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The periodic motion of interacting vortex domain walls in a pair of nanostripes has been analytically and
numerically investigated. A model consisting of two parallel nanostripes with the domain magnetization struc-
ture has been proposed, where domains are separated by vortex walls. The magnetic subsystems of the stripes
magnetostatically interact, which causes the existence of normal magnetic vortex motion modes in the latter.
Frequencies of the collective magnetization modes have been calculated using empirical expressions for the
magnetic energy of interaction between vortex walls. It is shown that not any combinations of the polarity and
chirality lead to the resonance magnetization behavior in ac fields.
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1 Introduction Close attention of researchers to
quasi-two-dimensional objects, including nanowires and
nanostripes, is due to both the prospects of their use in de-
signing various spintronic devices [1–3] and the possibility
of solving many fundamental problems of magnetism of
low-dimensional magnets. Special interest is focused upon
magnetization switching of such objects. At the same time,
the analytical description of the magnetic properties faces
essential computational difficulties caused by a complex
structure of stripe and wire magnetization. To solve par-
ticular problems and understand the processes occurring
in nanostripes upon magnetization switching, computer
simulation is often used.

The domain structure evolution in nanostripes in an
applied ac magnetic field has attracted considerable inter-
est. The structure of domain walls (DWs) in these mag-
nets is extremely diverse and exhibits a complex behavior
in dc and ac magnetic fields. Depending on the geometry
of stripes (the ratio between their linear sizes) and their
magnetic characteristics, DWs of different types are im-

plemented, including conventional Neel (transverse) walls
(TWs), vortex walls (VWs), and their complex combina-
tions [4–9]. Different types of DWs have been intensively
theoretically (see, for example, [10]) and experimentally
(see, for example, [11]) investigated. Obviously, the mo-
tion of DWs with such complex configurations is accom-
panied by intriguing effects and attracts attention of re-
searchers. In particular, several modes of VW motion un-
der the action of a dc field or spin-polarized current of dif-
ferent values were found and fairly well-studied [12–16].
Interestingly, the vortex structure underlies the cyclic wall
motion with displacements, i.e., the drift.

In arrays of adjacent wires (stripes), the mutual ef-
fect of magnetic subsystems of the latter cannot be ex-
cluded. The interaction between topological magnetization
inhomogeneities is significant and affects magnetization
switching [17,18]. The aim of this work was to describe the
cyclic VW motion in a pair of magnetostatically interact-
ing nanostripes under the action of an ac magnetic field ap-
plied in the stripe plane. In addition, we discuss the effect
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2 :

of a dc magnetic field applied perpendicular to the stripe
plane. The formalism of the description of magnetic vortex
behavior in ac fields as topological inhomogeneities has
been fairly well-developed (see, for example, [19–30] and
references therein). The analytical calculations are based
on representing the Landau–Lifshitz equations in collec-
tive variables [31,32], specifically, the velocity and coor-
dinates of the magnetic vortex core. The core is a region
of the strongly inhomogeneous magnetization directed per-
pendicular to the magnet surface. In a magnetic field, it be-
haves as a quasiparticle and is formed by the competition
between the exchange and magnetostatic energy.

The core magnetization state is usually specified by the
two parameters: polarity p = ±1 and chirality q = ±1.
The polarity sign is conventionally specified parallel or an-
tiparallel to the stripe surface normal. The chirality sign
is also conventional: clock- or counterclockwise magneti-
zation rotation. To specify the vortex magnetic state, it is
often convenient to use the parameter πT = pq. In nano-
magnets, the core moves as if a quasiparticle is affected
by the gyroscopic force FG = G × v. Here, G – is the
gyrovector and v – is the core velocity.

The gyrovector value is determined as
|G| = πT (2πMSb/γ)(1 − ph), where b is the magnet
thickness, γ is the gyromagnetic ratio, MS is the saturation
magnetization, and h = H/(µ0MS) is the dimensionless
field applied perpendicular to the magnet plane (parallel
or antiparallel to the magnetization at the core center) [24,
32]. The VWs in wires and stripes are also affected by this
force.

To describe the VW motion, we should first derive the
analytical expression for a core quasiparticle potential.

2 Effective Energy of a Vortex Domain Wall in the
Stripe To solve the equation of magnetization motion, it
is necessary to establish to have a functional dependence
of the potential energy of a stripe magnetic subsystem on
the generalized parameters. It is difficult to obtain a strict
analytical form of the dependence of energy on the vortex
core coordinate. In such systems, the energy of interacting
VWs can be, at best, approximately presented as a system
of interacting dipoles (quadrupoles). In such an approxi-
mation, the energy is expressed via complex integrals (see,
for example, [10]), but near the equilibrium, the energy is
quadratic with respect to the wall coordinates [13]. The
results important for application are often obtained using
computer simulation [6,13,14,33–35].

Now, let us derive an empirical expression for the po-
tential energy as a function of the core coordinate WM (r).
We consider a model consisting of two parallel ferromag-
netic stripes with thickness b and width L (b ≪ L). The
distance between the stripes is d. The lengths of the stripes
exceed by far their width and thickness. The system of
coordinates and model used are presented in Fig. 1. The
magnetization distribution in nanostripes with the domain
structure is formed by the competition between several en-

Figure 1 Model of a pair of parallel stripes.

ergy types, including the exchange, demagnetizing, and
anisotropy energies. In the general case, a DW can con-
sist of regions with the traditional Neel-type magnetization
rotation and a vortex region [36,37]. Below, we present the
qualitative considerations that specify a model magnetiza-
tion distribution in a complex wall consisting of a TW and
a VW.

We assume the magnetization distribution in the transi-
tion region between domains to result from superposition
of TWs and VWs. This is, however, not a formal sum of the
TW and VW vectors. Here, we should take into account
that the absolute value of magnetization does not change
with coordinate and the characteristic correlation radius of
magnetization in a vortex is a finite quantity (the degree
of the core effect on the magnetization direction decreases
fairly fast with distance). In studies [38–41]), different de-
scriptions of the spatial magnetization distribution in the
vortex structures were reported. It is worth noting that the
use of different types of anzats in the calculation does not
affect the qualitative conclusions in describing the vortex
structures. Therefore, to describe the correlation between
the magnetizations in the core and at distance r from it,
we use the dependence of the perpendicular magnetization
component mz on the coordinate from [41]:

mz = ξ(r, δc) =
1− h

1 + 0.6 r2

δ2c

exp

(
−0.1

r2

δ2c

)
+ h. (1)

The dimensionless dc field h is applied along the z axis,
|r| =

√
(x−X)2 + (y − Y )2, X and Y are the vortex

core center coordinates, and δc ≈
√
A/(µ0M2

S) is the
characteristic length of the perpendicular magnetization
component decrease.

We present the components of the magnetization unit
vector in the form

mx,y = a0 (mxvort,yvort +mxtr,ytr ) . (2)

Here, mxvort and myvort are the x and y components for
the case of only the VW available, mxtr and mytr are the
magnetization components in the TW [37], and the nor-
malization parameter a0 is determined from the condition
m2

z +m2
x +m2

y = 1. We assume the stripe thickness to be
so small that the magnetization is independent of coordi-
nate z. The expressions for the corresponding components
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Figure 2 Example of the magnetization distribution in the vortex
wall at different combinations of parameters q and s at δw = L
and δc = 0.2δw.

are

mxvort = − yξ(r,δw)√
x2+y2

, myvort =
xξ(r,δw)√

x2+y2
,

mxtr = s tanh
(

x−X
δw

)
, mytr =

√
1−m2

xtr
.

(3)

Here, the parameter s = ±1 determines the magnetization
direction in domains. The quantity δw determines the cor-
relation magnetization length in the xy plane. It is reason-
able to suggest that the difference between the quantities δc
and δw is determined by the difference between the com-
ponents of the tensor of demagnetizing factors along the z
and y axes (Nz and Ny respectively). This allows us to as-
sume δw/δc ≈

√
Nz/Ny [42]. Thus, using Eq. (2), for the

required magnetization component we obtain

my(x, y,X, Y ) =
√

1− ξ(r, δc)2×
× (q(x−X)ξ(r, δw) +mytr |r|) /

[
r2(1 + ξ(r, δw)

2)+

+2qξ(r, δw)|r| ((x−X)mytr − (y − Y )mxtr )]
1/2

.
(4)

The examples of magnetization distribution calculated
using Eq. (4) are shown in Fig. 2, where the arrow lengths
are proportional to the projection of the magnetization
unit vector onto the xy plane. Note that the concept of
the configuration of a magnetic field of the magneto-
static charge on the lateral stripe surface as a quadrupole
(charge/dipole/quadrupole complex systems) is not quite
correct. The region charge of localization on the stripe
lateral surfaces is fairly large and comparable with stripe
width L. It can be seen that the surface charge densities
σ on the lateral surface are noticeably different in their
absolute value in the regions with the positive and negative
signs. In Fig. 2 , the regions with the higher density are
shown by double symbols ”++” ”−−”and the regions
with the lower density, by single symbols ”+” ”−”. The
same feature was observed for the field distribution in real
wires [11].

Now, let us consider the mechanism of the occurrence
of conservative forces acting on the core. At the vortex
core displacement, the surface charge density distribution

on the stripe lateral surface changes. This leads to the vari-
ation in the intrinsic energy of the stripes and their mag-
netostatic interaction WM . Hence, the effective forces act-
ing on the vortex cores of stripes 1 and 2, as in the case
of quasiparticles, can be written in the form Fα(r1, r2) =
−gradα(WM (r1, r2)) (subscript α is the stripe number and
r1 and r2 are the radius vectors of the vortex centers in lo-
cal systems of coordinates). In the estimations, it is conve-
nient to use the rigid vortex model, in which the change in
the magnetization distribution profile upon slight variation
in the core coordinate is ignored [43–45]. For the energy
of the magnetic subsystem of a pair of stripes, we obtain

WM (X1, X2, Y1, Y2) = W1self(X1, Y1)+

+W2self(X2, Y2) +Wint(X1, X2, Y1, Y2).
(5)

In the right-hand side of Eq. (5), the first term W1self(X1, Y1)
describes the intrinsic energy of the first stripe without in-
teraction with the magnetization of the second stripe. In
Eq. (5) W2self(X2, Y2) is the intrinsic energy of the second
stripe and Wint(X1, X2, Y1, Y2) is the term describing the
interaction between the stripe magnetic subsystems. We
write this expression in more detail. For each stripe, we
use a local system of coordinates. For example, for the first
stripe, we can write:

W1self(X1, Y1) =
µ0b

2

4π

∞∫
−∞

∞∫
−∞

σ1(x1,X1,Y1)σ2(x2,X1,Y1)dx1dx2√
L2+(x1−x2)2

+

+µ0b
2

4π

∞∫
−∞

∞∫
−∞

σ1(x1,X1,Y1)σ1(x2,X1,Y1)dx1dx2

2|x1−x2| +

+µ0b
2

4π

∞∫
−∞

∞∫
−∞

σ2(x1,X1,Y1)σ2(x2,X1,Y1)dx1dx2

2|x1−x2| ,

(6)
or

W1self(U1, V1) =

=
µ0b

2M2
S

4πL

[
∞∫

−∞

∞∫
−∞

my(u1,− 1
2 ,U1,V1)my(u2,

1
2 ,U1,V1)du1du2√

1+(u1−u2)2
+

+
∞∫

−∞

∞∫
−∞

my(u1,− 1
2 ,U1,V1)my(u2,− 1

2 ,U1,V1)du1du2

2|u1−u2| +

+
∞∫

−∞

∞∫
−∞

my(u1,
1
2 ,U1,V1)my(u2,

1
2 ,U1,V1)du1du2

2|u1−u2|

]
.

(7)
Here, we passed to the dimensionless parameters u1,2 =
x1,2/L, U1,2 = X1,2/L, and V1,2 = Y1,2/L. In the
framework of this model, the charge density on the
stripe lateral surfaces (Fig. 2) can be written in the form
σ1(x,X, Y ) = MSmy

(
x, L

2 , X, Y
)
, σ2(x,X, Y ) =

MSmy

(
x,−L

2 , X, Y
)
. The first term in Eq. (7) describes

the energy of interaction between charges from the oppo-
site lateral surfaces and the second and third terms describe
the interaction between the charges on one surface. Simi-
larly, we can write the expression for the intrinsic energy
of the second stripe.
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The energy of interaction between the magnetizations
in a pair of stripes is expressed as

Wint(U1, V1, U2, V2) =

=
µ0b

2M2
S

4πL

[
∞∫

−∞

∞∫
−∞

my(u1,− 1
2 ,U1,V1)m′

y(u2,− 1
2 ,U2,V2)du1du2√

(1+δ)2+(u1−u2)2
+

+
∞∫

−∞

∞∫
−∞

my(u1,
1
2 ,U1,V1)m′

y(u2,
1
2 ,U2,V2)du1du2√

(1+δ)2+(u1−u2)2
+

+
∞∫

−∞

∞∫
−∞

my(u1,− 1
2 ,U1,V1)m′

y(u2,
1
2 ,U2,V2)du1du2√

(2+δ)2+(u1−u2)2
+

+
∞∫

−∞

∞∫
−∞

my(u1,
1
2 ,U1,V1)m′

y(u2,− 1
2 ,U2,V2)du1du2√

δ2+(u1−u2)2

]
.

(8)
Here, δ = d/L. The stripe magnetization components my

and m′
y are rewritten in dimensionless variables on the ba-

sis of Eq. (4). According to Eqs. (5)-(8), the total energy
can be presented as

WM (U1, V1, U2, V2) =
µ0b

2M2
S

4πL
I(U1, V1, U2, V2). (9)

The factor I(U1, V1, U2, V2) is the sum of dimensionless
integrals from the brackets in Eqs. (7)-(8).

It is important that in Eq. (5) , the term responsible for
the interaction between the vortex core magnetizations is
missing. In the vortex core, the magnetization does not lie
in the plane and is perpendicular to the stripe surface at the
center. We do not take into account this energy, assuming
it to be low. Indeed, the core magnetic charge on the stripe
surface is proportional to the core area. However, the char-
acteristic linear size of the core is about ten nanometers;
therefore, the core area is much smaller than the area of
the regions with the surface charge on the lateral surfaces.
Hence, the energy of dipole interaction between the cores
can be ignored. Nevertheless, note that the energy of in-
teraction between the cores should depend not only on the
coordinate, but also on the polarities p1, p2.

Figure 3 shows the I(U1, V1, U2, V2) dependence for
the interesting cases. Near the global minima, dimension-
less energy integral (9) is satisfactorily described by the
approximate function:

I(U1, V1, U2, V2) ≈ I0+

≈ kx∆U2

2(1 + 0.06|∆U3|)
+

ky∆V 2

2(1 + 10∆V 4)
+

+
k0yV

2
1

2(1 + 60∆V 4
1 )

+
k0yV

2
2

2(1 + 60∆V 4
2 )

.

(10)

Here, ∆U = U1 − U2 + u0, ∆V = V1 − V2 + v0, u0,
and v0 are the coordinate differences of the equilibrium
core position, I0 is a constant determined by the level of
the energy, k0y is a constant that determines the magnitude
of the restoring force at the displacement of the core along
the axis y, kx, ky are constants, determining the interac-
tion force between the cores in the projection on the x axis

and the y axis, respectively. The numerical calculation of
the integral I(U1, V1, U2, V2) showed that near the minima,
the parameters q and s only determine the free term I0 and
equilibrium core position. The rest parameters in Eq. (10)
are determined also, according to Eq. (4), by the δc and
δw values. The potential well curvature remains almost in-
variable at any q and s combinations. It means that, at the
slight displacements of the core from the equilibrium posi-
tion, the arising restoring force is independent of q and s.
Figure 4 shows the comparison of empirical formula (10)
with the numerical calculation. It can be seen that Eq. (10)
is qualitatively consistent with the data numerically calcu-
lated using Eq. (9) and agrees satisfactorily with the results
reported in [6,12,13,46] for a single stripe. Near the min-
ima, good quantitative agreement is observed. In further
calculations, assuming the core displacements to be slight,
we use Eq. (10)in the quadratic approximation on the co-
ordinates.

3 Cyclic Motion of a Vortex Wall Now, let us con-
sider the behavior of the vortex core in an ac magnetic field
applied in the stripe plane.

As was mentioned above, in the field of central forces,
the magnetic vortex core behaves as a Larmor particle. The
dynamic behavior of magnetic vortices is described well by
the Thiele equation [31]. The system of Thiele equations
for the VWs of two stripes has the form{

G1 × v1 −Dv1 −∇W1 = 0,

G2 × v2 −Dv2 −∇W2 = 0.
(11)

Here, Gα = πTαG0(1 − pαh)k is the gyrovector (k is
the unit vector along the z axis, and G0 = 2πMSb/γ),
v is the core velocity, and D is the effective viscous fric-
tion coefficient. The subscripts indicate the stripe (first or
second) a vortex belongs to. The third term in the left-
hand side of Eq. (11) is responsible for the nondissipa-
tive forces acting on the vortex core as a quasiparticle.
Among such forces are the restoring force, force of inter-
action with the vortex core in the neighboring stripe, and
effective force caused by the interaction between the vor-
tex magnetization and external magnetic field. Thus, we
have Wα = WM (r1, r2) + WαH

. Here, WαH
is the Zee-

man energy of a VW in the stripe with number α.
Then, taking into account (9) and (10), for the general-

ized forces acting on the vortex cores, we can write (i and
j are the unit vectors along the x and y axes, respectively)

Fα(r1, r2) = −∇Wα = −κx(U1 − U2)i−
−κy(V1 − V2)j− χVαj+ FαH .

(12)

Here, we used the designations κx = µ0M
2
Sb

2kx/(4πL),
κy = µ0M

2
Sb

2ky/(4πL), χ = µ0M
2
Sb

2k0y/(4πL). The
effective force FαH

acting on the core in an ac magnetic
field is perpendicular to the direction of this field and lies
in the stripe plane. A specific direction of this force is de-
termined by the vortex chirality qα [47,48].
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Figure 3 Profile of the dimensionless energy factor of a pair of interacting vortex walls. The surfaces are built for the case V = V1 =
−V2. Here and below, the color shows the values of I .

Figure 4 (a) Profile of the dimensionless energy factor for a pair of interacting vortex walls plotted using formula (10).Comparison of
the numerical calculation of the dimensionless integral at q1 = q2 and s1 = s2 with empirical formula (10) in the cross sections (b)
∆U = 0 and (c) V = 0. Here V = V1 = −V2.
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6 :

Being projected onto the system of coordinates (local
for each stripe), system (11) takes the form


−G1vy1 −Dvx1 − κx(x1 − x2) = −F1x ,

G1vx1
−Dvy1

− κy(y1 − y2)− χy1 = −F1y ,

−G2vy2 −Dvx2 − κx(x2 − x1) = −F2x ,

G2vx2 −Dvy2 − κy(y2 − y1)− χy2 = −F2y .
(13)

Here, Fαx and Fαy are the projections of force FαH act-
ing on the vortex cores due to the presence of the ac field
component. Let the ac field be changing in accordance with
the law FαH = qαF0

(
eiωt + e−iωt

)
, ω be the cyclic field

variation frequency, and F0 be the field amplitude.

We choose the trial solutions of system (13) in the
form xα = x0α

(
eiπTαωt+ϕαx + e−iπTαωt−ϕαx

)
, yα =

iy0α
(
eiπTαωt+ϕαy − e−iπTαωt−ϕαy

)
. Here, i is the unit

imaginary number and ϕαx,y is the phase difference be-
tween the law of variation in the force FαH

and laws of the
variation in coordinates x and y, respectively. Then, sub-
stituting the trial solutions into Eq. (13), we obtain for the
steady-state regime



G0(1− p1h)ωy01 − (κx + iDω)x01 − κxx02 = F0xq1,

G0(1− p1h)ωx01 − (κy + χ+ iDω)y01−
−πT1πT2κyy02 = −iπT1F0yq1,

G0(1− p2h)ωy02 − (κx + iDω)x02 − κxx01 = F0xq2,

G0(1− p2h)ωx02 − (κy + χ+ iDω)y02−
−πT1πT2κyy01 = −iπT2F0yq2.

(14)
Solving this system, we determine the complex amplitudes

x01 = − Cx

G0(1− p1h)3(1− p2h)3Z
,

y01 = − Cy

G0(1− p1h)3(1− p2h)3Z
.

(15)

Here, we introduced the designations

Cx = [F0x (q1(ωy +Ω + iωωΓ )(1− p2h)−
−p2πT1ωy(1− p1h))− iF0yp1ω(1− p1h)(1− p2h)

]
×

× [(ωx + iωωΓ )(ωy +Ω + iωωΓ )(1− p1h)+

+πT1πT2ωxωy(1− p2h)− ω2(1− p1h)(1− p2h)
2
]
+

+ [F0x (q2(ωy +Ω + iωωΓ )(1− p1h)−
−p1πT2ωy(1− p2h))− iF0yp2ω(1− p1h)(1− p2h)

]
×

× [ωx(ωy +Ω + iωωΓ )(1− p2h)+

+πT1πT2(ωx + iωωΓ )ωy(1− p1h)] ,
(16)

Cy = [F0x (q1(ωy +Ω + iωωΓ )(1− p2h)−
−p2πT1ωy(1− p1h))− iF0yp1ω(1− p1h)(1− p2h)

]
×

× [ωx(ωy +Ω + iωωΓ )(1− p1h)+

+πT1πT2ωy(ωx + iωωΓ )(1− p2h)]+

+ [F0x (q2(ωy +Ω + iωωΓ )(1− p1h)− p1πT2ωy(1− p2h))−
−iF0yp2ω(1− p1h)(1− p2h)

]
×

× [(ωx + iωωΓ )(ωy +Ω + iωωΓ )(1− p2h)+

+πT1πT2ωxωy(1− p1h)− ω2(1− p1h)
2(1− p2h)

]
,
(17)

Z = ω4 − ω2

[
(ωx + iωωΓ )(ωy +Ω + iωωΓ ) ×

×
(

1

(1− p1h)2
+

1

(1− p2h)2

)
+

2πT1πT2ωxωy

(1− p1h)(1− p2h)

]
+

+
[(ωx + iωωΓ )

2 − ω2
x][(ωy +Ω + iωωΓ )

2 − ω2
y]

(1− p1h)2(1− p2h)2
,

(18)
where ωΓ = D/G0 is the dimensionless quantity, Ω =
χ/G0, ωx = κx/G0, and ωy = κy/G0.

The phase difference between the laws of variation in
the exciting force and laws of the vortex core motion is
determined from the expressions
sin(ϕαx) =

Im(x0α)

|x0α |
,

cos(ϕαx
) =

Re(x0α)

|x0α |
.


sin(ϕαy ) = πTα

Im(y0α)

|y0α |
,

cos(ϕαy
) = πTα

Re(y0α)
|y0α |

.

(19)
It is interesting to discuss a simple particular case of a

negligible damping ωΓ = 0. In this case, the mode eigen-
frequencies can be determined from the condition Z = 0.
As a result, we obtain

ω2
s = ωxΩ

(
1

(1−p1h)2
+ 1

(1−p2h)2

)
+

+ωxωy

(
πT1

1−p1h
+

πT2

1−p2h

)2

.
(20)

The polarity and chirality distributions and frequency val-
ues are given in Table 1. Since both stripes in the pair have
the same sizes and magnetic characteristics, the G0, D, and
χ values for the stripes are analogous. This leads to the fre-
quency degeneracy of the states. In particular, are twofold
degenerate and states 3 and 4 are fourfold degenerate. As a
result, we have six eigenfrequencies.

In the absence of a perpendicular dc field (h = 0), us-
ing expression (20) we obtain for the resonance frequen-
cies

ωs =
√
2ωxΩ + 2ωxωy (1 + πT1πT2). (21)

The states with certain combinations of the chiralities, but
opposite polarities in zero field h do not differ. Hence, at
ωΓ → 0 the degree of degeneracy is enhanced. As a result,

Copyright line will be provided by the publisher

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



pss header will be provided by the publisher 7

Table 1 Set of eigenfrequencies ωs of the system calculated using Eq. (20) at different combinations of polarities and chiralities of the
vortex walls.

No {p1, p2, q1, q2} ωs

1 {1, 1,±1,±1} 2ωx(Ω + 2ωy)/(1− h)2

2 {1, 1,±1,∓1} 2ωxΩ/(1− h)2

3 {±1,∓1, 1, 1}, {±1,∓1,−1,−1} 2ωx

(
Ω(1 + h2) + 2ωyh

2) /(1− h2)2

4 {±1,∓1, 1,−1}, {±1,∓1,−1, 1} 2ωx

(
Ω(1 + h2) + 2ωy

)
/(1− h2)2

5 {−1,−1,±1,±1} 2ωx (Ω + 2ωy)/(1 + h)2

6 {−1,−1,±1,∓1} 2ωxΩ/(1 + h)2

the sets of states 1, 4, 5 and, separately, 2, 3, 6 from Ta-
ble 1 become indistinguishable. Note that, in the absence
of dc field h the difference between the polarities and chi-
ralities is not as important as the difference between their
products πTα , which is reflected in formula (21) suggest-
ing that, at h = 0 there are only two different frequencies,
ωs =

√
2ωxΩ and ωs =

√
2ωxΩ + 4ωxωy . In study [49]

the dynamics of two interacting vortices in one stripe was
theoretically analyzed. The authors obtained the result for
a collective vortex motion frequency, which is a particular
case of formula (21).

The power absorbed by a pair of stripes can be esti-
mated as

P (ω, h) ≈ Dω2
(
|x01 |2 + |y01 |2 + |x02 |2 + |y02 |2

)
.

(22)
The dependences of the absorbed power on the frequency
of an external ac field applied along the y and x axes are
shown in Figs. 5 and 6, respectively. These plots need in
our comments.

First of all, note that the investigated stripes are long
and the VWs are distant from the ends. Therefore, the mag-
netic energy of an isolated stripe does not change at the
vortex core displacement along the x axis. Therefore, the
restoring force is not induced along the x axis. Upon dis-
placement of the vortex core of a single stripe along the y
axis, the magnetic subsystem energy changes because of
the redistribution of magnetic charges on the stripe lateral
surfaces. Thus, the restoring force arises along the y axis,
regardless of the closeness to the second stripe. This fea-
ture is reflected in the character of wall motion in an ac
magnetic filed.

The state illustrated in Fig. 5a does not exhibit the res-
onance properties. Depending on the mutual orientation of
a perpendicular dc field h and core polarity pα, we have
the frequency dependences monotonically descending at
different rates. The calculation of the difference between
phases of the wall core motion in stripes 1 and 2 using for-
mulas (19) showed that the rotation occurs synchronously
(ϕ1x = ϕ2x and ϕ1y = ϕ2y ). At such combinations of the
vortex polarities and chiralities, the DWs do not interact,
since, at any instant of time, the conditions ∆U = 0 and
∆V = 0 are met. In this case, the equations of motion do
not contain the restoring force projection along the x ax-
isand the system is not oscillatory.

The similar effect can be observed in the case of an ac
field applied along the y axis (Figs. 6a and 6b). The cal-
culation of phases for these combinations {p1, p2, q1, q2}
showed that the coordinates U1 and U2 change in time syn-
chronously. This is indicative of the absence of restoring
force along the x axis.

The system behaves differently when the coordinates
U1 and U2 of the vortex centers change in time nonsyn-
chronously. In this case, the generalized force of interac-
tion between the cores has a nonzero projection onto the x
axis. In other words, there is a restoring factor both along
the y axis and along the x axis. Then, the system has all the
features of an oscillatory one and the resonance states in an
ac field are observed. Such combinations are illustrated in
Figs. 5b, 5c, 5d, 6c, and 6d. The insets in the plots show the
directions and phases of the vortex core motion at certain
instants of time.

It is interesting to examine the states with the same chi-
rality, but opposite polarities (Figs. 5c and 6c). When an ac
field is applied along the y axis, the resonance peak is only
observed in a dc field perpendicular to the stripe plane. If
an ac field is applied along the x axis, the resonance is
implemented in any perpendicular fields h. In these states,
the phase shift between the positions of stripe vortex cen-
ters ϕ1x,y −ϕ2x,y depends on the frequency ω of an ac field
and value of dc field h. This dependence is not observed at
the rest {p1, p2, q1, q2} combinations, where there are only
two possible cases: ϕ1x,y − ϕ2x,y = 0 and π. The behavior
of rotational phases of the stripe cores in the investigated
case is shown in Fig. 7.

4 Conclusions In this article we discussed the spe-
cific features of the behavior of vortex domain wall in an
ac magnetic field applied parallel to a pair of magnetostat-
ically interacting stripes and across them. Our analysis and
solution of equations of vortex motion showed that there
exist certain combinations of the polarities and chiralities
of the vortex walls at which there is resonance. Ignoring
the damping, we obtained a simple expression for the re-
sonant frequencies as functions of the vortex polarity, chi-
rality and the value and direction of a dc magnetic field
applied perpendicular to the stripe surface.

The knowledge of the states of interacting vortex walls,
which exhibit the resonance or nonresonance behavior in
ac fields, opens the opportunities for controlling the mag-
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8 :

Figure 5 Dependence of the absorbed power (arb. units) on the ac field frequency. The ac field is applied along the y axis. The curves
are plotted for the parameters ωy = Ω, ωx = ωy , ωΓ = 0.1, and h = 0.1. (a, b) Power for the case of a dc field applied antiparallel to
the z axis (dashed lines). (c, d) Dc field applied parallel and antiparallel to the z axis. (c) Set of curves 1-6 at dc fields of h = 0...0.5
with a step of ∆h = 0.1. Inset: polarity and chirality combinations {p1, p2, q1, q2} for the vortex walls and phases and directions of the
vortex cores. Closed circles show the cores and open circles, the origins of coordinates.

Figure 6 Dependence of the absorbed power (arb. units) on the frequency of ac field applied along the x axis. The curves are built for
the same parameters as in Fig. 5.
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Figure 7 Dependence of the tangent of x-coordinate phase of the magnetic vortex core in stripe 1 (solid curves) and stripe 2 (dotted
lines). Curves 1, 2, and 3 are built for perpendicular fields of h1 = 0.01, h2 = 0.05, and h3 = 0.1, respectively. (a) Plot for the ac field
applied along the y axis, and (b) plot for the ac field applied along the x axis.

netization of parallel stripe arrays. This is of great impor-
tance for the development of data storage devices.

The field dependence of the frequencies of collective
vortex wall motion modes makes these systems candidates
for application in various field sensors and other spintronic
devices. The existence of the states with the resonant fre-
quencies sensitive to the perpendicular field direction (Fig.
5b) offers a promising field for designing sensors capable
of detecting both field value and direction.
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