0, there is a
question about the behavior of the problems solutions (1)—(11) at ¢ — co. From the definition
of (19) the inequality is valid for the functions go(r, t)

Ry ) 2 Rs X - & ,
/R1 rgzdréw/m 4X2<2 T)Q(t)+
2042
+ (1= Ry)*(o/ (1)) rr < 2Ra(Ra — Ry) (o ()* + m

(for integrals over r, an upper estimate is given but not their exact value, which can be quite
cumbersome), so from (17) we have

2 2 1/2
| 323302 (1) ] 3
J

)} v [232(32 R0 + TR

G(t) < [max(

PiCp;

<2[ ( 1 ﬂl/?[ 4X2 ()| + V/Ra(Ra — Ryl } (20)
< 2 |max — o ( .
i\ Picp; (Ra — )3/2 2(Re — R

J

So from (15) we obtain

1 1/2 Ay
ntT
04+ [ogn ()] [ e e

2

Ra(Rs — ) /O to/(T)eanTH et (21)

From (16) and (19) the estimate is valid
Rl R2
A<k [ rlad e+ ke / r(ad,)?dr+
0

4
+p20p2R2 |:R XZRI/ ‘Ck |d7‘+ RQ—Rl / |Ol |d7':| . (22)

We suppose that the following integrals converge

/0 S ol dr, /0 S (e dr, (23)

then the expression for function modules |a(7)| and |o/(7)| have the form
a(T)] = en(t)e™", o/ (7)] = az(t)e™" (24)

with non-negative functions a;(t), aq(t), at that ai(t) — 0, ae(t) — 0 at ¢ — oo and the
following estimate is valid

/ ap(T)dr < o0, k=1,2. (25)
0

The convergence of integrals

[ talar [ i,
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follows from (24), (25), so from (14), (21), (22) we obtain exponential convergence to zero of the
function ag(r,t) Vr € [Ry, Ral:

- A1(OO)D2 e -
as(r,t)| < ay(t)e ”t—|—2( e M2, 26
ax(r, )] < e (1) e (26)

where in the quality D we have designed the value of the expression in curly brackets (21) at
t =00
For aq(r,t) from the estimate (13)we find

_ Aj(00)D? 174 _
ar(r,t)] <2 |az(t)e "t—|—< e /2
a1 (r,?)] l 1(t) Rhapac,

rel0,Rq] Rl

+ max |ad(r)]exp (-lelt), (27)

where & =~ 2.4048 is the first roots of equation Jy(§) = 0 [2]. So there is

Lemma 2.1. If the functions a(7), /(1) satisfy conditions (23)—(25), then for the solutions of
the initial-boundary value problems (8)—-(11) a;(r,t) the following estimates are valid: (26), (27),
from which it follows that these functions tend exponentially to zero with increasing time.

The priori estimates for functions v;(r,¢) and f;(¢) have form [1]

- 1/4
a1 < 2o, ) 1Pt I+ = (Zmoen) . e

1 S || \hQ\
< 1 2 2
()] < 201 (7R1+Z|hn|> + 20 Z( G tE )| mex e+
R3 — R?
i P 29
o 2 e (0] o, (P30 + (29
5 9 1/4
+ 4/ = max Hs(t)EA(t
Ry tefo,1] <P2M2 3B >>
|v1(r,t)| < Ry max |va(Ry,t)| + 2 max _|f1(t |Z (30)
1\ X ltE[O,T} 2 1 v, tEOT 1 g |J {n
] < t ). 1
£20] < PO+ 2 ma lax(paFr, ) (31)

Here p = p1/p2, &, are the roots of the Bessel function Jy(&,)=0, ¢, are the positive roots
of equation Jo(¢) = 0 [3], hL = BL/¢, and h2 = B2/(, (where B, B2 are coefficients of
Fourier series of functions —15R;r and 3Ry (r® —4R;172/7) when they are decomposed by function
Jo(Ry*¢,r) [1]). Further we have

1

O R =)

(’1“2 — (R1 +R2)T+R1R2)(7"2 +Cl7"+02) (32)

with constants
(Ri + R2)(2R? + 2R} + R1 Ry)

(R2 — R1)(3R2+ 2Ry) ’

Cy=-— Cy=—-RiCy (33)

and

E(t) < [\/W + /0 t Hl(T)eédere—%t, (34)
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= 2%2p2 CLO 2 " T 2 r)ar
B0) = 2 af(1) /R PR (35)
Ry 1/2 N
m = |\/2 ( / erdr) b )] (30
Qa(r,t) = ii; {a%(Rl, HPA(r) — v <P4W + iP4r> as(Ry, t)} . (37)
Hy(t) = po /RR2 )Vdr + = / / rQ3(r, t)drdt + —/ a3(Ry,t)dt (38)

Below, in order to determine the behavior of vy (1, t) and f;(t) for large ¢, we need the estimate
|ag(r,t)]. It was obtained in [1], that

1
R% k2p20p2

1/4
laze(r.1)] < o/ (1) +2 ( A2<t>As<t>) , (39)

where R R
1 2
As(t) = %/ ra?,(r,t)dr + %/ ras,(r,t)dr,
2 Jo 2w

2 Ry 1 2
A20 = A2(0) = %/ r <a(i)rr + ; a(l)r> d?"+
0

R / 272
P2Cp, 1, 2x20/(0) Ry o' (0)(r — Ry)
—= — — 22— — ) - ——————| d
+ 9 /R1 |:X2 (a’er + r a2r> + (R2 — R1)2 r (RQ _ R1)2 T

a(0)(r — R1)*
(R2 — Ry)? 7

R1 1 2
A3(t) = le%/ r (a?rr + ; a?r) dr +
0

+ ko /1:2 r {XQ (aSM + ia8r> - W} dr + pgcm/ / rgs(r, t)drdt,
g3(r,t) = ﬁ [2)(2& (t) (2 - E:) —a"(t)(r — Rl)Z] .

Therefore, for As(t) we obtain inequality (21) with replacement Ay by A1g, a(7) by /(1)
and o/(7) by (7). For the function A3(t) inequality form (22) is satisfied with the replacement

Rl R1 1 2
/ r (alr) dr by Xxi / r (a(ljw + - a(l),,> dr = dy,
0 0 r

Re Ra 1 o' (0)(r — Ry)21?
r(@g,) dr b r aom,JraOT) 1} dr=d
/R1 (2) y /Rl {X2(2 -2 (Ry — Ry)? 2

and «(7) by &/(7), /(1) by " (7).
In addition to (23)—(25) we assume the convergence of the integral

a§(r) = a5(r) -

/0 | (T)]e"dT < o0, (41)
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so that there is valid
|’ (t)] = as(t)e™ ™, / ag(T)dr < oo, az(t) =0 at t— oo. (42)
0

Taking into account the above, we find from (14) that
B Ag(o00) DI\
)] <as(t)e ™ +2( oo ——L nt/2 43
() < aa(t)e 42 (FHEDZL) e, (43)

where

R oo oo
Ag(o0) = kady + kady + 222 [4X2 / o/ (7)| + (Rs — R1)? / la”(f)l‘”] ’
R R1 0 0

12 4x2 o
D, =+/A ! 7 d 44
' 10 g (Pj%) [(Rz — Ry)3/2 /0 e r)lemdr+ )

+¢mw»4mémwvmmﬂ.

We turn to inequality for |ag(r,t)| [1]. We have

/ 1 1/4
|age: (7, )] < |’ (t)] 42 <R%k2p2cp2A4(t)A5(t)> ) (45)

where

Rl R2
Ay(t) = ngpl /0 ra%ttdr + ngpz /R rd%ttdr,
1

(46)
pree [T g 2 pacps [ o 2
Ago = 9 r(ayy (r))~dr + 5 r(agy (r)) dr.
0 Ry
The initial data are found from equations (9) and replacement of (18):
1 1 1
a(l)tt(r) =X1 |:(a(1)7‘r + ; a?r) . + ; <a?7"r + ; a?r) T:| )
, A7)
1 1 1 a”(0)(r — Ry)
0 _ 0 L0 2 (0 20 _
ag(r) = X2 [(%m T a2r> . t <a2rr o a2r> r] (Rs — R1)?
Further we have
Ry Ra
As(0) = by [ r(ad)dr o [ r(aotir +
Ry
(48)

s afn [ e (o= 2) - mo

Similarly to function A(t) the function A4(t) satisfies an estimate of type (15), and hence (21)
with the replacement Ag by Ao, a(t) by o”(7) and /(1) by «’"(7).
If we require convergence of the integral

/0 | (T)|e"dr < oo, (49)

| (t)] = au(t)e™ ™, /OOO ay(T)dr < 00, (50)
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we obtain an estimate of the function As(t) (we use the formula (22)

Rl R2
vmm<m/ m@mM+@/ r(@%)?dr +
0 R1

(51)

4 t t
+ pacp, Ro {XQ/ | (7)]dT + (R2 —Rl)/ a”’(7’)|d7’} ,
Ry = Ra Jo 0
where af,,(r) are defined by formulas (24). By virtue of (41), (49) |A5(t)| < As(co) and, similarly

to estimate (21), we obtain from (45)

1/4
AS(OO)Dg) / o t/2

asu(r,t)] < « te”t+2(
asa(r, )] < st -

(52)

1 1/2 4X2 e’}
Dy =vA —_— AL " g
2=V {mﬂax <chp] )] (Ry — Ry)3/? 0/|a (7)[e""dr+

+ /Rl — 1) / |a”’(7’)|emdr].
0

We proceed to elaboration the estimates of the functions v;(r,t), f;(t), when a(7), o/(7),
o/ (1) and o"(7) satisfy conditions (23)—(25), (41), (42). In this case everywhere we replace
a1(Ry,t), a1¢(R1,t) by az(Ry,t), ast(R1,t) according to the first equation (11). We begin with
the function vy(r,t), for which inequality (28) is proved. The quantity E(t) entering the right-
hand side of this inequality has estimate (34), where H;(¢) is given by (36) than from (37) we
obtain

Ro 2
8
/ ng (r,t)dr < —82
R1 N’Q

Ra Ro 1 2

a%t(Rl,t)/R 7“P42(T‘)d7“ + V%@%(Rl, t)/R r <P4TT + - P4T> dr| =
1 1

= d3a3(Ry,t) + dsa3,(Ry,t). (53)

So the inequality is valid

() < “SlaaBo,0)] + 2 (Vlloa(Ra,0)] + v loa( o, 0)]) =

VP
e d d
— <\//71 + p22 3) lag(R1,t)| + p22 *Jagi(Ry, t)|

and estimate (34) takes the form

i p2d3 ! a 667' -
¢mm+aﬁ+w 2>A|wmm dr +

2
d t

+ \/%/ |a2t(R1,t)|e‘STdT] e 20t
0

According to estimates (26), (43) the integrals in (54) have the order e(®=™* and e(®=7/2) for
large t, therefore we obtain

BE(t) <

(54)

et §<n/2,
E(t) <v(t), where ~(t)=ds{ te 2t §=n/2, (55)
e, §>n/2,
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with positive constant ds.
Defined by equality (38) with using (53) the function Ha(t) is evaluated as follows:

2 t
r(ﬂgr)zdr + <p2d3 + 39) / a%(Rl, T)dT+
2 p1) Jo

Ra

Hy(t) < Mz/

Ry

d t
+ % a2 (Ry,7)dr < Dy = const > 0
0

by virtue of inequalities (26), (43).

So from (13), (54), (55) we find estimate

g\ 1/4
ai(t)e™ " 42 <A1(OO)D ) e Mt/2

_|_
Rikapacy,

2
va(r,t)| < — max | Py(r
o) <57 mas [P

95 1/4
2 ——D
+J(ﬁwzw@

and vo(r,t) approaches to zero uniformly over r € [Ry, Ro| with increasing time ¢.
Below we need the values f;(0). From (7) we obtain the connection between them

p1f1(0) = p2f2(0) — &~

1
The other relation follows from the second equality (3) and equation (5) (we recall that
v;(r,0)=0):

R2 — R?
f1(0) = === £2(0).
1
Now we find 2en(RE — R2)a0(Ry) 2
Xy — h)ajlin 1
0) = 0) = ——— f1(0). 57
Moreover the relations are valid
2 1
Ult(ra O) = fl (O)a 772t(ra O) = f2(0) + [le <a(1)rr7‘ + ; a?rr) P4(7”). (58)
The second initial condition follows from the equations
1 1/4
a1(Ry1,t)| = |as(R1,t)| < |a(t)| + 2 AtAt) , 59
o1 (B2, = faa s, ) < o0 +2 g A1) (59
and (37) and replacement
2 Ryt
va(r,t) = Ba(ryt) — Z2UELY by (60)
M2

We consider the following inequality that was obtained in [1]

- 1/4
|v2t(r,t)|<i—2|a1t(R1,t)| max P4(r)+\/R71( 2 Hg(t)El(t)) . (61)

r€[R1,Rx] P22

The function E;(t) on the right-hand side of inequality (61) has the form

p [T p2 [
Ei(t) = ?/ rvl,dr + ?/R ro3,dr,
0 1
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R2 Ro
By0) = P00 + 2 [0,
Ry

where f1(0) and (7, 0) are defined by the first (57) and the second (58) equality respectively.
There is the estimate form (54) for Fy(t).

® p2ds i 57
E1(0)+<T)1 5 )/0 |age(Ry, 7)[e’"dr+
[pada [t ’
+ p224/ |a2tt(R1,T)|e5TdT] e 20t (62)
0

Taking into account the obtained estimates (43), (51) from (53) we find using the constant dg
the inequality

Eq(t) <

B (t) < de(t) (63)

and the function ~(¢) from inequality (55).
For the function H3(t), from the right-hand side of inequality (61) we have the expression

R] R2
Halt) = [ r(oby e+ pa [ o)
0 Ry

p2 t Ro %2 t
—|——/ / rQ%(r,T)drdT—!——/ CL%(Rl,T)dT, (64)
2 Jo Jr, P1 Jo
where in our case

2 1
QS(T.? t) = 5 |:_V2a2t(R1a t) <P4rr + ; P4r> + a2tt(R17t)P4(7n):| )

2
U?tr(r) =0, ’Dgtr = 7a2t(R17 0)P4T7
2
1
oau1,0) = xa ol (1) + 75, ()]
It is clear that

Ro
/ rQ3(r,t)dr < dsa3,(Ry,t) + dyad, (R, 1)
Ry

with constant ds, dy from (52). By virtue of the convergence of the integrals

/ (@ (1)?dr, k=0,1,2
0

we obtain the inequality Hs(t) < H3(oo) and estimate (61) takes the form for all r € [Ry, Ro]

2 1/4
Asz(00) D7 ) etz o

2
H < = P
|vag (7, 1) max ]| 4(7)] R2kspacy,

W2 re[R1,Ry

as(t)e ™ +2 (

1/4
V3 <2d"’ Hs(OO)’v(t)) o (69)

R%VQ
The function fi(t) is the pressure gradient in the first fluid along the axis z. The function
g(t) on the right side of the inequality (29) has form

Ro

g(t) = Riva(Ry,t) + 2/ rvg(r, t)dr
Ry
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and, taking into account estimate (56), we find

. Ay(co) D>\
alte"t+2< e/
( ) R%kngcm

2x
<R max | Py(r +
9(0) 2{u2 e [Py

1/4
+\f<2d5 (%)W)) }de‘“’t, (66)

where w = min(§/2,7/4) (at § = n/2 in (66) there is te~** instead of e~** according to (54)).
Now from (29) using inequalities (65), (66) we obtain the estimate

2
|f1 (t)| < 2V1 |:Sld7€UJt + Sgd7| exp (— C;zzl t) - EWt|:| + d8€7Wt, (67)

1

1 = ¢2
=_Rt h2|, S, = hl|+ 22 |h2
PRSI S, wz s (1 ).

at that S; < oo and Sy < co. The estimate fg( ) follows from (5), inequalities (26) and (67)

o (t)e ™ 42 <W> v e"t“] . (68)

t)] < ) +2
|20 < plfr(t)] + 22 R3kapacy,

Remark 1. From inequality (30), estimates (56) and (67) it follows that the function vy (r,t)
tends exponentially to zero with increasing time.

2@ _ Aq(c0)D? Ve
vi(r,t)| < Ry max |— max |Py(r ate"t+2< e 2| 4
o1 (r, )] 1te[O,T] W re[Rl,R2]| 1)l e (®) R%kQ,OQsz
1/4 9R,
—+ \f( Dg’y( )> + —— max |2V1 [Sld7€ wt+ (69)
V1 tel0,T]

+ Sadry

Clyl ) —wt
exp | — t)—e
(%

For the function hq(t) from (12), taking into account the first relation (3) and the inequal-
ity (56) we have the estimate
R} — R} (2=
2Ry

:|+d86 wt

Z £3|J1(§n)\

[hi(t)] < max | Py(r)] [/0 ay(r)e”"dr+

Ko r€[R1,R2]

3(2](:;”’2)/ (1- ) |+ va (e (OO)>1/4 / t%“(ﬂdT} (70)

and hq(t) is limited at ¢t — oo.
Thus, it is proofed

Theorem 2.1. If the function o(r), o'(7), o"(7), " (1) satisfy conditions (23)-(25),
(41), (42), (49), then the following estimates (26), (27), (56), (67), (68), (69) are valid for
the functions a;(r,t), v;(r,t), f;(t) from which it follows that these functions tend exponentially
to zero with increasing time.

Remark 2. Remark 6. Conditions (23)—-(25), (41), (42), (49) physically mean that the thermal
effects on the solid wall surface of cylinder at r = Ry are very small and the braking of liquids
occurs at t — oo due to frictional forces.
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O06 acuMIITOTUYECKOM MOBEJEHUU COITPSI>KEHHOM 3a/1a4u,
OIIMCHIBAIOIEN MOJI3yllee OCECUMMETPUYIHOE
TEPMOKAIIMJIJIAPHOE JBUXKEHUE

Bukrop K. Anapeen

EBreunnii II. Marageunko

MucturyT BeraucanrensHoro monesnposanns CO PAH
Kpacnosipck, Poccuiickas @eneparms

Cubupckuii deepasbHbIl YHUBEPCUTET

Kpacnosipck, Poccuiickas ®eneparus

Awnnoranusi. B pabore ykasaHbI yCJIOBHS JJIsT 3aKOHA MOBEJEHUs] TEMIEPATYPhl HA TBEPJION CTEHKE
MUJIMHPA, [IPU KOTOPBIX pPellleHne JIMHEHHONW COMPSI?KEHHON 0OpaTHON HavYaJIbHO-KPAEBOU 3aJa4u, OITHU-
CBIBAIONIEH IBYXCJIOMHOE OCECUMMeTPAYeCKOoe IOJI3yIIee ABUKeHNAe BASKIUX TeIJIOIPOBOSHBIX XKUJIKOCTEH,
C POCTOM BPEMEHHU SKCIOHEHIINAJIBHO CTPEMUTCA K HYJIIO.

KuroueBrble ciioBa: conpsizkeHHas HeJTiHeiHast oOpaTHAs 33,1898, TOBEPXHOCTH Pa3/Iesa, MOI3yIIee JBU-

2KeHnue.
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