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INTRODUCTION

Earlier L.A. Aizenberg, A.P. Yuzhakov and A.K. Tsikhh have obtained formulas for power sums of
ruuts of systems of non-linear algebraic equations in C™ on the base of many-dimensional logarithmic
residue; see [1]-[3]. These formulas enable us to find the sums without calculation of the roots
themselves, and to build a new method of investigation of systems of algebraic equations in C™. It
is proposed by L.A. Aizenberg [1], and its development is continued in monographs [2], [4]. The main
idea of the method is to find power sums of roots of a system in positive degrees, and to use either
one-dimensional or many-dimensional Newton recurrent formulas [5]. Unlike the classical exclusion
method, this method is less time consuming and does not increase the multiplicity of roots.

The base of the method is a formula [1|, which is obtained by means of many-dimensional
logarithmic residue for evaluation of sums of meanings of arbitrary polynomial at roots of given
system of algebraic equations without calculation of the roots themselves.

As a rule, we cannot obtain formulas for the sums of roots of non-algebraic (transcedent)
equations, because the set of the roots can be infinite, and series of their coordinates can be
divergent. However, the non-algebraic system of equation arise, for instance, in the problems of
chemical kinetics [6], [7]. Thus, the problem of the investigation of that systems is urgent.

The power sums of negative degrees of roots of various transcendent systems are studied in the
papers [8]-[16]. These sums are calculated by means of residue integral over skeletons of polydisks
with center at the origin. Note that this residue integral in general is not many-dimensional
logarithmic residue, or the Grothendieck residue. There are cited formulas of residue integrals
for various types of homogeneous systems of lower orders, and established their connections with
power sums of roots of the system in negative degree.

More complicated systems are investigated in the works [14], [15]. Here the lower homogeneous
parts allow expansion into product of linear factors, and the cycles of integration in the residue
integrals, are determined by these factors.

The work [16] deals with the system arising in Zel’dovitch-Semenov model [6], [7] in chemical
kinetics.

The subjects of the present paper are algebraic and transcendent systems of equations, where the
lower homogeneous parts of functions form non-degenerated system of algebraic equations. We find
formulas for the residue integrals, power sums of the roots in negative degree, and many-dimensional
analogs of the Waring formula, i. e., the relations between the coefficients of the equations with the
residue integrals.
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1. RESIDUE INTEGRALS
Let f1(2),..., fn(z) be a system of functions, which are holomorphic in a neighborhood of the
origin in many-dimensional complex space C", z = (z1,...,2y).
We expand functions fi(z),..., fn(2) into the Taylor series in a neighborhood of the origin, and
consider system of equations

fj(z):Pj(Z)+Qj(Z):07 J=1...,n, (1)

where P; is the lower homogeneous part of Taylor expansion of function f;(z). The degree of all
monomials (in totality of variables) in P; equals to m;, j = 1,...,n. In function Q; the degrees of
all monomials are strictly greater than m;.

The expansions of functions @;, Pj, j = 1,...,n, in a neighborhood of null into the Taylor series,
which converge absolutely and uniformly in this neighborhood, have the form

Qi)=Y ah", (2)

Pi(z)= ) by’ (3)

[1Bll=m;
j=1,...,n, where o = (a1,...,ay), 8= (b1,...,0s) are multi-subscripts, i.e., a;, §; are non-
negative integer numbers, j = 1,...,n, ||of| = a1 + -+ an, ||B|| = 51 + - - - + Bn, monomials z* =

zgz-...- Bn

a1 a2 _ Bl
202920 B = Zn".

In what follows we assume that the system of polynomials Pi(z),..., P,(z) is non-degenerated,
i.e., its common zero is the origin only.

We consider the following open set (special analytic polyhedron):
Dp(ri,...,rn) ={2: |Pj(2)| <rj, 5=1,...,n},
where r1,...,r, are positive values. Its skeleton is
Lp(ri,...,rn) =Tp(r)={2: |Pj(z)|=r;, j=1,...,n}.

This set is of importance in the theory of many-dimensional residues (see, for instance, [2]).

Lemma 1 (|2]). If system of polynomials Py,..., P, is non-degenerated, then set Dp(ry,...,
rn) is relatively compact, and for almost all (n.s.) ri,...,r, skeleton Tp(ri,...,ry) is smooth
compact cycle of dimension n.

Lemma 2. Let system of polynomials

Pi(2),..., Pal2) (4)
be such that on the coordinate plane {z1 = 0} it contains a non-degenerated subsystem of n — 1
polynomials depending on variables za, ..., z,. Then the skeleton of polyhedron T'p(ry,...,r,) does
not intersect coordinate plane {z1 = 0} for a.a. r,...,ry.

Proof. We consider that non-degenerated subsystem has the form
Py(0,29,...,2n), -, Pn(0,22,...,2p). (5)

We use in the proof the concept and properties of resultant, which is introduced by A.K. Tsikh (|3],
§ 18, item 3) for superdetermined system of functions.

Denote P' = (Ps,..., P,), 2 = (22,...,2,). By Lemma 1 the polyhedron

,P’:{Z/:|Pj(07z/)|<rj7 j:27-"7n} (6)
is relatively compact set for any re >0,...,7, > 0. As system (5) consists of homogeneous
polynomials, then the system defines mapping from C*~! into C*~!, and it is proper. This means
that P’ : G, — B’ is analytic covering over polydisk B = {|wa|<ra,...,|wy|<m,}: for every w =
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38 KYTMANOV, MYSHKINA

(wa, ..., w,) € B’ pre-image (P')~!(w') consists of the same (taking into account their multiplicities)
number of points (2')")(w') € G, v =1,...,p (i.e., system of equations P’(0,2') = w’ has finite
number of roots).

Define resultant of function P (0, z’) — w; with regard system P’(0,2") ([3], § 18, 1. 3) as follows:

p

R(w) = R(wi,w') = [TIP1(0, ()" (w)) — wn]. (7)

v=1

As shown in ([3], §18, u.3) for proper mappings, R(w) is a polynomial. Clearly, R(0) =0, and
R(w) does not vanish identically. We denote A the set of nulls

A ={w: R(w) = 0}.
We see from Definition (7) that w ¢ A if and only if the system of equations

P(0,2") = wq,...,P.(0,7) = w, (8)
has not roots.
As dimension of set A is 2n — 2, then the study of skeletons w : |w1| = rq,..., |wy,| = ry,, implies
that for a.a. r,...,r, they do not intersect A.

Corollary 1. If for every coordinate plane {z; = 0} we can find a non-degenerate subsystem of

order (n — 1) of system (5), then for a.a. r1,...,r, skeleton I'p(ry,...,7,) does not intersect the
coordinate planes.

Note that for n = 2 we do not need any restrictions on the system (besides non-degenerateness).

For sufficiently small r; the cycles I'p are situated inside holomorphy domain of functions f;.
Therefore, the series
Sl

lall>m;

converge for ¢=1,2,...,n. Then for sufficiently small ¢t >0 we have on cycle I'p(tr) =
PP(tTl, t7’2, N ,trn)

| Py( tr\_' > b(tr) ‘: S Bl = eme N7 ol i=1,.

lIBll=mi lIBll=m; [IBll=mi
Qi) =| 30 altr|< DD thllagfre =t ST jagpeplel=One,
llxl[>mmi llxl[>mmi llexl|>ms

Hence, for sufficiently small ¢ on the cycle I'p(¢r) there are valid inequalities

P) > Qi) i=12...n. (9)
Thus,
fi(z) #0 wa Tp(tr), i=1,2,...,n
In what follows we consider that ¢ = 1, i.e., inequality (9) holds on cycle I'p(r1,...,75).

We introduce concept of residue integral J, (|17]). Define

1 L
Jy = (2my/—1)" /Fp PEAR
o 1 dh A dh
- G /F AD2 A (10)

I fn
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RESIDUE INTEGRALS AND WARING FORMULAS 39

where v = (y1,...,7,) is multisubscript, and I = (1,...,1). This residue integral is defined if
T1,...,Tn are chosen so that relation (9) holds, and cycle I'p does not intersect the coordinate
planes (see Corollary 1). Note that this integral is neither many-dimensional logarithmic residue
nor Grothendieck residue.

Theorem 1. If system of polynomials (4) is non-degenerated and satisfies assumptions of Corollary
1, then for system of form (1) we have

-1 1 &__ 1 _1yllal [w}
J’*{ - (271'\/—_1)” /FP Z’H—I f - (27‘(’\/—_1)" Z ( 1) /FP Z,H_I .POH—I 3

lall<llvl+n

where o = (..., o) is multisubscript, A is Jacobian of system (1), Q¥ = Q7" ... - Qn, PO =

a1 +1 o +1
Pl cos PO

Proof. We use the formula of geometric progression and condition (??) on I'p, and obtain

1 1 > Qs
i — —1)8 i
fi P+ Qi g( ) pstl
Then
1 A o, L Qon
e (_1)||a||/ @ n g (11)

The series converges absolutely.

Let us show that the quantity of non-zero terms in this sum is finite. We calculate to this end the
degrees (with regard to totality of the variables) of all monomials in the numerator and denominator
of the integrand.

The degree (in the totality of the variables) deg A of monomials, belonging to A, is not lesser
that m1 + - - - +m,, — n. For the degree of monomials in Q¢ we obtain bound
deg Q" > (mi+1) -, i=1,...,n.

Therefore, the degree of the numerator is not lesser than

n
m1+---~|—mn—n+20zs(ms+1).
s=1
The degree of denominator is [|y|| +n+ mi(aq +1) + -+ + mp (o, + 1).
All terms of sum (11), where degree of numerator exceeds degree of denominator by n, vanish.

Indeed, we can change variables in every integral from (11) by formula z; — eeﬁzj, j=1,...,n,
0 < 0 < 27. This change of variables keeps the integral and the cycles of integration because the

polynomials P;(z) are homogeneous, and the integrand gets factor V=1 with degree equaling to
difference between degrees of the numerator (together with dz) and denominator.
Thus, here can be non-zero only the terms such that

mi+-+my—n+a(l+my)+a(l+mo)+...+a,(1+m,) <
<Vl + (a1 + D)my + ... + (i + 1)my,

n n
lmll + [l + D asms < Iyl +n+ [Iml[ + > asm,
s=1 s=1
e [l <[yl +n. O
Our further target is to show that the integrals in formula (11) can be expressed in terms of the
Taylor coefficients of functions f;, and connect them with the power sums of roots of system (1).
We need to this end certain restrictions on functions Q;(z), i =1,...,n.
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40 KYTMANOV, MYSHKINA
2. AUXILIARY RESULTS

We call to our mind certain concepts concerning space @n, equaling to product of n Riemann
spheres CP!,i.e., C' = CP' x --- x CP".
Let z; : w; be homogeneous coordinates in j-th set of space @n, and

Fj(217w17’”72n7wn):07 jzlu"'7n7 (]‘2)
is a system of equations, consisting of polynomials F;, which are homogeneous with regard to each
pair of variables (zx,wg), k =1,...,n. We consider only such roots (z1, w1, ..., zn, wy) of system

(12) that
(zr,wy) € C2\{(0,0)}, k=1,...,n

Any pair of roots of system (12) with proportional coordinates determines a unique root (zj :
Wy ney 2 Wy) s C".

Let

a= (z%o) : w%o), 20 (0

be a root of system (12) such that w}(€0) # 0 for any k. Then point (21,1,...,2,,1) is a root of
system

Fj(z1,1,...,2,,1) =0, j=1,...,n,
(0)

in C™. If some coordinates w; of a root a vanish, this root corresponds to a root at infinity in c".

In what follows we consider that the systems of form (1) consist of polynomials f;(z). In order
to find roots of that system in the point at infinity C", we first have to pass to homogeneous
coordinates, i.e., to substitute ratios zj/wy instead of zg, reject the obtained denominator, and
obtain a system of form (12). We solve it, and find both customary roots and roots in the point at
infinity for system (1).

We assume that system Pj(2),..., P,(2) is non-degenerate and has no infinite roots in C.
Let us call to our mind that polynomials Q;(z), i = 1,...,n, are of the form (2), i.e.,
Z al 2%
llexl[>m

We denote by ord Q; the order of polynomial @Q;, i.e., the least of degrees of monomials in @Q);.
Suppose that every i-th equation from (1) satisfies conditions

deg,. P; <ord,, Q;, degz >ord,, Qi j#i. (13)
Here deg, P(z) is degree of polynomial P with regard of variable z; for fixed other variables, and
ord,, @ is order of polynomial ) with regard to variable z; for fixed other variables.
We have deg, ; P;=m;. Denote ord Q; = s;, degz P,=m]!, ord,, QZ—S Then m; <s;, m < 8

J

1=1,.. . In addition, m; J for j # i. We do not exclude cases, where Z m > m;.

7=1
1
We perform in all functions f;(2) = Pi(z) + Qi(2), i = 1,2,...,n, change of variables z; = —,
Wy
1=1,...,n, assuming that all w; 75 0. As a result we obtain
1 1 1 m B m?—Bn
lIBll=m; 1 " wl w” | Bl=m.
1 1 o1 1 1 1 i sl— —am
Qi(_,...,_>: Sl IR S T T SR
wq Wy wy Wn 8 wi
lleel|>m; wy o |al>ms
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We have
1 1 1 1 1 1
fi <_7”’7_> :PZ <_7”’7_> +QZ <_7”’7_> =
w1 Wy, w1 Wn, w1 Wn
1 ~ ~
= (P + Qiw) . (9
wy " Sw;t W, *
where
~ 1 i n 1 1
Pi(wy,...,wp) =w; " wfl wn't - P <—, —> =
w1 Wn,
T ot . 1_ n_ it ~
— wlsl % Z b’lﬁw;nz 51 w:{"z B" — :1 % Pz
lIBll=ms
and
= . 1_ n__
Pi= 37 bt
l|Bll=m
are homogeneous polynomials. Neither wi,..., nor w, can be carried over the sum sign in ﬁz

Polynomials @); can be written in the form

~ 1 i n 1 1
Qi(wi, ..., wy) =wi™ o wt e wy - Q; (—,...,—) =

w Wy,
mz1 s;”- mf 1 1 i si—ai s?—ocn
Wy W W a,wy C Wy =
1; 1
wy W lal|>m;
1 1 n n n
m;—s ml—s m;—aq ml—a
=w, ' [w;] wp ' E T wp "
[l >m

Denote by fl polynomials

Fi(w) = Pi(w) + Os(w) = 0 ™ . Py + Qs(w), i=1,2,....n. (15)

We have
degﬁ’i>ord@,~, i=1,...,n. (16)

Lemma 3. System

Pi(w)=0, j=1,...,n, (17)

have only null solution, 1. e., it is non-degenerate.

Proof. We prove ad absurdum that the system has unique zero wy = wy = ... = w, = 0. We apply
to this end the fact that before the change of variables system

Pi(z)=0, j=1,...,n, (18)
had unique zero z1 = 20 = ... =z, = 0.

Let system (17) have a root such that w; = 0 for some j. Then this root is root at infinity for
system (18), but this is impossible by assumption.

Let system (17) have s solution w; = oj # 0, j=1,...,n, Then the inverse change of variables
1

a j=1,...,n. and this is a root of system (18), what is impossible, too. O

gives z; =
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42 KYTMANOV, MYSHKINA

Lemma 4. Let us consider system

Pj(w) =0, j=1,...,n. (19)
If for any family of subscripts i1, ... ik, 11 <io < --- <1k, k=1,...,n, the systems of equations
Pj(w)=0, ..., Pj ,=0
forw;, =0,...,w;, =0 and for j, # iq are non-degenerate, then system (19) also is non-degenerate.

Proof follows from the form of functions ﬁj(w) and Lemma 3.

Note that for n = 2 Lemmas 3, 4 are valid without any additional restrictions on P;(z1, 22) and
Py (21, 22).

3. SOME INTEGRAL FORMULAS

We consider system of equations (1) with polynomials Q;(z) satisfying conditions (13). Let
system of functions (19) satisfy assumptions of Lemma 4 and Corollary 1

Denote by I's = I'5(¢) cycle
PﬁZ{MEC":‘E‘:&.’ g; >0, izl,...,n};

due to Corollary 1, it does not intersect coordinate plane for a.a. g;, ¢ =1,...,n.
We consider residue integral
L = ;/ w*/“&/w)7
(2my=1) f(1/w)
where w? ™ = W] wkr T F(1w) = (1w, 1 wn) - f(Lwn, . 1wy, df (1 w) =
dfi(1/wi, ..., 1/ wp) A+ ANdfp(1/wi,...,1/wy,). As a matter of fact, i, is obtained from J, (10)

by means of change of variables z; = 1/wj, j =1,...,n, in its integrand, and change of the cycle
of integration I'p by I' 5. But we have to prove that these integrals are equal.

Lemma 5. For any multi-subscript v we have

5= oy f o0 ot DBy e
(2my=1)" i f fn

Proof. By virtue of formula (14)

Ui (ar o) _afjw) g, dw

I <w1,w2 ,win) B f;(w) Pt W,

where C/{C are certain constants.

Let us call to our mind that ﬁ =P+Q; = ”wfz_m2 - P; +Q;. Then

;o1 'y+1,d_f: 1 Y+l yatl Wit dfi  dfy df_n:
I = e T e T v nhRNT

L (dhw) sy dwe) o (dfa(w) s dw
(zw\/—_l)"/pﬁ (}i(w) kl’“ wk>/\ A(};(w) kz::l’“ wk>'
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Integrals

wy+1dw1/\dw2/\---/\dwn
_ W1 ... Wy

vanish by virtue of the same reasons as the integrals in Theorem 1, because the degree of the
denominator is n, and, consequently, it is lesser than the degree of the numerator.

We consider now integrals

/ writ @) At @) ey AW (20)
p fi1 (w) fil (w) Wiy Wi,y
for 0 <1 < n and sufficiently large €;. As
i 1PQ (w)
f]( Pp—‘rl ’
then integrals (20) are absolutely convergent series of integrals
/ WQ’“ Q.. .-Nfl-h(w)dwl/\dwg/\---/\dwn
+1 1 S+l ’
> Ppl sz PZIl)l 'wjil c . c Wi,

where h(w) is holomorphic function of w. All they vanish. Indeed, the denominator does not
contain factors w;, and some of Pj. Therefore, cycle I's is boundary of chain S; = {|P(w)| =

el |[Pioi(w)| = gj_1, |Pi(w)]| < j, |Pjs1(w)| = =¢ji1,...,|Pu(w)| = e,}, which is situated in
the domain of holomorphy of the integrand. We conclude the proof by means of the Stokes formula.
O

As the functions in system (15) satisfy inequalities (16), and system of functions Py (w), . .., P, (w)
is non-degenerate, then by virtue of the well known Besout theorem the system of equations

filw)=0, j=1,...,n, (21)
has finite number of roots (counting any root as many times as its multiplicity), and this number
equals to the product of degrees of polynomials P;(w).

Lemma 6. Let w(yy, ..., w) be roots of system (21) (taking into account their multiplicities), where
w(jy = (Wj1, Wi, - -, Win), j=1,2,...,5. Then
1l n+1
,Y_Zw’“ whi L wln (22)

The assertion of Lemma follows from the formula of many-dimensional logarithmic residue and
the Yuzhakov theorem on displaced frame ([2], §4).

If some of w(;) have null coordinates, formula (22) does not contain them. If not all coordinates
of root wy;) vanish, the point with coordinates zj,, = w%m, m=1,2,...,n,is a root of system (1).
The sum of multiplicities of that roots equals to p < s. They does not belong to coordinate planes.

Theorem 2. There is valid equality

p
Z :
M+l e+l Ll T
j=1 zjl . Zj2 e Zjn
~C|{1 . . . ~CM
= E (_1)\\all ATl ettt 1 SRR @ duw
T's ! e o Pa1+1 poztl, . pon+l
lall<[lvll+n P 2 B
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44 KYTMANOV, MYSHKINA
where A is Jacobian of system (15).

Proof follows from Lemma 6 and Theorem 1.

4. SEPARATING CYCLES

1
Consider cycle I'p =T'p(e1,...,e,). We pass to new variables z; = —, j = 1,...,n, and obtain
w;
= 3 momw
Ip={w:|Pj(w)] =|w, wy’ -...-wp” | -5, j=1,...,n}
As system Pi(w), ..., Pn(w) is non-degenerate, then this cycle belongs to set

X ={C"\ {{wr = 0} U{wz =0} U--- U{w, = 0}}},
which is domain of holomorphy (Stein variety in C™).
Define divisors F; = {w : ﬁj (w) = 0}, and denote
F=FRUFU---UF,.
Lemma 7. There is valid inclusion Tp C X \ F.

Proof. We have

1 1 1 1 1 =
Pj<—,...,—>: ; T ij, jzl,...,’I’L
w1 W, m m m
wy ' w, Wn
(see section 1). Therefore, if n f’j(w) = 0, then at least of wy, vanishes. O

Lemma 8. Cycle Lp is separating with respect to set X \ F.

Proof. By definition [2], [3] a cycle I'p is separating with respect to set X \ F, if it lies in X \ F
and is homological to zero on set

X\(F1UFQU---UFj_lUFj+1U"'UFn)
forany j=1,...,n.
According Lemma 7 we have I'p C X \ F.

Let us show, for instance, that I'p is homological to zero on set X \ (Fp U--- U F,). It suffices
to show to this end, that cycle I'p is boundary of a chain from X \ (Fo U --- U F,).
We consider chain

= 1 n = 1 n = 1
S={w:|Pi| <erjw]™ -...-wnt|, |Pa| = alw]? ... wy 2|, |Pnl = gpwl™ .o w )

Clearly, S lies on set X \ (F, U--- U F,), and its boundary coincides with I'p.
We return to variables z, and obtain

S={z:|Pi(2)] <e1, |Pa(2)] =€2,...,|Pu(2)| = en}.

This set is relatively compact by virtue of Lemma 1. U

Hence, by the Tsikh theorem [2], [3] cycle I'p lies in the group of homologies generated by cycle

Flg ={w: ]ﬁl\ =E€l,..., ‘]5”‘ =¢en}. As cycle ['p also generates this group, then there is valid

Theorem 3. Cycles T'p and Flg are homological in X.
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As mapping z; = 1/wj, j = 1,...,n, is diffecomorphism of X, then there is valid

Corollary 2. Cycles I'p and Flg are homological.

Theorem 4. Cycle
Fp={ze€C":|P|=r; 7>0,i=12,...,n}
18 homological to cycle

Is={weC":|P|=¢, &>0,i=12,..,n}

Proof. Let us consider cycle I'p.  We perform there the change of variables z; = 1/wq, 29 =

= 1/ws,...,2z, = 1/wy,, and obtain cycle T'p, i.e.,
= ml m2 mn = ml m2 mr =
{w:|P1|:|w1 Lowg teiiccwp o | Pol=lwy P wg 2w 2 e, | Pl =
1 2 n
=|wy™ wy L wpn| 'Tn}.
. . si—mi . .
Then we multiply each of these equations by w,* ", i=1,2,...,n, and obtain
slem! = st m? mp s%—m% = m% s% my
lwi' TPy =Jwyt cwy e wp ], [ w,y “Po|l =|wy 2wy .. wn ?| T,
n__mn = m'}z 3% mm
|wpn ™™ Py | = |wy ™ e wsy™ | .
The left-hand side here is P;, i = 1,2,...,n. Thus, we have equality
= ~ 1 2 n ~ 1 2 n ~
S m m m. S m.
Fp={w:|P|=|w' -wy' ...-wpt| -1, [P =|wy - wy? - ...-wp?|-12,...,|Py| =
ml m2 s
=|w; " wy "Wy Ty )
The furthest proof of homology of cycles I's u I'p repeats the previous considerations. O

5. ALGEBRAIC SYSTEMS OF EQUATIONS
We assume here that system (18) is non-degenerate, has not roots in the points at infinity in c"
and satisfies assumptions of Corollary 1 and Lemma4. For n=2 the furthest assertions hold only

under the assumption that system (18) is non-degenerate.

Lemma 9. There is valid equality

1 1 dfit  dfs dfy,
J. = / AN ZEA N2
7 @2rv-1)" Jrp zI”H . z;’2+1 A A i fo In
—1)" dfy dfs df, ~
:7( ) / wi““-w;”“-...-wgﬁl-g/\ﬁ/\..wﬁ:(—1)"JA,.
2mv=1)" Jr; i fe fn
Proof. We obtain the desired equality by means of change of variables z; = 1/wj, j=1,...,n in
J, and application of Theorem 4 and Lemma 5. The sign changes because this transformation
changes orientation of space C”. O

In what follows we need generalized formula for transformation of the Grothendieck residue (see
[18] and [4], ch.2).
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Theorem 5 ([18]). Let h(w) be holomorphic function, and polynomials fi(w) and g;(w), j, k=
1,...,n, satisfy relations

n
9 :Zajkfka j=1,2,....n

k=1
where matriz A = ||la;y||?,—; consists of polynomials. Let us consider cycles
I‘f = {w : ‘fj(w)‘ =Tj, J= 17"'7n}7 I‘g = {w : ’gj(z)‘ =Tj, Jj= 17"'7n}7
where all r; are positive.

Then there is valid equality

det A H a, dew

dw . ,8' w s,j=1
/ LS [ 23)

K, Z ksy—ﬁs 11 ( )

where B! = 1Pl ... B!, B = (B1, B2, ..., 0n), and the summation is performed integer non-negative

n n
matrices K = ||ks;|ls ;=1 such that Y ksj =y, and Bs = ) kjs. Here f& = f{"" - fin g =
s=1 j=1

n

Theorem 6. There are valid formulas

» - - -
3 1 ()" w“““ Wt w1 @A dfe o dfn
Y+l _yatl Yt 2ry/ 1) 2 st Wy = =N N==
pciEt RS AR 1 T i fo fn
_ Z ( 1)l / wi““ wgzﬂ L A- Q . o Q0rdwy Adwa AL A dwy, _
+1 1 Do +1
e AA R
0 B Sk )t [ur Aeaea @0 1 oy
s= = =
- =V om L o , (24)
IKI<Ivl4+n [T (ks))! H ’
s,j=1 Jj=1
n
where |[K|| = ) ksj, and functional 9 maps Laurent polynomials onto their free members.
s,7=1
Proof. As we have proved earlier (see Theorem 2),
1 1 d d
Jy = / 1 7+l +1'f/\£/\ /\ﬁ:
@2rv-1)" Jrp 2] 23 ez fi fo In
:i/ wl WPt ...'w;{”H-@/\@/\'u/\@:
(2my/—1)" i fo fn
_ Z ( )Ha||+n / w’*{l—‘rl w;{g—i—l . . w“/"‘H Qal : ag et Qg"d'u& A d’wg VANIRVAN dwn
(O —T)" e Wn 1 pastl San+1 :
e 2TV D Plal B P
The system of homogeneous polynomials ﬁl, . ,]3n has only one common zero at the origin.

Hence, by the Hilbert theorem on zeros (see, for instance, [19]) there exist positive integer numbers
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Ny, ..., Ny, such that

N+1
Za]kfk, j=12,.

k=1

i.e., we can use the monomials wj.vjﬂ as functions g;j(w). By the Macaulay theore (see [20], and
[3]), one can select these numbers N; such that N; < ki +--- + ky, —

We use formula (23), the concept of functional 9, and substitute instead of g; the monomials
Nj +1

w .

j in the last integrals. As a result, we obtain the last equality of the theorem. U

Note that Theorem 6 for n = 2 holds without any additive restrictions on system of polynomials
P1, P, besides its non-degeneracy.

Formula (24) is many-dimensional analogy of the Waring formula for algebraic systems of
equations.

Note that paper |21] contains consideration of general algebraic systems of equations, and
expansions of their solutions into hyper-geometric series. In addition, there are proved there are
proved analogies of the Waring formulas for systems

gy e =0, M+ A <my, j=1,....m,
AeA@u{o}

i.e., the higher homogeneous parts are monomials. We consider here other (more general) systems
of equations with functions of the form (15).

6. TRANSCENDENT SYSTEMS OF EQUATIONS

Consider more general situation. Let functions f; be meromorphic, and
1)
1)

where f](l)(z) and f]@)(z) are entire functions in C™ expandable into uniformly convergent in C”
infinite products

filz) = , j=12,....n, (25)

=[], £7¢ H ),
s=1

f;z) (0) # 0, and each factor is representable as Pjs(z) + Q;s(%), where functions Q;(z) satisty
conditions (13), s =1,2,... .

For any collection of subscripts ji,...,Jn, where ji1,...,j, € N, and any family of numbers
1,...,4n, Where 11,...,14, are equal either to 1 or to 2, systems of non-linear equations
RE =00 B2 =0, fi5)E) = (26)

have by virtue of Lemma 6 and Theorem 2 only finite number of roots outside the coordinate planes.

The set of roots of all that systems (situated outside the coordinate planes) is no more than
countable. Therefore, we can enumerate them (taking into account their multiplicities):

Z(l), Z(g), ce ,z(l), e
Denote
&l

Ip+L = Z B+l Pa+1 L Bntl” (27)
=1 711) “*20) T F()
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Here f31,..., 3, are, as above, non-negative integer numbers, and sign ¢; equals +1, if z(;) is root

of system (26) containing even number of functions f](f), and —1 otherwise. The points z) are
roots or singular points (poles) for system (26) consisting of functions of form (25). All functions f;
are holomorphic in a neighborhood of origin, and integrals Jg are defined for them, because these
functions are of form (1).

There exists a relation between growth of null set of holomorphic function of finite order and
order itself (see [22], ch.3), similar to analogous connection for functions of single variable. But,

generally speaking, in the case of several variables we have not any connection between orders of
entire functions and growth of their common zeros.

Theorem 7. The series (27) absolutely converges for system of equations with meromorphic
functions (25), and there are valid formulas

Jp = (=1)"0p11-

Proof. As
Ae _dne) dnde)
2@ e Pe)
then
(1) (1) (1) (1) (2) (1) (2)
@) R 11@):<dﬁ (2) ¢ﬂ(@>A<dh @)_db()>A
ORI E) 2=\ e () V() ()
d () ¢%W@> a7 45 ) d £ (z)
Ao A - = -1 . Ao N ———= (28
(SW>.Ww Z()ﬁw> £2(2) () )

where s is number of factors with ¢; = 2, and the sum is taken over all possible collections of numbers
1,%2,...,1, equaling to either 1 or 2.

The relations (28) imply that it suffices to prove the theorem for entire functions f;(z).

In this case

dfj(Z) _ dgl;ll ij(z) _ 0o dfjs(z)
fi(2) lo_o[ fs(2) — fis(z)

The series under consideration uniformly converges on ~,. Indeed, one can verify easily, that if
a sequence of continuous functions f,, uniformly converges on a compact set K to a function f
such that f ## 0 on K, then beginning from certain number we have f,,, # 0 on K, and sequence
1/ fmn uniformly converges to 1/f on K. In just the same way one can verify, that term-by-term
multiplication of uniformly convergent on a compact set sequences keeps the uniform convergence.

(o]
By assumption all products [ f;s(z) uniformly converge to a non-zero on I'¢(r) function. Hence,
s=1

the series
o0 d I | S d s
i 0O il
s—1 fjs(Z) 1:[1 fjs(Z) m—o0 Ulfjs

is uniformly convergent on I'¢(r). Thus, the integral Jg is determined, and equals to convergent
series of integrals

L 1 dfis(2) |, dfas(2) d frs, (2)
(27”')"/“7») P @) @ N e @)
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where summation is performed with regard to cubes. Therefore, the series from og, 1 converges. As
sum of this series does not depend on permutation of its terms, then it converges absolutely.
The desired formula for each of these integrals is proved (see Theorem 6). O

Theorem 7 is analog of the Waring formula for transcendent systems of equations.

The question on representation of functions in the form of product of entire functions is well
studied on the complex plane. Its answer is given by classical Hadamard theorem. Analogs of
the Hadamard theorem for functions of several variables are known (see [22], [23]), but, generally
speaking, these analogs do not give representations of functions in the form of infinite products. A
sufficient condition for expandability into infinite product is obtained in [24].
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