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Abstra
t�We dis
uss a system of algebrai
al and trans
endental systems of equations of

general form. We determine residue integrals over the 
y
les, 
onne
ted with the system. We

give formulas for their 
al
ulation and give multi-dimensional analogs of Waring formulas, i. e.,


onne
tion between the 
oe�
ients of equations with power sums of the roots of system.
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INTRODUCTION

Earlier L.A.Aizenberg, A.P.Yuzhakov and A.K.Tsikhh have obtained formulas for power sums of

ruuts of systems of non-linear algebrai
 equations in C
n
on the base of many-dimensional logarithmi


residue; see [1℄�[3℄. These formulas enable us to �nd the sums without 
al
ulation of the roots

themselves, and to build a new method of investigation of systems of algebrai
 equations in C
n
. It

is proposed by L.A.Aizenberg [1℄, and its development is 
ontinued in monographs [2℄, [4℄. The main

idea of the method is to �nd power sums of roots of a system in positive degrees, and to use either

one-dimensional or many-dimensional Newton re
urrent formulas [5℄. Unlike the 
lassi
al ex
lusion

method, this method is less time 
onsuming and does not in
rease the multipli
ity of roots.

The base of the method is a formula [1℄, whi
h is obtained by means of many-dimensional

logarithmi
 residue for evaluation of sums of meanings of arbitrary polynomial at roots of given

system of algebrai
 equations without 
al
ulation of the roots themselves.

As a rule, we 
annot obtain formulas for the sums of roots of non-algebrai
 (trans
edent)

equations, be
ause the set of the roots 
an be in�nite, and series of their 
oordinates 
an be

divergent. However, the non-algebrai
 system of equation arise, for instan
e, in the problems of


hemi
al kineti
s [6℄, [7℄. Thus, the problem of the investigation of that systems is urgent.

The power sums of negative degrees of roots of various trans
endent systems are studied in the

papers [8℄�[16℄. These sums are 
al
ulated by means of residue integral over skeletons of polydisks

with 
enter at the origin. Note that this residue integral in general is not many-dimensional

logarithmi
 residue, or the Grothendie
k residue. There are 
ited formulas of residue integrals

for various types of homogeneous systems of lower orders, and established their 
onne
tions with

power sums of roots of the system in negative degree.

More 
ompli
ated systems are investigated in the works [14℄, [15℄. Here the lower homogeneous

parts allow expansion into produ
t of linear fa
tors, and the 
y
les of integration in the residue

integrals, are determined by these fa
tors.

The work [16℄ deals with the system arising in Zel'dovit
h�Semenov model [6℄, [7℄ in 
hemi
al

kineti
s.

The subje
ts of the present paper are algebrai
 and trans
endent systems of equations, where the

lower homogeneous parts of fun
tions form non-degenerated system of algebrai
 equations. We �nd

formulas for the residue integrals, power sums of the roots in negative degree, and many-dimensional

analogs of the Waring formula, i. e., the relations between the 
oe�
ients of the equations with the

residue integrals.
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1. RESIDUE INTEGRALS

Let f1(z), . . . , fn(z) be a system of fun
tions, whi
h are holomorphi
 in a neighborhood of the

origin in many-dimensional 
omplex spa
e C
n
, z = (z1, . . . , zn).

We expand fun
tions f1(z), . . . , fn(z) into the Taylor series in a neighborhood of the origin, and


onsider system of equations

fj(z) = Pj(z) +Qj(z) = 0, j = 1, . . . , n, (1)

where Pj is the lower homogeneous part of Taylor expansion of fun
tion fj(z). The degree of all

monomials (in totality of variables) in Pj equals to mj , j = 1, . . . , n. In fun
tion Qj the degrees of

all monomials are stri
tly greater than mj .

The expansions of fun
tions Qj , Pj , j = 1, . . . , n, in a neighborhood of null into the Taylor series,

whi
h 
onverge absolutely and uniformly in this neighborhood, have the form

Qj(z) =
∑

‖α‖>mj

ajαz
α, (2)

Pj(z) =
∑

‖β‖=mj

bjβz
β, (3)

j = 1, . . . , n, where α = (α1, . . . , αn), β = (β1, . . . , βn) are multi-subs
ripts, i. e., αj, βj are non-

negative integer numbers, j = 1, . . . , n, ‖α‖ = α1 + · · ·+ αn, ‖β‖ = β1 + · · ·+ βn, monomials zα =

zα1
1 · zα2

2 · . . . · zαn
n , zβ = zβ1

1 · zβ2
2 · . . . · zβn

n .

In what follows we assume that the system of polynomials P1(z), . . . , Pn(z) is non-degenerated,
i. e., its 
ommon zero is the origin only.

We 
onsider the following open set (spe
ial analyti
 polyhedron):

DP (r1, . . . , rn) = {z : |Pj(z)| < rj , j = 1, . . . , n},
where r1, . . . , rn are positive values. Its skeleton is

ΓP (r1, . . . , rn) = ΓP (r) = {z : |Pj(z)| = rj, j = 1, . . . , n}.
This set is of importan
e in the theory of many-dimensional residues (see, for instan
e, [2℄).

Lemma 1 ([2℄). If system of polynomials P1, . . . , Pn is non-degenerated, then set DP (r1, . . . ,
rn) is relatively 
ompa
t, and for almost all (ï. â.) r1, . . . , rn skeleton ΓP (r1, . . . , rn) is smooth


ompa
t 
y
le of dimension n.

Lemma 2. Let system of polynomials

P1(z), . . . , Pn(z) (4)

be su
h that on the 
oordinate plane {z1 = 0} it 
ontains a non-degenerated subsystem of n− 1
polynomials depending on variables z2, . . . , zn. Then the skeleton of polyhedron ΓP (r1, . . . , rn) does

not interse
t 
oordinate plane {z1 = 0} for a. a. r1, . . . , rn.

Proof. We 
onsider that non-degenerated subsystem has the form

P2(0, z2, . . . , zn), . . . , Pn(0, z2, . . . , zn). (5)

We use in the proof the 
on
ept and properties of resultant, whi
h is introdu
ed by A.K.Tsikh ([3℄,

� 18, item3) for superdetermined system of fun
tions.

Denote P ′ = (P2, . . . , Pn), z
′ = (z2, . . . , zn). By Lemma 1 the polyhedron

G′
P ′ = {z′ : |Pj(0, z

′)| < rj, j = 2, . . . , n} (6)

is relatively 
ompa
t set for any r2 > 0, . . . , rn > 0. As system (5) 
onsists of homogeneous

polynomials, then the system de�nes mapping from C
n−1

into C
n−1

, and it is proper. This means

that P ′ : G′
P ′ → B′

is analyti
 
overing over polydisk B′ = {|w2|<r2, . . . , |wn|<rn}: for every w =
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38 KYTMANOV, MYSHKINA

(w2, . . . , wn)∈B′
pre-image (P ′)−1(w′) 
onsists of the same (taking into a

ount their multipli
ities)

number of points (z′)(ν)(w′) ∈ G′
P ′ , ν = 1, . . . , p (i. e., system of equations P ′(0, z′) = w′

has �nite

number of roots).

De�ne resultant of fun
tion P1(0, z
′)−w1 with regard system P ′(0, z′) ([3℄, � 18, ï. 3) as follows:

R(w) = R(w1, w
′) =

p∏

ν=1

[P1(0, (z
′)(ν)(w′))− w1]. (7)

As shown in ([3℄, � 18, ï. 3) for proper mappings, R(w) is a polynomial. Clearly, R(0) = 0, and
R(w) does not vanish identi
ally. We denote A the set of nulls

A = {w : R(w) = 0}.
We see from De�nition (7) that w /∈ A if and only if the system of equations

P1(0, z
′) = w1, . . . , Pn(0, z

′) = wn (8)

has not roots.

As dimension of set A is 2n− 2, then the study of skeletons w : |w1| = r1, . . . , |wn| = rn, implies

that for a. a. r1, . . . , rn they do not interse
t A.

Corollary 1. If for every 
oordinate plane {zj = 0} we 
an �nd a non-degenerate subsystem of

order (n− 1) of system (5), then for a. a. r1, . . . , rn skeleton ΓP (r1, . . . , rn) does not interse
t the

oordinate planes.

Note that for n = 2 we do not need any restri
tions on the system (besides non-degenerateness).

For su�
iently small ri the 
y
les ΓP are situated inside holomorphy domain of fun
tions fi.
Therefore, the series

∑

‖α‖>mi

|aiα|rα1
1 · · · rαn

n


onverge for i = 1, 2, . . . , n. Then for su�
iently small t > 0 we have on 
y
le ΓP (tr) =
ΓP (tr1, tr2, . . . , trn)

|Pi(tr)| =
∣∣∣∣
∑

‖β‖=mi

biβ(tr)
β

∣∣∣∣ =
∑

‖β‖=mi

t‖β‖|biβ|rβ = tmi

∑

‖β‖=mi

|biβ|rβ, i = 1, . . . , n,

|Qi(tr)| =
∣∣∣∣
∑

‖α‖>mi

aiα(tr)
α

∣∣∣∣ 6
∑

‖α‖>mi

t‖α‖|aiα|rα = tmi+1
∑

‖α‖>mi

|aiα|rαt‖α‖−(mi+1).

Hen
e, for su�
iently small t on the 
y
le ΓP (tr) there are valid inequalities

|Pi(z)| > |Qi(z)|, i = 1, 2, . . . , n. (9)

Thus,

fi(z) 6= 0 íà ΓP (tr), i = 1, 2, . . . , n.

In what follows we 
onsider that t = 1, i. e., inequality (9) holds on 
y
le ΓP (r1, . . . , rn).

We introdu
e 
on
ept of residue integral Jγ ([17℄). De�ne

Jγ =
1

(2π
√
−1)n

∫

ΓP

1

zγ+I
· df
f

=

=
1

(2π
√
−1)n

∫

ΓP

1

zγ1+1
1 · zγ2+1

2 · . . . · zγn+1
n

· df1
f1

∧ df2
f2

∧ . . . ∧ dfn
fn

, (10)
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RESIDUE INTEGRALS AND WARING FORMULAS 39

where γ = (γ1, . . . , γn) is multisubs
ript, and I = (1, . . . , 1). This residue integral is de�ned if

r1, . . . , rn are 
hosen so that relation (9) holds, and 
y
le ΓP does not interse
t the 
oordinate

planes (see Corollary 1). Note that this integral is neither many-dimensional logarithmi
 residue

nor Grothendie
k residue.

Theorem 1. If system of polynomials (4) is non-degenerated and satis�es assumptions of Corollary

1, then for system of form (1) we have

Jγ =
1

(2π
√
−1)n

∫

ΓP

1

zγ+I
· df
f

=
1

(2π
√
−1)n

∑

‖α‖6‖γ‖+n

(−1)‖α‖
∫

ΓP

[
∆ ·Qα · dz
zγ+I · Pα+I

]
,

where α = (α1, . . . , αn) is multisubs
ript, ∆ is Ja
obian of system (1), Qα = Qα1
1 · . . . ·Qαn

n , Pα+I =

Pα1+1
1 · . . . · Pαn+1

n .

Proof. We use the formula of geometri
 progression and 
ondition (??) on ΓP , and obtain

1

fi
=

1

Pi +Qi

=
∞∑

s=0

(−1)s
Qs

i

P s+1
i

.

Then

Jγ =
1

(2π
√
−1)n

∑

‖α‖>0

(−1)‖α‖
∫

ΓP

∆

zγ1+1
1 · . . . · zγn+1

n

· Qα1
1 · . . . ·Qαn

n

Pα1+1
1 · . . . · Pαn+1

n

dz. (11)

The series 
onverges absolutely.

Let us show that the quantity of non-zero terms in this sum is �nite. We 
al
ulate to this end the

degrees (with regard to totality of the variables) of all monomials in the numerator and denominator

of the integrand.

The degree (in the totality of the variables) deg∆ of monomials, belonging to ∆, is not lesser

that m1 + · · · +mn − n. For the degree of monomials in Qα
we obtain bound

degQαi

i > (mi + 1) · αi, i = 1, . . . , n.

Therefore, the degree of the numerator is not lesser than

m1 + · · · +mn − n+

n∑

s=1

αs(ms + 1).

The degree of denominator is ‖γ‖ + n+m1(α1 + 1) + · · · +mn(αn + 1).

All terms of sum (11), where degree of numerator ex
eeds degree of denominator by n, vanish.

Indeed, we 
an 
hange variables in every integral from (11) by formula zj → eθ
√
−1zj , j = 1, . . . , n,

0 6 θ 6 2π. This 
hange of variables keeps the integral and the 
y
les of integration be
ause the

polynomials Pi(z) are homogeneous, and the integrand gets fa
tor eθ
√
−1

with degree equaling to

di�eren
e between degrees of the numerator (together with dz) and denominator.

Thus, here 
an be non-zero only the terms su
h that

m1 + · · ·+mn − n+ α1(1 +m1) + α2(1 +m2) + . . .+ αn(1 +mn) 6

6 ‖γ‖+ (α1 + 1)m1 + . . .+ (αn + 1)mn,

‖m‖+ ‖α‖+
n∑

s=1

αsms 6 ‖γ‖ + n+ ‖m‖+
n∑

s=1

αsms,

i. e. ‖α‖ 6 ‖γ‖+ n. �

Our further target is to show that the integrals in formula (11) 
an be expressed in terms of the

Taylor 
oe�
ients of fun
tions fi, and 
onne
t them with the power sums of roots of system (1).

We need to this end 
ertain restri
tions on fun
tions Qi(z), i = 1, . . . , n.
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40 KYTMANOV, MYSHKINA

2. AUXILIARY RESULTS

We 
all to our mind 
ertain 
on
epts 
on
erning spa
e C
n
, equaling to produ
t of n Riemann

spheres CP
1
, i. e., C

n
= CP

1 × · · · × CP
1
.

Let zj : wj be homogeneous 
oordinates in j-th set of spa
e C
n
, and

Fj(z1, w1, . . . , zn, wn) = 0, j = 1, . . . , n, (12)

is a system of equations, 
onsisting of polynomials Fj , whi
h are homogeneous with regard to ea
h

pair of variables (zk, wk), k = 1, . . . , n. We 
onsider only su
h roots (z1, w1, . . . , zn, wn) of system
(12) that

(zk, wk) ∈ C
2 \ {(0, 0)}, k = 1, . . . , n.

Any pair of roots of system (12) with proportional 
oordinates determines a unique root (z1 :

w1, . . . , zn : wn) â C
n
.

Let

a = (z
(0)
1 : w

(0)
1 , . . . , z(0)n : w(0)

n )

be a root of system (12) su
h that w
(0)
k 6= 0 for any k. Then point (z1, 1, . . . , zn, 1) is a root of

system

Fj(z1, 1, . . . , zn, 1) = 0, j = 1, . . . , n,

in C
n
. If some 
oordinates w

(0)
j of a root a vanish, this root 
orresponds to a root at in�nity in C

n
.

In what follows we 
onsider that the systems of form (1) 
onsist of polynomials fj(z). In order

to �nd roots of that system in the point at in�nity C
n
, we �rst have to pass to homogeneous


oordinates, i.e., to substitute ratios zk/wk instead of zk, reje
t the obtained denominator, and

obtain a system of form (12). We solve it, and �nd both 
ustomary roots and roots in the point at

in�nity for system (1).

We assume that system P1(z), . . . , Pn(z) is non-degenerate and has no in�nite roots in C
n
.

Let us 
all to our mind that polynomials Qi(z), i = 1, . . . , n, are of the form (2), i. e.,

Qi(z) =
∑

‖α‖>mi

aiαz
α.

We denote by ordQi the order of polynomial Qi, i. e., the least of degrees of monomials in Qi.

Suppose that every i-th equation from (1) satis�es 
onditions

degzi Pi < ordzi Qi, degzjPi > ordzj Qi, j 6= i. (13)

Here degzi P (z) is degree of polynomial P with regard of variable zi for �xed other variables, and

ordzi Q is order of polynomial Q with regard to variable zi for �xed other variables.

We have degz,i Pi=mi. Denote ordQi = si, degzj Pi=mj
i , ordzj Qi=sji . Then mi<si, m

i
i < sii,

i = 1, . . . , n. In addition, mj
i > sji for j 6= i. We do not ex
lude 
ases, where

n∑
j=1

mj
i > mi.

We perform in all fun
tions fi(z) = Pi(z) +Qi(z), i = 1, 2, . . . , n, 
hange of variables zi =
1

wi

,

i = 1, . . . , n, assuming that all wi 6= 0. As a result we obtain

Pi

(
1

w1
, . . . ,

1

wn

)
=

∑

‖β‖=mi

biβ
1

wβ1
1

· . . . · 1

wβn
n

=
1

w
m1

i

1

· . . . · 1

w
mn

i
n

∑

‖β|=mi

biβw
m1

i−β1

1 · . . . · wmn
i −βn

n ,

Qi

(
1

w1
, . . . ,

1

wn

)
=

∑

‖α‖>mi

aiα
1

wα1
1

· . . . · 1

wαn
n

=
1

w
s1i
1

· . . . · 1

w
sn
i

n

∑

‖α‖>mi

aiαw
s1i−α1

1 · . . . · wsni −αn

n .
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We have

fi

(
1

w1
, . . . ,

1

wn

)
= Pi

(
1

w1
, . . . ,

1

wn

)
+Qi

(
1

w1
, . . . ,

1

wn

)
=

=
1

w
m1

i

1 · . . . · wsii
i · . . . · wmn

i
n

·
(
P̃i(w) + Q̃i(w)

)
, (14)

where

P̃i(w1, . . . , wn) = w
m1

i

1 · . . . · wsii
i · . . . · wmn

i
n · Pi

(
1

w1
, . . . ,

1

wn

)
=

= w
sii−mi

i

i

∑

‖β‖=mi

biβw
m1

i−β1

1 · . . . · wmn
i −βn

n = w
sii−mi

i

i · ˜̃P i

and

˜̃
P i =

∑

‖β‖=mi

biβw
m1

i−β1

1 · . . . · wmn
i −βn

n

are homogeneous polynomials. Neither w1, . . . , nor wn 
an be 
arried over the sum sign in

˜̃
P i.

Polynomials Q̃i 
an be written in the form

Q̃i(w1, . . . , wn) = w
m1

i

1 · . . . · wsii
i · . . . · wmn

i
n ·Qi

(
1

w
, . . . ,

1

wn

)
=

= w
m1

i

1 · . . . · wsii
i · . . . · wmn

i
n · 1

w
s1i
1

· . . . · 1

w
sni
n

∑

‖α‖>mi

aiαw
s1i−α1

1 · . . . · wsni −αn

n =

= w
m1

i−s1i
1 · . . . · [wi] · . . . · wmn

i −sni
n ·

∑

‖α‖>mi

aiαw
m1

i−α1

1 · . . . · wmn
i −αn

n .

Denote by f̃i polynomials

f̃i(w) = P̃i(w) + Q̃i(w) = w
sii−mi

i

i · ˜̃P i + Q̃i(w), i = 1, 2, . . . , n. (15)

We have

deg P̃i > ord Q̃i, i = 1, . . . , n. (16)

Lemma 3. System

˜̃
P j(w) = 0, j = 1, . . . , n, (17)

have only null solution, i. e., it is non-degenerate.

Proof. We prove ad absurdum that the system has unique zero w1 = w2 = . . . = wn = 0. We apply

to this end the fa
t that before the 
hange of variables system

Pj(z) = 0, j = 1, . . . , n, (18)

had unique zero z1 = z2 = . . . = zn = 0.

Let system (17) have a root su
h that wj = 0 for some j. Then this root is root at in�nity for

system (18), but this is impossible by assumption.

Let system (17) have s solution wj = αj 6= 0, j = 1, . . . , n, Then the inverse 
hange of variables

gives zj =
1
αj
, j = 1, . . . , n. and this is a root of system (18), what is impossible, too.
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Lemma 4. Let us 
onsider system

P̃j(w) = 0, j = 1, . . . , n. (19)

If for any family of subs
ripts i1, . . . , ik, i1 < i2 < · · · < ik, k = 1, . . . , n, the systems of equations

˜̃
P j1(w) = 0, . . . ,

˜̃
P jn−k

= 0

for wi1 = 0, . . . , wik = 0 and for jp 6= iq are non-degenerate, then system (19) also is non-degenerate.

Proof follows from the form of fun
tions P̃j(w) and Lemma 3.

Note that for n = 2 Lemmas 3, 4 are valid without any additional restri
tions on P1(z1, z2) and
P2(z1, z2).

3. SOME INTEGRAL FORMULAS

We 
onsider system of equations (1) with polynomials Qi(z) satisfying 
onditions (13). Let

system of fun
tions (19) satisfy assumptions of Lemma 4 and Corollary 1.

Denote by Γ
P̃
= Γ

P̃
(ε) 
y
le

Γ
P̃
= {w ∈ C

n : |P̃i| = εi, εi > 0, i = 1, . . . , n};
due to Corollary 1, it does not interse
t 
oordinate plane for a. a. εi, i = 1, . . . , n.

We 
onsider residue integral

J̃γ =
1

(2π
√
−1)n

∫

Γ
P̃

wγ+I df(1/w)

f(1/w)
,

where wγ+I = wγ1+1
1 · . . . ·wγn+1

n , f(1/w) = f1(1/w1, . . . , 1/wn) · . . . · fn(1/w1, . . . , 1/wn), df(1/w) =

df1(1/w1, . . . , 1/wn) ∧ · · · ∧ dfn(1/w1, . . . , 1/wn). As a matter of fa
t, J̃γ is obtained from Jγ (10)

by means of 
hange of variables zj = 1/wj , j = 1, . . . , n, in its integrand, and 
hange of the 
y
le

of integration ΓP by Γ
P̃
. But we have to prove that these integrals are equal.

Lemma 5. For any multi-subs
ript γ we have

J̃γ =
1

(2π
√
−1)n

∫

Γ
P̃

wγ1+1
1 · wγ2+1

2 · . . . · wγn+1
n · df̃1

f̃1
∧ df̃2

f̃2
∧ · · · ∧ df̃n

f̃n
.

Proof. By virtue of formula (14)

dfj

(
1
w1

, 1
w2

, . . . , 1
wn

)

fj

(
1
w1

, 1
w2

, . . . , 1
wn

) =
df̃j(w)

f̃j(w)
−

n∑

k=1

cjk ·
dwk

wk

,

where cjk are 
ertain 
onstants.

Let us 
all to our mind that f̃i = P̃i + Q̃i = w
sii−mi

i

i · ˜̃P i + Q̃i. Then

J̃γ =
1

(2π
√
−1)n

∫

Γ
P̃

wγ+I · df
f

=
1

(2π
√
−1)n

∫

Γ
P̃

wγ1+1
1 ·wγ2+1

2 · . . . ·wγn+1
n · df1

f1
∧ df2

f2
∧ · · · ∧ dfn

fn
=

=
1

(2π
√
−1)n

∫

Γ
P̃

wγ+I

(
df̃1(w)

f̃1(w)
−

n∑

k=1

c1k ·
dwk

wk

)
∧ · · · ∧

(
df̃n(w)

f̃n(w)
−

n∑

k=1

cnk · dwk

wk

)
.
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Integrals

∫

Γ
P̃

wγ+I dw1 ∧ dw2 ∧ · · · ∧ dwn

w1 · . . . · wn

vanish by virtue of the same reasons as the integrals in Theorem 1, be
ause the degree of the

denominator is n, and, 
onsequently, it is lesser than the degree of the numerator.

We 
onsider now integrals

∫

Γ
P̃

wγ+I df̃i1(w)

f̃i1(w)
∧ · · · ∧ df̃il(w)

f̃il(w)
∧ dwj1

wj1

∧ . . . ∧ dwjn−l

wjn−l

, (20)

for 0 6 l < n and su�
iently large εj . As

1

f̃j(w)
=

∞∑

p=0

(−1)pQ̃p
j (w)

P̃ p+1
j

,

then integrals (20) are absolutely 
onvergent series of integrals

∫

Γ
P̃

wγ+I
Q̃p1

1 · Q̃p2
2 · . . . · Q̃p

il
· h(w)dw1 ∧ dw2 ∧ · · · ∧ dwn

P̃ p1+1
1 · P̃ p2+1

2 · . . . · P̃ pl+1
il

· wji1
· . . . · wjn−l

,

where h(w) is holomorphi
 fun
tion of w. All they vanish. Indeed, the denominator does not


ontain fa
tors wi, and some of P̃j . Therefore, 
y
le Γ
P̃

is boundary of 
hain Sj = {|P̃1(w)| =
ε1, . . . , |P̃j−1(w)| = εj−1, |P̃j(w)| < εj , |P̃j+1(w)| = = εj+1, . . . , |P̃n(w)| = εn}, whi
h is situated in

the domain of holomorphy of the integrand. We 
on
lude the proof by means of the Stokes formula.

As the fun
tions in system (15) satisfy inequalities (16), and system of fun
tions P̃1(w), . . . , P̃n(w)
is non-degenerate, then by virtue of the well known Besout theorem the system of equations

f̃j(w) = 0, j = 1, . . . , n, (21)

has �nite number of roots (
ounting any root as many times as its multipli
ity), and this number

equals to the produ
t of degrees of polynomials P̃j(w).

Lemma 6. Let w(1), . . . , w(s) be roots of system (21) (taking into a

ount their multipli
ities), where

w(j) = (wj1, wj2, . . . , wjn), j = 1, 2, . . . , s. Then

J̃γ =

s∑

j=1

wγ1+1
j1 · wγ2+1

j2 · . . . · wγn+1
jn . (22)

The assertion of Lemma follows from the formula of many-dimensional logarithmi
 residue and

the Yuzhakov theorem on displa
ed frame ([2℄, � 4).

If some of w(j) have null 
oordinates, formula (22) does not 
ontain them. If not all 
oordinates

of root w(j) vanish, the point with 
oordinates zjm = 1
wjm

, m = 1, 2, . . . , n, is a root of system (1).

The sum of multipli
ities of that roots equals to p 6 s. They does not belong to 
oordinate planes.

Theorem 2. There is valid equality

p∑

j=1

1

zγ1+1
j1 · zγ2+1

j2 · . . . · zγn+1
jn

=

=
∑

‖α‖6‖γ‖+n

(−1)||α||
∫

Γ
P̃

[
∆̃ · wγ1+1

1 · wγ2+1
2 · . . . · wγn+1

n · Q̃α1
1 · Q̃α2

2 · . . . · Q̃αn
n

P̃α1+1
1 · P̃α2+1

2 · . . . · P̃αn+1
n

]
dw,
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where ∆̃ is Ja
obian of system (15).

Proof follows from Lemma 6 and Theorem 1.

4. SEPARATING CYCLES

Consider 
y
le ΓP = ΓP (ε1, . . . , εn). We pass to new variables zj =
1

wj

, j = 1, . . . , n, and obtain

˜̃
ΓP = {w : | ˜̃P j(w)| = |wm1

j

1 w
m2

j

2 · . . . · wmn
j

n | · εj , j = 1, . . . , n}.

As system

˜̃
P 1(w), . . . ,

˜̃
Pn(w) is non-degenerate, then this 
y
le belongs to set

X = {Cn \ {{w1 = 0} ∪ {w2 = 0} ∪ · · · ∪ {wn = 0}}},
whi
h is domain of holomorphy (Stein variety in C

n
).

De�ne divisors Fj = {w :
˜̃
P j(w) = 0}, and denote

F = F1 ∪ F2 ∪ · · · ∪ Fn.

Lemma 7. There is valid in
lusion

˜̃
ΓP ⊂ X \ F .

Proof. We have

Pj

(
1

w1
, . . . ,

1

wn

)
=

1

w
m

j
1

1

1

w
m

j
1

2

· . . . · 1

w
m

j
1

n

˜̃
P j , j = 1, . . . , n

(see se
tion 1). Therefore, if è

˜̃
P j(w) = 0, then at least of wk vanishes.

Lemma 8. Cy
le

˜̃
ΓP is separating with respe
t to set X \ F .

Proof. By de�nition [2℄, [3℄ a 
y
le

˜̃
ΓP is separating with respe
t to set X \ F , if it lies in X \ F

and is homologi
al to zero on set

X \ (F1 ∪ F2 ∪ · · · ∪ Fj−1 ∪ Fj+1 ∪ · · · ∪ Fn)

for any j = 1, . . . , n.

A

ording Lemma 7 we have

˜̃
ΓP ⊂ X \ F .

Let us show, for instan
e, that Γ̃P is homologi
al to zero on set X \ (F2 ∪ · · · ∪ Fn). It su�
es

to show to this end, that 
y
le Γ̃P is boundary of a 
hain from X \ (F2 ∪ · · · ∪ Fn).
We 
onsider 
hain

S = {w : | ˜̃P 1| < ε1|wm1
1

1 · . . . · wmn
1

n |, | ˜̃P 2| = ε2|wm1
2

1 · . . . · wmn
2

2 |, . . . , | ˜̃P n| = εn|wm1
n

1 · . . . · wmn
n

n |}.

Clearly, S lies on set X \ (F2 ∪ · · · ∪ Fn), and its boundary 
oin
ides with Γ̃P .

We return to variables z, and obtain

S = {z : |P1(z)| < ε1, |P2(z)| = ε2, . . . , |Pn(z)| = εn}.
This set is relatively 
ompa
t by virtue of Lemma 1.

Hen
e, by the Tsikh theorem [2℄, [3℄ 
y
le

˜̃
ΓP lies in the group of homologies generated by 
y
le

Γ ˜̃
P
= {w : | ˜̃P 1| = ε1, . . . , | ˜̃P n| = εn}. As 
y
le ˜̃ΓP also generates this group, then there is valid

Theorem 3. Cy
les

˜̃
ΓP and Γ ˜̃

P
are homologi
al in X.
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As mapping zj = 1/wj , j = 1, . . . , n, is di�eomorphism of X, then there is valid

Corollary 2. Cy
les ΓP and Γ ˜̃
P
are homologi
al.

Theorem 4. Cy
le

ΓP = {z ∈ C
n : |Pi| = ri, ri > 0, i = 1, 2, . . . , n}

is homologi
al to 
y
le

Γ
P̃
= {w ∈ C

n : |P̃i| = εi, εi > 0, i = 1, 2, . . . , n}.

Proof. Let us 
onsider 
y
le ΓP . We perform there the 
hange of variables z1 = 1/w1, z2 =

= 1/w2, . . . , zn = 1/wn, and obtain 
y
le

˜̃
ΓP , i. e.,

{
w : | ˜̃P 1|= |wm1

1
1 · wm2

1
2 · . . . · wmn

1
n | · r1, | ˜̃P 2|= |wm1

2
1 · wm2

2
2 · . . . · wmn

2
n | · r2, . . . , | ˜̃P n|=

= |wm1
n

1 · wm2
n

2 · . . . · wmn
n

n | · rn
}
.

Then we multiply ea
h of these equations by w
sii−mi

i

i , i = 1, 2, . . . , n, and obtain

|ws11−m1
1

1 · ˜̃P 1| = |ws11
1 · wm2

1
2 · . . . · wmn

1
n | · r1, |ws22−m2

2
2 · ˜̃P 2| = |wm1

2
1 · ws22

2 · . . . · wmn
2

n | · r2, . . . ,

|wsnn−mn
n

n · ˜̃Pn| = |wm1
n

1 · ws2n
2 · . . . · wmn

n
n | · rn.

The left-hand side here is P̃i, i = 1, 2, . . . , n. Thus, we have equality

˜̃
ΓP = {w : |P̃1| = |ws11

1 · wm2
1

2 · . . . · wmn
1

n | · r1, |P̃2| = |wm1
2

1 · ws22
2 · . . . · wmn

2
n | · r2, . . . , |P̃n| =

= |wm1
n

1 · wm2
n

2 · . . . · wsnn
2 | · rn}.

The furthest proof of homology of 
y
les Γ
P̃
è ΓP repeats the previous 
onsiderations.

5. ALGEBRAIC SYSTEMS OF EQUATIONS

We assume here that system (18) is non-degenerate, has not roots in the points at in�nity in C
n

and satis�es assumptions of Corollary 1 and Lemma 4. For n=2 the furthest assertions hold only

under the assumption that system (18) is non-degenerate.

Lemma 9. There is valid equality

Jγ =
1

(2π
√
−1)n

∫

ΓP

1

zγ1+1
1 · zγ2+1

2 · . . . · zγn+1
n

· df1
f1

∧ df2
f2

∧ · · · ∧ dfn
fn

=

=
(−1)n

(2π
√
−1)n

∫

Γ
P̃

wγ1+1
1 · wγ2+1

2 · . . . · wγn+1
n · df̃1

f̃1
∧ df̃2

f̃2
∧ . . . ∧ df̃n

f̃n
= (−1)nJ̃γ .

Proof. We obtain the desired equality by means of 
hange of variables zj = 1/wj , j = 1, . . . , n in

Jγ , and appli
ation of Theorem 4 and Lemma 5. The sign 
hanges be
ause this transformation


hanges orientation of spa
e C
n
.

In what follows we need generalized formula for transformation of the Grothendie
k residue (see

[18℄ and [4℄, 
h. 2).
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Theorem 5 ([18℄). Let h(w) be holomorphi
 fun
tion, and polynomials fk(w) and gj(w), j, k =
1, . . . , n, satisfy relations

gj =

n∑

k=1

ajkfk, j = 1, 2, . . . , n,

where matrix A = ‖ajk‖nj,k=1 
onsists of polynomials. Let us 
onsider 
y
les

Γf = {w : |fj(w)| = rj , j = 1, . . . , n}, Γg = {w : |gj(z)| = rj , j = 1, . . . , n},
where all rj are positive.

Then there is valid equality

∫

Γf

h(w)
dw

fα
=

∑

K,
n∑

j=1
ksj=βs

β!
n∏

s,j=1
(ksj)!

∫

Γg

h(w)

detA
n∏

s,j=1
a
ksj
sj dw

gβ
, (23)

where β! = β1!β2! . . . βn!, β = (β1, β2, . . . , βn), and the summation is performed integer non-negative

matri
es K = ‖ksj‖ns,j=1 su
h that

n∑
s=1

ksj = αj, and βs =
n∑

j=1
kjs. Here fα = fα1

1 · · · fαn
n , gβ =

gβ1
1 · · · gβn

n .

Theorem 6. There are valid formulas

p∑

j=1

1

zγ1+1
j1 · zγ2+1

j2 · . . . · zγn+1
jn

=
(−1)n

(2π
√
−1)n

∫

Γ
P̃

wγ1+1
1 ·wγ2+1

2 · . . . ·wγn+1
n · df̃1

f̃1
∧ df̃2

f̃2
∧ . . .∧ df̃n

f̃n
=

=
∑

‖α‖6‖γ‖+n

(−1)n+‖α‖

(2π
√
−1)n

∫

Γ
P̃

wγ1+1
1 ·wγ2+1

2 · . . . ·wγn+1
n · ∆̃ · Q̃α1

1 · Q̃α2
2 · . . . · Q̃αn

n dw1 ∧ dw2 ∧. . .∧ dwn

P̃α1+1
1 · P̃α2+1

2 · . . . · P̃αn+1
n

=

=
∑

‖K‖6‖γ‖+n

(−1)‖K‖+n
n∏

s=1

(
n∑

j=1
ksj

)
!

n∏
s,j=1

(ksj)!

M




wγ+I · ∆̃ · detA ·Qα
n∏

s,j=1
a
ksj
sj

n∏
j=1

w
βjNj+βj+Nj

j


 , (24)

where ‖K‖ =
n∑

s,j=1
ksj, and fun
tional M maps Laurent polynomials onto their free members.

Proof. As we have proved earlier (see Theorem 2),

Jγ =
1

(2π
√
−1)n

∫

ΓP

1

zγ1+1
1 · zγ2+1

2 · . . . · zγn+1
n

· df1
f1

∧ df2
f2

∧ . . . ∧ dfn
fn

=

=
(−1)n

(2π
√
−1)n

∫

Γ
P̃

wγ1+1
1 · wγ2+1

2 · . . . · wγn+1
n · df̃1

f̃1
∧ df̃2

f̃2
∧ · · · ∧ df̃n

f̃n
=

=
∑

‖α‖6‖γ‖+n

(−1)||α||+n

(2π
√
−1)n

∫

Γ
P̃

wγ1+1
1 ·wγ2+1

2 · . . . ·wγn+1
n · ∆̃ · Q̃α1

1 · Q̃α2
2 · . . . · Q̃αn

n dw1 ∧ dw2 ∧ . . . ∧ dwn

P̃α1+1
1 · P̃α2+1

2 · . . . · P̃αn+1
n

.

The system of homogeneous polynomials P̃1, . . . , P̃n has only one 
ommon zero at the origin.

Hen
e, by the Hilbert theorem on zeros (see, for instan
e, [19℄) there exist positive integer numbers
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N1, . . . , Nn, su
h that

w
Nj+1
j =

n∑

k=1

ajkfk, j = 1, 2, . . . , n,

i. e., we 
an use the monomials w
Nj+1
j as fun
tions gj(w). By the Ma
aulay theore (see [20℄, and

[3℄), one 
an sele
t these numbers Nj su
h that Nj 6 k1 + · · · + kn − n.

We use formula (23), the 
on
ept of fun
tional M, and substitute instead of gj the monomials

w
Nj+1
j in the last integrals. As a result, we obtain the last equality of the theorem.

Note that Theorem 6 for n = 2 holds without any additive restri
tions on system of polynomials

P1, P2, besides its non-degenera
y.

Formula (24) is many-dimensional analogy of the Waring formula for algebrai
 systems of

equations.

Note that paper [21℄ 
ontains 
onsideration of general algebrai
 systems of equations, and

expansions of their solutions into hyper-geometri
 series. In addition, there are proved there are

proved analogies of the Waring formulas for systems

y
mj

j +
∑

λ∈Λ(j)∪{0}
x
(j)
λ yλ = 0, λ1 + · · · + λn < mj, j = 1, . . . , n,

i. e., the higher homogeneous parts are monomials. We 
onsider here other (more general) systems

of equations with fun
tions of the form (15).

6. TRANSCENDENT SYSTEMS OF EQUATIONS

Consider more general situation. Let fun
tions fj be meromorphi
, and

fj(z) =
f
(1)
j (z)

f
(2)
j (z)

, j = 1, 2, . . . , n, (25)

where f
(1)
j (z) and f

(2)
j (z) are entire fun
tions in C

n
expandable into uniformly 
onvergent in C

n

in�nite produ
ts

f
(1)
j (z) =

∞∏

s=1

f
(1)
j,s (z), f

(2)
j (z) =

∞∏

s=1

f
(2)
j,s (z),

f
(2)
j (0) 6= 0, and ea
h fa
tor is representable as Pj,s(z) +Qj,s(z), where fun
tions Qj,s(z) satisfy


onditions (13), s = 1, 2, . . . .

For any 
olle
tion of subs
ripts j1, . . . , jn, where j1, . . . , jn ∈ N, and any family of numbers

i1, . . . , in, where i1, . . . , in are equal either to 1 or to 2, systems of non-linear equations

f
(i1)
1,j1

(z) = 0, f
(i2)
2,j2

(z) = 0, . . . , f
(in)
n,jn

(z) = 0 (26)

have by virtue of Lemma 6 and Theorem 2 only �nite number of roots outside the 
oordinate planes.

The set of roots of all that systems (situated outside the 
oordinate planes) is no more than


ountable. Therefore, we 
an enumerate them (taking into a

ount their multipli
ities):

z(1), z(2), . . . , z(l), . . . .

Denote

σβ+I =

∞∑

l=1

εl

zβ1+1
1(l) · zβ2+1

2(l) · . . . · zβn+1
n(l)

. (27)
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Here β1, . . . , βn are, as above, non-negative integer numbers, and sign εl equals +1, if z(l) is root

of system (26) 
ontaining even number of fun
tions f
(2)
js

, and −1 otherwise. The points z(l) are

roots or singular points (poles) for system (26) 
onsisting of fun
tions of form (25). All fun
tions fj
are holomorphi
 in a neighborhood of origin, and integrals Jβ are de�ned for them, be
ause these

fun
tions are of form (1).

There exists a relation between growth of null set of holomorphi
 fun
tion of �nite order and

order itself (see [22℄, 
h. 3), similar to analogous 
onne
tion for fun
tions of single variable. But,

generally speaking, in the 
ase of several variables we have not any 
onne
tion between orders of

entire fun
tions and growth of their 
ommon zeros.

Theorem 7. The series (27) absolutely 
onverges for system of equations with meromorphi


fun
tions (25), and there are valid formulas

Jβ = (−1)nσβ+I .

Proof. As

d
f
(1)
j (z)

f
(2)
j (z)

=
d f

(1)
j (z)

f
(1)
j (z)

−
d f

(2)
j (z)

f
(2)
j (z)

,

then

d
f
(1)
1 (z)

f
(2)
1 (z)

∧ d
f
(1)
2 (z)

f
(2)
2 (z)

∧ . . . ∧ d
f
(1)
n (z)

f
(2)
n (z)

=

(
d f

(1)
1 (z)

f
(1)
1 (z)

− d f
(2)
1 (z)

f
(2)
1 (z)

)
∧
(
d f

(1)
2 (z)

f
(1)
2 (z)

− d f
(2)
2 (z)

f
(2)
2 (z)

)
∧

∧ . . . ∧
(
d f

(1)
n (z)

f
(1)
n (z)

− d f
(2)
n (z)

f
(2)
n (z)

)
=
∑

(−1)s
d f

(i1)
1 (z)

f
(i1)
1 (z)

∧ d f
(i2)
2 (z)

f
(i2)
2 (z)

∧ . . . ∧ d f
(in)
n (z)

f
(in)
n (z)

, (28)

where s is number of fa
tors with il = 2, and the sum is taken over all possible 
olle
tions of numbers

i1, i2, . . . , in equaling to either 1 or 2.

The relations (28) imply that it su�
es to prove the theorem for entire fun
tions fj(z).
In this 
ase

d fj(z)

fj(z)
=

d
∞∏
s=1

fjs(z)

∞∏
s=1

fjs(z)

=
∞∑

s=1

d fjs(z)

fjs(z)
.

The series under 
onsideration uniformly 
onverges on γr. Indeed, one 
an verify easily, that if

a sequen
e of 
ontinuous fun
tions fm uniformly 
onverges on a 
ompa
t set K to a fun
tion f
su
h that f 6= 0 on K, then beginning from 
ertain number we have fm 6= 0 on K, and sequen
e

1/fm uniformly 
onverges to 1/f on K. In just the same way one 
an verify, that term-by-term

multipli
ation of uniformly 
onvergent on a 
ompa
t set sequen
es keeps the uniform 
onvergen
e.

By assumption all produ
ts

∞∏
s=1

fjs(z) uniformly 
onverge to a non-zero on Γf (r) fun
tion. Hen
e,

the series

∞∑

s=1

d fjs(z)

fjs(z)
=

d
∞∏
s=1

fjs(z)

∞∏
s=1

fjs(z)

= lim
m→∞

d
m∏
s=1

fjs

m∏
s=1

fjs

is uniformly 
onvergent on Γf (r). Thus, the integral Jβ is determined, and equals to 
onvergent

series of integrals

1

(2πi)n

∫

Γf (r)

1

zβ+I
· d f1s1(z)
f1s1(z)

∧ d f2s2(z)

f2s2(z)
∧ . . . ∧ d fnsn(z)

fnsn(z)
,
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where summation is performed with regard to 
ubes. Therefore, the series from σβ+I 
onverges. As

sum of this series does not depend on permutation of its terms, then it 
onverges absolutely.

The desired formula for ea
h of these integrals is proved (see Theorem 6).

Theorem 7 is analog of the Waring formula for trans
endent systems of equations.

The question on representation of fun
tions in the form of produ
t of entire fun
tions is well

studied on the 
omplex plane. Its answer is given by 
lassi
al Hadamard theorem. Analogs of

the Hadamard theorem for fun
tions of several variables are known (see [22℄, [23℄), but, generally

speaking, these analogs do not give representations of fun
tions in the form of in�nite produ
ts. A

su�
ient 
ondition for expandability into in�nite produ
t is obtained in [24℄.
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