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INTRODUCTION

Earlier L.A.Aizenberg, A.P.Yuzhakov and A.K.Tsikhh have obtained formulas for power sums of

ruuts of systems of non-linear algebrai equations in C
n
on the base of many-dimensional logarithmi

residue; see [1℄�[3℄. These formulas enable us to �nd the sums without alulation of the roots

themselves, and to build a new method of investigation of systems of algebrai equations in C
n
. It

is proposed by L.A.Aizenberg [1℄, and its development is ontinued in monographs [2℄, [4℄. The main

idea of the method is to �nd power sums of roots of a system in positive degrees, and to use either

one-dimensional or many-dimensional Newton reurrent formulas [5℄. Unlike the lassial exlusion

method, this method is less time onsuming and does not inrease the multipliity of roots.

The base of the method is a formula [1℄, whih is obtained by means of many-dimensional

logarithmi residue for evaluation of sums of meanings of arbitrary polynomial at roots of given

system of algebrai equations without alulation of the roots themselves.

As a rule, we annot obtain formulas for the sums of roots of non-algebrai (transedent)

equations, beause the set of the roots an be in�nite, and series of their oordinates an be

divergent. However, the non-algebrai system of equation arise, for instane, in the problems of

hemial kinetis [6℄, [7℄. Thus, the problem of the investigation of that systems is urgent.

The power sums of negative degrees of roots of various transendent systems are studied in the

papers [8℄�[16℄. These sums are alulated by means of residue integral over skeletons of polydisks

with enter at the origin. Note that this residue integral in general is not many-dimensional

logarithmi residue, or the Grothendiek residue. There are ited formulas of residue integrals

for various types of homogeneous systems of lower orders, and established their onnetions with

power sums of roots of the system in negative degree.

More ompliated systems are investigated in the works [14℄, [15℄. Here the lower homogeneous

parts allow expansion into produt of linear fators, and the yles of integration in the residue

integrals, are determined by these fators.

The work [16℄ deals with the system arising in Zel'dovith�Semenov model [6℄, [7℄ in hemial

kinetis.

The subjets of the present paper are algebrai and transendent systems of equations, where the

lower homogeneous parts of funtions form non-degenerated system of algebrai equations. We �nd

formulas for the residue integrals, power sums of the roots in negative degree, and many-dimensional

analogs of the Waring formula, i. e., the relations between the oe�ients of the equations with the

residue integrals.
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1. RESIDUE INTEGRALS

Let f1(z), . . . , fn(z) be a system of funtions, whih are holomorphi in a neighborhood of the

origin in many-dimensional omplex spae C
n
, z = (z1, . . . , zn).

We expand funtions f1(z), . . . , fn(z) into the Taylor series in a neighborhood of the origin, and

onsider system of equations

fj(z) = Pj(z) +Qj(z) = 0, j = 1, . . . , n, (1)

where Pj is the lower homogeneous part of Taylor expansion of funtion fj(z). The degree of all

monomials (in totality of variables) in Pj equals to mj , j = 1, . . . , n. In funtion Qj the degrees of

all monomials are stritly greater than mj .

The expansions of funtions Qj , Pj , j = 1, . . . , n, in a neighborhood of null into the Taylor series,

whih onverge absolutely and uniformly in this neighborhood, have the form

Qj(z) =
∑

‖α‖>mj

ajαz
α, (2)

Pj(z) =
∑

‖β‖=mj

bjβz
β, (3)

j = 1, . . . , n, where α = (α1, . . . , αn), β = (β1, . . . , βn) are multi-subsripts, i. e., αj, βj are non-

negative integer numbers, j = 1, . . . , n, ‖α‖ = α1 + · · ·+ αn, ‖β‖ = β1 + · · ·+ βn, monomials zα =

zα1
1 · zα2

2 · . . . · zαn
n , zβ = zβ1

1 · zβ2
2 · . . . · zβn

n .

In what follows we assume that the system of polynomials P1(z), . . . , Pn(z) is non-degenerated,
i. e., its ommon zero is the origin only.

We onsider the following open set (speial analyti polyhedron):

DP (r1, . . . , rn) = {z : |Pj(z)| < rj , j = 1, . . . , n},
where r1, . . . , rn are positive values. Its skeleton is

ΓP (r1, . . . , rn) = ΓP (r) = {z : |Pj(z)| = rj, j = 1, . . . , n}.
This set is of importane in the theory of many-dimensional residues (see, for instane, [2℄).

Lemma 1 ([2℄). If system of polynomials P1, . . . , Pn is non-degenerated, then set DP (r1, . . . ,
rn) is relatively ompat, and for almost all (ï. â.) r1, . . . , rn skeleton ΓP (r1, . . . , rn) is smooth

ompat yle of dimension n.

Lemma 2. Let system of polynomials

P1(z), . . . , Pn(z) (4)

be suh that on the oordinate plane {z1 = 0} it ontains a non-degenerated subsystem of n− 1
polynomials depending on variables z2, . . . , zn. Then the skeleton of polyhedron ΓP (r1, . . . , rn) does

not interset oordinate plane {z1 = 0} for a. a. r1, . . . , rn.

Proof. We onsider that non-degenerated subsystem has the form

P2(0, z2, . . . , zn), . . . , Pn(0, z2, . . . , zn). (5)

We use in the proof the onept and properties of resultant, whih is introdued by A.K.Tsikh ([3℄,

� 18, item3) for superdetermined system of funtions.

Denote P ′ = (P2, . . . , Pn), z
′ = (z2, . . . , zn). By Lemma 1 the polyhedron

G′
P ′ = {z′ : |Pj(0, z

′)| < rj, j = 2, . . . , n} (6)

is relatively ompat set for any r2 > 0, . . . , rn > 0. As system (5) onsists of homogeneous

polynomials, then the system de�nes mapping from C
n−1

into C
n−1

, and it is proper. This means

that P ′ : G′
P ′ → B′

is analyti overing over polydisk B′ = {|w2|<r2, . . . , |wn|<rn}: for every w =
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38 KYTMANOV, MYSHKINA

(w2, . . . , wn)∈B′
pre-image (P ′)−1(w′) onsists of the same (taking into aount their multipliities)

number of points (z′)(ν)(w′) ∈ G′
P ′ , ν = 1, . . . , p (i. e., system of equations P ′(0, z′) = w′

has �nite

number of roots).

De�ne resultant of funtion P1(0, z
′)−w1 with regard system P ′(0, z′) ([3℄, � 18, ï. 3) as follows:

R(w) = R(w1, w
′) =

p∏

ν=1

[P1(0, (z
′)(ν)(w′))− w1]. (7)

As shown in ([3℄, � 18, ï. 3) for proper mappings, R(w) is a polynomial. Clearly, R(0) = 0, and
R(w) does not vanish identially. We denote A the set of nulls

A = {w : R(w) = 0}.
We see from De�nition (7) that w /∈ A if and only if the system of equations

P1(0, z
′) = w1, . . . , Pn(0, z

′) = wn (8)

has not roots.

As dimension of set A is 2n− 2, then the study of skeletons w : |w1| = r1, . . . , |wn| = rn, implies

that for a. a. r1, . . . , rn they do not interset A.

Corollary 1. If for every oordinate plane {zj = 0} we an �nd a non-degenerate subsystem of

order (n− 1) of system (5), then for a. a. r1, . . . , rn skeleton ΓP (r1, . . . , rn) does not interset the
oordinate planes.

Note that for n = 2 we do not need any restritions on the system (besides non-degenerateness).

For su�iently small ri the yles ΓP are situated inside holomorphy domain of funtions fi.
Therefore, the series

∑

‖α‖>mi

|aiα|rα1
1 · · · rαn

n

onverge for i = 1, 2, . . . , n. Then for su�iently small t > 0 we have on yle ΓP (tr) =
ΓP (tr1, tr2, . . . , trn)

|Pi(tr)| =
∣∣∣∣
∑

‖β‖=mi

biβ(tr)
β

∣∣∣∣ =
∑

‖β‖=mi

t‖β‖|biβ|rβ = tmi

∑

‖β‖=mi

|biβ|rβ, i = 1, . . . , n,

|Qi(tr)| =
∣∣∣∣
∑

‖α‖>mi

aiα(tr)
α

∣∣∣∣ 6
∑

‖α‖>mi

t‖α‖|aiα|rα = tmi+1
∑

‖α‖>mi

|aiα|rαt‖α‖−(mi+1).

Hene, for su�iently small t on the yle ΓP (tr) there are valid inequalities

|Pi(z)| > |Qi(z)|, i = 1, 2, . . . , n. (9)

Thus,

fi(z) 6= 0 íà ΓP (tr), i = 1, 2, . . . , n.

In what follows we onsider that t = 1, i. e., inequality (9) holds on yle ΓP (r1, . . . , rn).

We introdue onept of residue integral Jγ ([17℄). De�ne

Jγ =
1

(2π
√
−1)n

∫

ΓP

1

zγ+I
· df
f

=

=
1

(2π
√
−1)n

∫

ΓP

1

zγ1+1
1 · zγ2+1

2 · . . . · zγn+1
n

· df1
f1

∧ df2
f2

∧ . . . ∧ dfn
fn

, (10)
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RESIDUE INTEGRALS AND WARING FORMULAS 39

where γ = (γ1, . . . , γn) is multisubsript, and I = (1, . . . , 1). This residue integral is de�ned if

r1, . . . , rn are hosen so that relation (9) holds, and yle ΓP does not interset the oordinate

planes (see Corollary 1). Note that this integral is neither many-dimensional logarithmi residue

nor Grothendiek residue.

Theorem 1. If system of polynomials (4) is non-degenerated and satis�es assumptions of Corollary

1, then for system of form (1) we have

Jγ =
1

(2π
√
−1)n

∫

ΓP

1

zγ+I
· df
f

=
1

(2π
√
−1)n

∑

‖α‖6‖γ‖+n

(−1)‖α‖
∫

ΓP

[
∆ ·Qα · dz
zγ+I · Pα+I

]
,

where α = (α1, . . . , αn) is multisubsript, ∆ is Jaobian of system (1), Qα = Qα1
1 · . . . ·Qαn

n , Pα+I =

Pα1+1
1 · . . . · Pαn+1

n .

Proof. We use the formula of geometri progression and ondition (??) on ΓP , and obtain

1

fi
=

1

Pi +Qi

=
∞∑

s=0

(−1)s
Qs

i

P s+1
i

.

Then

Jγ =
1

(2π
√
−1)n

∑

‖α‖>0

(−1)‖α‖
∫

ΓP

∆

zγ1+1
1 · . . . · zγn+1

n

· Qα1
1 · . . . ·Qαn

n

Pα1+1
1 · . . . · Pαn+1

n

dz. (11)

The series onverges absolutely.

Let us show that the quantity of non-zero terms in this sum is �nite. We alulate to this end the

degrees (with regard to totality of the variables) of all monomials in the numerator and denominator

of the integrand.

The degree (in the totality of the variables) deg∆ of monomials, belonging to ∆, is not lesser

that m1 + · · · +mn − n. For the degree of monomials in Qα
we obtain bound

degQαi

i > (mi + 1) · αi, i = 1, . . . , n.

Therefore, the degree of the numerator is not lesser than

m1 + · · · +mn − n+

n∑

s=1

αs(ms + 1).

The degree of denominator is ‖γ‖ + n+m1(α1 + 1) + · · · +mn(αn + 1).

All terms of sum (11), where degree of numerator exeeds degree of denominator by n, vanish.

Indeed, we an hange variables in every integral from (11) by formula zj → eθ
√
−1zj , j = 1, . . . , n,

0 6 θ 6 2π. This hange of variables keeps the integral and the yles of integration beause the

polynomials Pi(z) are homogeneous, and the integrand gets fator eθ
√
−1

with degree equaling to

di�erene between degrees of the numerator (together with dz) and denominator.

Thus, here an be non-zero only the terms suh that

m1 + · · ·+mn − n+ α1(1 +m1) + α2(1 +m2) + . . .+ αn(1 +mn) 6

6 ‖γ‖+ (α1 + 1)m1 + . . .+ (αn + 1)mn,

‖m‖+ ‖α‖+
n∑

s=1

αsms 6 ‖γ‖ + n+ ‖m‖+
n∑

s=1

αsms,

i. e. ‖α‖ 6 ‖γ‖+ n. �

Our further target is to show that the integrals in formula (11) an be expressed in terms of the

Taylor oe�ients of funtions fi, and onnet them with the power sums of roots of system (1).

We need to this end ertain restritions on funtions Qi(z), i = 1, . . . , n.
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40 KYTMANOV, MYSHKINA

2. AUXILIARY RESULTS

We all to our mind ertain onepts onerning spae C
n
, equaling to produt of n Riemann

spheres CP
1
, i. e., C

n
= CP

1 × · · · × CP
1
.

Let zj : wj be homogeneous oordinates in j-th set of spae C
n
, and

Fj(z1, w1, . . . , zn, wn) = 0, j = 1, . . . , n, (12)

is a system of equations, onsisting of polynomials Fj , whih are homogeneous with regard to eah

pair of variables (zk, wk), k = 1, . . . , n. We onsider only suh roots (z1, w1, . . . , zn, wn) of system
(12) that

(zk, wk) ∈ C
2 \ {(0, 0)}, k = 1, . . . , n.

Any pair of roots of system (12) with proportional oordinates determines a unique root (z1 :

w1, . . . , zn : wn) â C
n
.

Let

a = (z
(0)
1 : w

(0)
1 , . . . , z(0)n : w(0)

n )

be a root of system (12) suh that w
(0)
k 6= 0 for any k. Then point (z1, 1, . . . , zn, 1) is a root of

system

Fj(z1, 1, . . . , zn, 1) = 0, j = 1, . . . , n,

in C
n
. If some oordinates w

(0)
j of a root a vanish, this root orresponds to a root at in�nity in C

n
.

In what follows we onsider that the systems of form (1) onsist of polynomials fj(z). In order

to �nd roots of that system in the point at in�nity C
n
, we �rst have to pass to homogeneous

oordinates, i.e., to substitute ratios zk/wk instead of zk, rejet the obtained denominator, and

obtain a system of form (12). We solve it, and �nd both ustomary roots and roots in the point at

in�nity for system (1).

We assume that system P1(z), . . . , Pn(z) is non-degenerate and has no in�nite roots in C
n
.

Let us all to our mind that polynomials Qi(z), i = 1, . . . , n, are of the form (2), i. e.,

Qi(z) =
∑

‖α‖>mi

aiαz
α.

We denote by ordQi the order of polynomial Qi, i. e., the least of degrees of monomials in Qi.

Suppose that every i-th equation from (1) satis�es onditions

degzi Pi < ordzi Qi, degzjPi > ordzj Qi, j 6= i. (13)

Here degzi P (z) is degree of polynomial P with regard of variable zi for �xed other variables, and

ordzi Q is order of polynomial Q with regard to variable zi for �xed other variables.

We have degz,i Pi=mi. Denote ordQi = si, degzj Pi=mj
i , ordzj Qi=sji . Then mi<si, m

i
i < sii,

i = 1, . . . , n. In addition, mj
i > sji for j 6= i. We do not exlude ases, where

n∑
j=1

mj
i > mi.

We perform in all funtions fi(z) = Pi(z) +Qi(z), i = 1, 2, . . . , n, hange of variables zi =
1

wi

,

i = 1, . . . , n, assuming that all wi 6= 0. As a result we obtain

Pi

(
1

w1
, . . . ,

1

wn

)
=

∑

‖β‖=mi

biβ
1

wβ1
1

· . . . · 1

wβn
n

=
1

w
m1

i

1

· . . . · 1

w
mn

i
n

∑

‖β|=mi

biβw
m1

i−β1

1 · . . . · wmn
i −βn

n ,

Qi

(
1

w1
, . . . ,

1

wn

)
=

∑

‖α‖>mi

aiα
1

wα1
1

· . . . · 1

wαn
n

=
1

w
s1i
1

· . . . · 1

w
sn
i

n

∑

‖α‖>mi

aiαw
s1i−α1

1 · . . . · wsni −αn

n .
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We have

fi

(
1

w1
, . . . ,

1

wn

)
= Pi

(
1

w1
, . . . ,

1

wn

)
+Qi

(
1

w1
, . . . ,

1

wn

)
=

=
1

w
m1

i

1 · . . . · wsii
i · . . . · wmn

i
n

·
(
P̃i(w) + Q̃i(w)

)
, (14)

where

P̃i(w1, . . . , wn) = w
m1

i

1 · . . . · wsii
i · . . . · wmn

i
n · Pi

(
1

w1
, . . . ,

1

wn

)
=

= w
sii−mi

i

i

∑

‖β‖=mi

biβw
m1

i−β1

1 · . . . · wmn
i −βn

n = w
sii−mi

i

i · ˜̃P i

and

˜̃
P i =

∑

‖β‖=mi

biβw
m1

i−β1

1 · . . . · wmn
i −βn

n

are homogeneous polynomials. Neither w1, . . . , nor wn an be arried over the sum sign in

˜̃
P i.

Polynomials Q̃i an be written in the form

Q̃i(w1, . . . , wn) = w
m1

i

1 · . . . · wsii
i · . . . · wmn

i
n ·Qi

(
1

w
, . . . ,

1

wn

)
=

= w
m1

i

1 · . . . · wsii
i · . . . · wmn

i
n · 1

w
s1i
1

· . . . · 1

w
sni
n

∑

‖α‖>mi

aiαw
s1i−α1

1 · . . . · wsni −αn

n =

= w
m1

i−s1i
1 · . . . · [wi] · . . . · wmn

i −sni
n ·

∑

‖α‖>mi

aiαw
m1

i−α1

1 · . . . · wmn
i −αn

n .

Denote by f̃i polynomials

f̃i(w) = P̃i(w) + Q̃i(w) = w
sii−mi

i

i · ˜̃P i + Q̃i(w), i = 1, 2, . . . , n. (15)

We have

deg P̃i > ord Q̃i, i = 1, . . . , n. (16)

Lemma 3. System

˜̃
P j(w) = 0, j = 1, . . . , n, (17)

have only null solution, i. e., it is non-degenerate.

Proof. We prove ad absurdum that the system has unique zero w1 = w2 = . . . = wn = 0. We apply

to this end the fat that before the hange of variables system

Pj(z) = 0, j = 1, . . . , n, (18)

had unique zero z1 = z2 = . . . = zn = 0.

Let system (17) have a root suh that wj = 0 for some j. Then this root is root at in�nity for

system (18), but this is impossible by assumption.

Let system (17) have s solution wj = αj 6= 0, j = 1, . . . , n, Then the inverse hange of variables

gives zj =
1
αj
, j = 1, . . . , n. and this is a root of system (18), what is impossible, too.
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Lemma 4. Let us onsider system

P̃j(w) = 0, j = 1, . . . , n. (19)

If for any family of subsripts i1, . . . , ik, i1 < i2 < · · · < ik, k = 1, . . . , n, the systems of equations

˜̃
P j1(w) = 0, . . . ,

˜̃
P jn−k

= 0

for wi1 = 0, . . . , wik = 0 and for jp 6= iq are non-degenerate, then system (19) also is non-degenerate.

Proof follows from the form of funtions P̃j(w) and Lemma 3.

Note that for n = 2 Lemmas 3, 4 are valid without any additional restritions on P1(z1, z2) and
P2(z1, z2).

3. SOME INTEGRAL FORMULAS

We onsider system of equations (1) with polynomials Qi(z) satisfying onditions (13). Let

system of funtions (19) satisfy assumptions of Lemma 4 and Corollary 1.

Denote by Γ
P̃
= Γ

P̃
(ε) yle

Γ
P̃
= {w ∈ C

n : |P̃i| = εi, εi > 0, i = 1, . . . , n};
due to Corollary 1, it does not interset oordinate plane for a. a. εi, i = 1, . . . , n.

We onsider residue integral

J̃γ =
1

(2π
√
−1)n

∫

Γ
P̃

wγ+I df(1/w)

f(1/w)
,

where wγ+I = wγ1+1
1 · . . . ·wγn+1

n , f(1/w) = f1(1/w1, . . . , 1/wn) · . . . · fn(1/w1, . . . , 1/wn), df(1/w) =

df1(1/w1, . . . , 1/wn) ∧ · · · ∧ dfn(1/w1, . . . , 1/wn). As a matter of fat, J̃γ is obtained from Jγ (10)

by means of hange of variables zj = 1/wj , j = 1, . . . , n, in its integrand, and hange of the yle

of integration ΓP by Γ
P̃
. But we have to prove that these integrals are equal.

Lemma 5. For any multi-subsript γ we have

J̃γ =
1

(2π
√
−1)n

∫

Γ
P̃

wγ1+1
1 · wγ2+1

2 · . . . · wγn+1
n · df̃1

f̃1
∧ df̃2

f̃2
∧ · · · ∧ df̃n

f̃n
.

Proof. By virtue of formula (14)

dfj

(
1
w1

, 1
w2

, . . . , 1
wn

)

fj

(
1
w1

, 1
w2

, . . . , 1
wn

) =
df̃j(w)

f̃j(w)
−

n∑

k=1

cjk ·
dwk

wk

,

where cjk are ertain onstants.

Let us all to our mind that f̃i = P̃i + Q̃i = w
sii−mi

i

i · ˜̃P i + Q̃i. Then

J̃γ =
1

(2π
√
−1)n

∫

Γ
P̃

wγ+I · df
f

=
1

(2π
√
−1)n

∫

Γ
P̃

wγ1+1
1 ·wγ2+1

2 · . . . ·wγn+1
n · df1

f1
∧ df2

f2
∧ · · · ∧ dfn

fn
=

=
1

(2π
√
−1)n

∫

Γ
P̃

wγ+I

(
df̃1(w)

f̃1(w)
−

n∑

k=1

c1k ·
dwk

wk

)
∧ · · · ∧

(
df̃n(w)

f̃n(w)
−

n∑

k=1

cnk · dwk

wk

)
.
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Integrals

∫

Γ
P̃

wγ+I dw1 ∧ dw2 ∧ · · · ∧ dwn

w1 · . . . · wn

vanish by virtue of the same reasons as the integrals in Theorem 1, beause the degree of the

denominator is n, and, onsequently, it is lesser than the degree of the numerator.

We onsider now integrals

∫

Γ
P̃

wγ+I df̃i1(w)

f̃i1(w)
∧ · · · ∧ df̃il(w)

f̃il(w)
∧ dwj1

wj1

∧ . . . ∧ dwjn−l

wjn−l

, (20)

for 0 6 l < n and su�iently large εj . As

1

f̃j(w)
=

∞∑

p=0

(−1)pQ̃p
j (w)

P̃ p+1
j

,

then integrals (20) are absolutely onvergent series of integrals

∫

Γ
P̃

wγ+I
Q̃p1

1 · Q̃p2
2 · . . . · Q̃p

il
· h(w)dw1 ∧ dw2 ∧ · · · ∧ dwn

P̃ p1+1
1 · P̃ p2+1

2 · . . . · P̃ pl+1
il

· wji1
· . . . · wjn−l

,

where h(w) is holomorphi funtion of w. All they vanish. Indeed, the denominator does not

ontain fators wi, and some of P̃j . Therefore, yle Γ
P̃

is boundary of hain Sj = {|P̃1(w)| =
ε1, . . . , |P̃j−1(w)| = εj−1, |P̃j(w)| < εj , |P̃j+1(w)| = = εj+1, . . . , |P̃n(w)| = εn}, whih is situated in

the domain of holomorphy of the integrand. We onlude the proof by means of the Stokes formula.

As the funtions in system (15) satisfy inequalities (16), and system of funtions P̃1(w), . . . , P̃n(w)
is non-degenerate, then by virtue of the well known Besout theorem the system of equations

f̃j(w) = 0, j = 1, . . . , n, (21)

has �nite number of roots (ounting any root as many times as its multipliity), and this number

equals to the produt of degrees of polynomials P̃j(w).

Lemma 6. Let w(1), . . . , w(s) be roots of system (21) (taking into aount their multipliities), where

w(j) = (wj1, wj2, . . . , wjn), j = 1, 2, . . . , s. Then

J̃γ =

s∑

j=1

wγ1+1
j1 · wγ2+1

j2 · . . . · wγn+1
jn . (22)

The assertion of Lemma follows from the formula of many-dimensional logarithmi residue and

the Yuzhakov theorem on displaed frame ([2℄, � 4).

If some of w(j) have null oordinates, formula (22) does not ontain them. If not all oordinates

of root w(j) vanish, the point with oordinates zjm = 1
wjm

, m = 1, 2, . . . , n, is a root of system (1).

The sum of multipliities of that roots equals to p 6 s. They does not belong to oordinate planes.

Theorem 2. There is valid equality

p∑

j=1

1

zγ1+1
j1 · zγ2+1

j2 · . . . · zγn+1
jn

=

=
∑

‖α‖6‖γ‖+n

(−1)||α||
∫

Γ
P̃

[
∆̃ · wγ1+1

1 · wγ2+1
2 · . . . · wγn+1

n · Q̃α1
1 · Q̃α2

2 · . . . · Q̃αn
n

P̃α1+1
1 · P̃α2+1

2 · . . . · P̃αn+1
n

]
dw,
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where ∆̃ is Jaobian of system (15).

Proof follows from Lemma 6 and Theorem 1.

4. SEPARATING CYCLES

Consider yle ΓP = ΓP (ε1, . . . , εn). We pass to new variables zj =
1

wj

, j = 1, . . . , n, and obtain

˜̃
ΓP = {w : | ˜̃P j(w)| = |wm1

j

1 w
m2

j

2 · . . . · wmn
j

n | · εj , j = 1, . . . , n}.

As system

˜̃
P 1(w), . . . ,

˜̃
Pn(w) is non-degenerate, then this yle belongs to set

X = {Cn \ {{w1 = 0} ∪ {w2 = 0} ∪ · · · ∪ {wn = 0}}},
whih is domain of holomorphy (Stein variety in C

n
).

De�ne divisors Fj = {w :
˜̃
P j(w) = 0}, and denote

F = F1 ∪ F2 ∪ · · · ∪ Fn.

Lemma 7. There is valid inlusion

˜̃
ΓP ⊂ X \ F .

Proof. We have

Pj

(
1

w1
, . . . ,

1

wn

)
=

1

w
m

j
1

1

1

w
m

j
1

2

· . . . · 1

w
m

j
1

n

˜̃
P j , j = 1, . . . , n

(see setion 1). Therefore, if è

˜̃
P j(w) = 0, then at least of wk vanishes.

Lemma 8. Cyle

˜̃
ΓP is separating with respet to set X \ F .

Proof. By de�nition [2℄, [3℄ a yle

˜̃
ΓP is separating with respet to set X \ F , if it lies in X \ F

and is homologial to zero on set

X \ (F1 ∪ F2 ∪ · · · ∪ Fj−1 ∪ Fj+1 ∪ · · · ∪ Fn)

for any j = 1, . . . , n.

Aording Lemma 7 we have

˜̃
ΓP ⊂ X \ F .

Let us show, for instane, that Γ̃P is homologial to zero on set X \ (F2 ∪ · · · ∪ Fn). It su�es

to show to this end, that yle Γ̃P is boundary of a hain from X \ (F2 ∪ · · · ∪ Fn).
We onsider hain

S = {w : | ˜̃P 1| < ε1|wm1
1

1 · . . . · wmn
1

n |, | ˜̃P 2| = ε2|wm1
2

1 · . . . · wmn
2

2 |, . . . , | ˜̃P n| = εn|wm1
n

1 · . . . · wmn
n

n |}.

Clearly, S lies on set X \ (F2 ∪ · · · ∪ Fn), and its boundary oinides with Γ̃P .

We return to variables z, and obtain

S = {z : |P1(z)| < ε1, |P2(z)| = ε2, . . . , |Pn(z)| = εn}.
This set is relatively ompat by virtue of Lemma 1.

Hene, by the Tsikh theorem [2℄, [3℄ yle

˜̃
ΓP lies in the group of homologies generated by yle

Γ ˜̃
P
= {w : | ˜̃P 1| = ε1, . . . , | ˜̃P n| = εn}. As yle ˜̃ΓP also generates this group, then there is valid

Theorem 3. Cyles

˜̃
ΓP and Γ ˜̃

P
are homologial in X.
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As mapping zj = 1/wj , j = 1, . . . , n, is di�eomorphism of X, then there is valid

Corollary 2. Cyles ΓP and Γ ˜̃
P
are homologial.

Theorem 4. Cyle

ΓP = {z ∈ C
n : |Pi| = ri, ri > 0, i = 1, 2, . . . , n}

is homologial to yle

Γ
P̃
= {w ∈ C

n : |P̃i| = εi, εi > 0, i = 1, 2, . . . , n}.

Proof. Let us onsider yle ΓP . We perform there the hange of variables z1 = 1/w1, z2 =

= 1/w2, . . . , zn = 1/wn, and obtain yle

˜̃
ΓP , i. e.,

{
w : | ˜̃P 1|= |wm1

1
1 · wm2

1
2 · . . . · wmn

1
n | · r1, | ˜̃P 2|= |wm1

2
1 · wm2

2
2 · . . . · wmn

2
n | · r2, . . . , | ˜̃P n|=

= |wm1
n

1 · wm2
n

2 · . . . · wmn
n

n | · rn
}
.

Then we multiply eah of these equations by w
sii−mi

i

i , i = 1, 2, . . . , n, and obtain

|ws11−m1
1

1 · ˜̃P 1| = |ws11
1 · wm2

1
2 · . . . · wmn

1
n | · r1, |ws22−m2

2
2 · ˜̃P 2| = |wm1

2
1 · ws22

2 · . . . · wmn
2

n | · r2, . . . ,

|wsnn−mn
n

n · ˜̃Pn| = |wm1
n

1 · ws2n
2 · . . . · wmn

n
n | · rn.

The left-hand side here is P̃i, i = 1, 2, . . . , n. Thus, we have equality

˜̃
ΓP = {w : |P̃1| = |ws11

1 · wm2
1

2 · . . . · wmn
1

n | · r1, |P̃2| = |wm1
2

1 · ws22
2 · . . . · wmn

2
n | · r2, . . . , |P̃n| =

= |wm1
n

1 · wm2
n

2 · . . . · wsnn
2 | · rn}.

The furthest proof of homology of yles Γ
P̃
è ΓP repeats the previous onsiderations.

5. ALGEBRAIC SYSTEMS OF EQUATIONS

We assume here that system (18) is non-degenerate, has not roots in the points at in�nity in C
n

and satis�es assumptions of Corollary 1 and Lemma 4. For n=2 the furthest assertions hold only

under the assumption that system (18) is non-degenerate.

Lemma 9. There is valid equality

Jγ =
1

(2π
√
−1)n

∫

ΓP

1

zγ1+1
1 · zγ2+1

2 · . . . · zγn+1
n

· df1
f1

∧ df2
f2

∧ · · · ∧ dfn
fn

=

=
(−1)n

(2π
√
−1)n

∫

Γ
P̃

wγ1+1
1 · wγ2+1

2 · . . . · wγn+1
n · df̃1

f̃1
∧ df̃2

f̃2
∧ . . . ∧ df̃n

f̃n
= (−1)nJ̃γ .

Proof. We obtain the desired equality by means of hange of variables zj = 1/wj , j = 1, . . . , n in

Jγ , and appliation of Theorem 4 and Lemma 5. The sign hanges beause this transformation

hanges orientation of spae C
n
.

In what follows we need generalized formula for transformation of the Grothendiek residue (see

[18℄ and [4℄, h. 2).
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Theorem 5 ([18℄). Let h(w) be holomorphi funtion, and polynomials fk(w) and gj(w), j, k =
1, . . . , n, satisfy relations

gj =

n∑

k=1

ajkfk, j = 1, 2, . . . , n,

where matrix A = ‖ajk‖nj,k=1 onsists of polynomials. Let us onsider yles

Γf = {w : |fj(w)| = rj , j = 1, . . . , n}, Γg = {w : |gj(z)| = rj , j = 1, . . . , n},
where all rj are positive.

Then there is valid equality

∫

Γf

h(w)
dw

fα
=

∑

K,
n∑

j=1
ksj=βs

β!
n∏

s,j=1
(ksj)!

∫

Γg

h(w)

detA
n∏

s,j=1
a
ksj
sj dw

gβ
, (23)

where β! = β1!β2! . . . βn!, β = (β1, β2, . . . , βn), and the summation is performed integer non-negative

matries K = ‖ksj‖ns,j=1 suh that

n∑
s=1

ksj = αj, and βs =
n∑

j=1
kjs. Here fα = fα1

1 · · · fαn
n , gβ =

gβ1
1 · · · gβn

n .

Theorem 6. There are valid formulas

p∑

j=1

1

zγ1+1
j1 · zγ2+1

j2 · . . . · zγn+1
jn

=
(−1)n

(2π
√
−1)n

∫

Γ
P̃

wγ1+1
1 ·wγ2+1

2 · . . . ·wγn+1
n · df̃1

f̃1
∧ df̃2

f̃2
∧ . . .∧ df̃n

f̃n
=

=
∑

‖α‖6‖γ‖+n

(−1)n+‖α‖

(2π
√
−1)n

∫

Γ
P̃

wγ1+1
1 ·wγ2+1

2 · . . . ·wγn+1
n · ∆̃ · Q̃α1

1 · Q̃α2
2 · . . . · Q̃αn

n dw1 ∧ dw2 ∧. . .∧ dwn

P̃α1+1
1 · P̃α2+1

2 · . . . · P̃αn+1
n

=

=
∑

‖K‖6‖γ‖+n

(−1)‖K‖+n
n∏

s=1

(
n∑

j=1
ksj

)
!

n∏
s,j=1

(ksj)!

M




wγ+I · ∆̃ · detA ·Qα
n∏

s,j=1
a
ksj
sj

n∏
j=1

w
βjNj+βj+Nj

j


 , (24)

where ‖K‖ =
n∑

s,j=1
ksj, and funtional M maps Laurent polynomials onto their free members.

Proof. As we have proved earlier (see Theorem 2),

Jγ =
1

(2π
√
−1)n

∫

ΓP

1

zγ1+1
1 · zγ2+1

2 · . . . · zγn+1
n

· df1
f1

∧ df2
f2

∧ . . . ∧ dfn
fn

=

=
(−1)n

(2π
√
−1)n

∫

Γ
P̃

wγ1+1
1 · wγ2+1

2 · . . . · wγn+1
n · df̃1

f̃1
∧ df̃2

f̃2
∧ · · · ∧ df̃n

f̃n
=

=
∑

‖α‖6‖γ‖+n

(−1)||α||+n

(2π
√
−1)n

∫

Γ
P̃

wγ1+1
1 ·wγ2+1

2 · . . . ·wγn+1
n · ∆̃ · Q̃α1

1 · Q̃α2
2 · . . . · Q̃αn

n dw1 ∧ dw2 ∧ . . . ∧ dwn

P̃α1+1
1 · P̃α2+1

2 · . . . · P̃αn+1
n

.

The system of homogeneous polynomials P̃1, . . . , P̃n has only one ommon zero at the origin.

Hene, by the Hilbert theorem on zeros (see, for instane, [19℄) there exist positive integer numbers
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N1, . . . , Nn, suh that

w
Nj+1
j =

n∑

k=1

ajkfk, j = 1, 2, . . . , n,

i. e., we an use the monomials w
Nj+1
j as funtions gj(w). By the Maaulay theore (see [20℄, and

[3℄), one an selet these numbers Nj suh that Nj 6 k1 + · · · + kn − n.

We use formula (23), the onept of funtional M, and substitute instead of gj the monomials

w
Nj+1
j in the last integrals. As a result, we obtain the last equality of the theorem.

Note that Theorem 6 for n = 2 holds without any additive restritions on system of polynomials

P1, P2, besides its non-degeneray.

Formula (24) is many-dimensional analogy of the Waring formula for algebrai systems of

equations.

Note that paper [21℄ ontains onsideration of general algebrai systems of equations, and

expansions of their solutions into hyper-geometri series. In addition, there are proved there are

proved analogies of the Waring formulas for systems

y
mj

j +
∑

λ∈Λ(j)∪{0}
x
(j)
λ yλ = 0, λ1 + · · · + λn < mj, j = 1, . . . , n,

i. e., the higher homogeneous parts are monomials. We onsider here other (more general) systems

of equations with funtions of the form (15).

6. TRANSCENDENT SYSTEMS OF EQUATIONS

Consider more general situation. Let funtions fj be meromorphi, and

fj(z) =
f
(1)
j (z)

f
(2)
j (z)

, j = 1, 2, . . . , n, (25)

where f
(1)
j (z) and f

(2)
j (z) are entire funtions in C

n
expandable into uniformly onvergent in C

n

in�nite produts

f
(1)
j (z) =

∞∏

s=1

f
(1)
j,s (z), f

(2)
j (z) =

∞∏

s=1

f
(2)
j,s (z),

f
(2)
j (0) 6= 0, and eah fator is representable as Pj,s(z) +Qj,s(z), where funtions Qj,s(z) satisfy

onditions (13), s = 1, 2, . . . .

For any olletion of subsripts j1, . . . , jn, where j1, . . . , jn ∈ N, and any family of numbers

i1, . . . , in, where i1, . . . , in are equal either to 1 or to 2, systems of non-linear equations

f
(i1)
1,j1

(z) = 0, f
(i2)
2,j2

(z) = 0, . . . , f
(in)
n,jn

(z) = 0 (26)

have by virtue of Lemma 6 and Theorem 2 only �nite number of roots outside the oordinate planes.

The set of roots of all that systems (situated outside the oordinate planes) is no more than

ountable. Therefore, we an enumerate them (taking into aount their multipliities):

z(1), z(2), . . . , z(l), . . . .

Denote

σβ+I =

∞∑

l=1

εl

zβ1+1
1(l) · zβ2+1

2(l) · . . . · zβn+1
n(l)

. (27)
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Here β1, . . . , βn are, as above, non-negative integer numbers, and sign εl equals +1, if z(l) is root

of system (26) ontaining even number of funtions f
(2)
js

, and −1 otherwise. The points z(l) are

roots or singular points (poles) for system (26) onsisting of funtions of form (25). All funtions fj
are holomorphi in a neighborhood of origin, and integrals Jβ are de�ned for them, beause these

funtions are of form (1).

There exists a relation between growth of null set of holomorphi funtion of �nite order and

order itself (see [22℄, h. 3), similar to analogous onnetion for funtions of single variable. But,

generally speaking, in the ase of several variables we have not any onnetion between orders of

entire funtions and growth of their ommon zeros.

Theorem 7. The series (27) absolutely onverges for system of equations with meromorphi

funtions (25), and there are valid formulas

Jβ = (−1)nσβ+I .

Proof. As

d
f
(1)
j (z)

f
(2)
j (z)

=
d f

(1)
j (z)

f
(1)
j (z)

−
d f

(2)
j (z)

f
(2)
j (z)

,

then

d
f
(1)
1 (z)

f
(2)
1 (z)

∧ d
f
(1)
2 (z)

f
(2)
2 (z)

∧ . . . ∧ d
f
(1)
n (z)

f
(2)
n (z)

=

(
d f

(1)
1 (z)

f
(1)
1 (z)

− d f
(2)
1 (z)

f
(2)
1 (z)

)
∧
(
d f

(1)
2 (z)

f
(1)
2 (z)

− d f
(2)
2 (z)

f
(2)
2 (z)

)
∧

∧ . . . ∧
(
d f

(1)
n (z)

f
(1)
n (z)

− d f
(2)
n (z)

f
(2)
n (z)

)
=
∑

(−1)s
d f

(i1)
1 (z)

f
(i1)
1 (z)

∧ d f
(i2)
2 (z)

f
(i2)
2 (z)

∧ . . . ∧ d f
(in)
n (z)

f
(in)
n (z)

, (28)

where s is number of fators with il = 2, and the sum is taken over all possible olletions of numbers

i1, i2, . . . , in equaling to either 1 or 2.

The relations (28) imply that it su�es to prove the theorem for entire funtions fj(z).
In this ase

d fj(z)

fj(z)
=

d
∞∏
s=1

fjs(z)

∞∏
s=1

fjs(z)

=
∞∑

s=1

d fjs(z)

fjs(z)
.

The series under onsideration uniformly onverges on γr. Indeed, one an verify easily, that if

a sequene of ontinuous funtions fm uniformly onverges on a ompat set K to a funtion f
suh that f 6= 0 on K, then beginning from ertain number we have fm 6= 0 on K, and sequene

1/fm uniformly onverges to 1/f on K. In just the same way one an verify, that term-by-term

multipliation of uniformly onvergent on a ompat set sequenes keeps the uniform onvergene.

By assumption all produts

∞∏
s=1

fjs(z) uniformly onverge to a non-zero on Γf (r) funtion. Hene,

the series

∞∑

s=1

d fjs(z)

fjs(z)
=

d
∞∏
s=1

fjs(z)

∞∏
s=1

fjs(z)

= lim
m→∞

d
m∏
s=1

fjs

m∏
s=1

fjs

is uniformly onvergent on Γf (r). Thus, the integral Jβ is determined, and equals to onvergent

series of integrals

1

(2πi)n

∫

Γf (r)

1

zβ+I
· d f1s1(z)
f1s1(z)

∧ d f2s2(z)

f2s2(z)
∧ . . . ∧ d fnsn(z)

fnsn(z)
,
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where summation is performed with regard to ubes. Therefore, the series from σβ+I onverges. As

sum of this series does not depend on permutation of its terms, then it onverges absolutely.

The desired formula for eah of these integrals is proved (see Theorem 6).

Theorem 7 is analog of the Waring formula for transendent systems of equations.

The question on representation of funtions in the form of produt of entire funtions is well

studied on the omplex plane. Its answer is given by lassial Hadamard theorem. Analogs of

the Hadamard theorem for funtions of several variables are known (see [22℄, [23℄), but, generally

speaking, these analogs do not give representations of funtions in the form of in�nite produts. A

su�ient ondition for expandability into in�nite produt is obtained in [24℄.

ACKNOWLEDGMENTS

The researh is performed with support of Russian Foundation for Basi Researhes, grants 18-

51-41011_t and 18-31-00019, and grant 14.Y26.31.0006 of Government of Russian federation to

support sienti� shools under the guidane of a leading sientist in Siberian Federal University.

REFERENCES

1. Aizenberg, L.A. �On formula of generalized many-dimensional logarithmi residue in solving of systems

non-linear equations�, DAN USSR 234 (3), 505�508 (1977).

2. Aizenberg, L.A., Yuzhakov, A.P. Integral representations and residues in many-dimensional omplex

analysis (Nauka, Novosibirsk, 1979) [in Russian℄.

3. Tsikh, A.K. Many-dimensional residues with appliations (Nauka, Novosibirsk, 1988) [in Russian℄.

4. Bykov, V.I., Kytmanov, A.M., Lazman, M.Z. Exlusion methods in omputer algebra of polynomials

(Nauka, Mosow, 1991) [in Russian℄.

5. Aizenberg, L.A., Kytmanov, A.M. �Many-dimensional analogs of Newton formulas for systems of non-

linear algebrai equations with appliations�, Sib. Matem. Journ. 22 (2), 19�30 (1981).

6. Bykov, V.I. Models of ritial phenomena in hemial kinetis (Komknigs, Mosow, 2006).

7. Bykov, V.I., Tsybenova, S.V. Non-linear models in hemial kinetis (KRASAND, Mosow, 2011) [in

Russian℄.

8. Kytmanov, A.M., Potapova, Z.E. �Formulas for evaluation of power sums of roots of systems of

meromorphi funtions�, Izv. vuz. Matem., 8, 39�48 (2005).

9. Bykov, V.I., Kytmanov, A.M., Myslivets, C.G. �Power sums of roots for non-linear systems of equations�,

Dokl. RAN 416 (3), 1�4 (2007).

10. Kytmanov, A.M., Myshkina, Å.Ê. �Evaluation of power sums of roots of systems of non-algebrai

equations in Cn
�, Izv. vuz. Matem., 12, 36�50 (2013).

11. Kytmanov, A.M., Myshkina, Å.Ê. �On power sums of roots of systems of entire funtions of �nite order

of growth�, Vest. NGU. Matem., mehan., informatika 14 (3), 62�82 (2014).

12. Kytmanov, A.A., Kytmanov, A.M., Myskina, E.K. �Finding residue integrals for systems of non-algebrai

equations in Cn
�, J. Symboli Comput. 66, 98�110 (2015).

13. Kytmanov, A.M., Khodos, O.V. �On systems of non-algebrai equations in C
n
�, Contemp. Math. 662,

77�88 (2016).

14. Kytmanov, A.M., Myshkina, Å.Ê. �On evaluation of power sums of roots of ertain lass of systems of

non-algebrai equations�, Sib. eletr. matem. izv. 12, 190�209 (2015).

15. Kytmanov, A.A., Kytmanov, A.M., Myskina, E.K. �Residue integrals and Waring's formulas for a lass

of systems of transendental equations in Cn
�, J. Complex variables and Ellipti Equat. 64 (1), 93�111

(2019).

16. Khodos, O.V. �On some systems of non-algebrai equations in Cn
�, J. Sib. Fed. Univ. Math. & Phys. 7

(4), 455�465 (2014).

17. Passare, M., Tsikh, A. �Residue integrals and their Mellin transforms�, Can. J. Math. 47 (5), 1037�1050

(1995).

18. Kytmanov, A.M. �Formula of transformation of Grothendiek residue and ertain its appliations�, Sib.

Matem. Journ. 29 (3), 198�202 (1988).

19. van-der-Waerden, B.L. Algebra (Mir, Mosow, 1976) [in Russian℄.

20. Maaulay, F.S. Algebrai theory of modular systems (Cambridge, 1916; Berlin�Heidelberg�New-York,

1971).

21. Kulikov, V.R., Stepanenko, V.A. �On solutions ang Waring formulas for systems of n algebrai equations

with n unknown values�, Algebra i analys 26 (5), 200�214 (2014).

RUSSIAN MATHEMATICS Vol. 63 No. 5 2019



50 KYTMANOV, MYSHKINA

22. Lelong, P., Gruman, L. Entire funtions of several omplex variables (Mir, Mosow, 1989) [in Russian℄.

23. Ronkin, L.I. Introdution into theory of entire funtions of several omplex variables (Nauka, Mosow,

1971) [in Russian℄.

24. Myshkina, Å.Ê. �On one ondition for the deomposition of an entire funtion into an in�nite produt�,

J. Sib. Fed. Univ. Math. and Phys. 7 (1), 91�94 (2014).

Translated by B. A. Kats

RUSSIAN MATHEMATICS Vol. 63 No. 5 2019


