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Abstract

Polymer dispersed nematic liquid crystal (PDNLC) films with conical bound-

ary conditions at the LC-polymer interface are considered. The conical surface

anchoring with tilt angle 40◦ initiates forming the axial-bipolar director con-

figuration inside nematic droplets. This droplet structure exhibits the strong

scattering of light polarized parallel to the bipolar axis. In the initial state, the

bipolar axes in all droplets are oriented randomly, and therefore PDNLC film

scatters a light of any polarization. Electric field applied along the film plane

orients the bipolar axes unidirectionally in the whole droplet ensemble, that

results in its high polarization-dependent transmittance. Such PDNLC films

can be used in the electrically controllable linear polarizers characterized by

89% value of the transmittance for the perpendicular polarized light and high

extinction ratio 590:1 at the electric field 0.34 V/µm.
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1. Introduction

Polymer dispersed liquid crystals (PDLC) are the polymer films containing

liquid crystal (LC) droplets. This material is flexible and resistant to mechan-

ical stresses. Owing to the optical anisotropy of LC, a light scattering by the

droplet depends on the orientational ordering of the director (the unit vector5

characterizing the preferred orientation of the long axes of LC molecules) and

polarization of incident light [1, 2, 3, 4, 5, 6]. The director configuration in the

droplet is specified by the boundary conditions (surface anchoring), LC material

parameters, droplet shape and size. The orientational structure changes under

the influence of external factors (electric or magnetic fields, temperature, stress10

and so on) which affect the light scattering by LC droplets and, consequently,

the light transmission of PDLC film. For example, the composite films can be

switched from the light scattering state into the transparent one by the electric

field, if the refractive index np of polymer is close to the ordinary refractive

index n⊥ of LC [7, 8, 9, 10, 11].15

LC droplets in the composite films are of the oblate spheroid form with the

minor axis aligned mainly perpendicular to the film plane [12, 13]. Because of

random orientations of the droplets, the transmittance of the whole PDLC film

for normally incident light is independent of its polarization despite the polar-

ization dependence of the light scattered by the individual droplet. For instance,20

the oblate nematic droplets with bipolar configuration (Fig. 1a) scatter the light

polarized parallel to the bipolar axis more intensely than another polarized light

component. However, the uniaxially aligned ensemble of such droplets did not

exhibit high scattering anisotropy [14, 15, 16]. High polarization dependence

of the film transmittance can be obtained by forming an ensemble of prolate25

droplets by the unidirectional stretching of PDLC film [17, 18, 19, 20, 21, 22].

In this case the major axes of all droplets get oriented along the stretching. The

symmetry axis of the bipolar configuration formed at the tangential (planar)

boundary conditions in nematic droplets is aligned along the major axis (Fig.

1b). It results in the strong scattering of the light polarized along the stretching30
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Figure 1: Photos of nematic droplets with the various director configurations taken in the po-

larized light when the polarizer is oriented along (middle row) and perpendicular (bottom row)

to the symmetric axes of the droplets. The bipolar (a) and elongated bipolar (b) configurations

under tangential boundary conditions, the radial (c) and elongated radial (d) structures under

homeotropic boundary conditions, the axial-bipolar configuration (e) under conical boundary

conditions. The schemes of appropriate orientational structures are presented in the top row.

The polarizer’s directions are indicated by the double arrows.

while the PDNLC film is transparent for the light polarized perpendicular to

the stretching if the above-mentioned condition np ∼= n⊥ is valid. Neverthe-

less, small areas of the droplet interface near of the point defects (boojums)

still scatter the perpendicular polarized light component (Fig. 1b, bottom row)

decreasing its transmittance. For example, the extinction ratio (ratio T⊥/T ‖35

of the transmittances for the light polarized perpendicular and parallel to the

stretching, respectively) 420:1 was reached at T⊥ = 0.49 [17]. The similar ef-

fect, but with less transmittance anisotropy, was observed in PDNLC films with

the droplet radial configuration at the homeotropic (perpendicular) surface an-

choring (Fig. 1c) after their stretching (Fig. 1d) [23].40

The electric field applied in PDNLC film plane orients the LC director along

the field. This makes the light polarized along the electric field scatter stronger

than the light with orthogonal polarization [24, 25, 26]. Therefore, the trans-

mittances of light polarized perpendicular and parallel to the applied field as

well as their ratio depend on the voltage. It enables to produce polarizers with45
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the electrically controlled light transmission and polarization degree. Ideally, a

homogeneous director alignment in the unidirectionally oriented LC droplets is

necessary to achieve high polarizer performance.

In PDNLC films with the conical boundary conditions at the LC-polymer

interface, the unique axial-bipolar director configuration is formed inside the50

nematic droplets with a diameter less than 10 µm (Fig. 1e) [27, 28, 29]. The di-

rector distribution in such droplets is much closer to homogeneous one than the

bipolar configuration within the droplets with tangential anchoring (Fig. 1a).

As a result, the significant difference of the droplet textures can be observed

in the light polarized parallel or perpendicular to the bipolar axis (middle and55

bottom rows, respectively, in Fig. 1e). In the middle row the droplet looks

like a dark circle with sharp borders due to mismatching of LC and polymer

refractive indices. Consequently, such a droplet strongly scatters the light po-

larized parallel to the bipolar axis. In contrast, the droplet is almost invisible

in the perpendicular polarized light (bottom row) due to the refractive indices60

matching. In this case the polarized light is not practically scattered by this

droplet.

In this paper we study the electrically controllable transmission of polarized

light by PDNLC films with conical boundary conditions, in which the axial-

bipolar droplets get oriented by an in-plane applied electric field.65

2. Experimental approach

PDNLC films based on the nematic mixture LN-396 (Belarusian State Tech-

nological University) dispersed in poly(isobutyl methacrylate) (PiBMA) (Sigma

Aldrich) have been studied [27]. For the used composition, the conical surface

anchoring of LC is formed with the tilt angle 40◦. The samples were prepared by70

TIPS technology [12] with the weight ratio LN-396 : PiBMA = 60 : 40. During

this process the mixture of LC and polymer was heated to 70 ◦C followed by

cooling to the room temperature for 5 minutes. In the process of phase separa-

tion, a part of the LC remains in the polymer matrix, that leads to a change of
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the polymer refractive index. The phase separation and droplet formation does75

not yet occur at the weight ratio LN-396 : PiBMA = 30 : 70. The refractive

index of such a polymer matrix is np = 1.518. Refractive indices of LC are

n⊥ = 1.52 and n‖ = 1.69. The electrooptical cells were assembled using the

glass substrates with two ITO electrodes separated by the gap of 650 µm on

each substrate (Fig. 2). Such a layout allows applying 1 kHz AC electric field80

in the plane of PDNLC film. The PDNLC films of 15 and 25 µm-thick were

investigated.

AC Voltage
Generator

Digital

Multimeter

Figure 2: Schemes of the optical setup and PDNLC cell to measure polarization characteristics

of the light passed through PDNLC film.

The light transmission was measured by using the optical setup shown in Fig.

2. The circularly polarized light of He-Ne laser (λ = 632.8 nm) (Lasos) focused

by the lens with focal distance 75 mm was incident normally on the sample.85

The diameter of laser beam at the sample is measured by the Laser Beam

Profiler LBP-1 (Newport) and was 320 µm at 13,5% level. The focused laser

beam passed between ITO electrodes through PDNLC film and further through

the Glan-Laser polarizer oriented parallel or perpendicular to the direction of

the applied electric field. The silicon detector with amplifier PDA100A-EC90

(ThorLabs) was used to measure the intensity of transmitted light. The detector

was equipped by the iris stop with angular size 45 minutes corresponding to the
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Figure 3: Microphotos of PDNLC film taken for two analyzer (A) orientations: parallel (a) and

perpendicular (b) to the in-plane applied electric field E. Microscope polarizer is switched-off.

The gap between ITO electrodes is 650 µm.

angular size of laser beam without PDNLC cell. The digital multimeter 34465A

(Keysight) was used to measure the signal from the detector.

3. Results and discussion95

Typical patterns of the studied PDNLC films under the action of in-plane

applied electric field E are shown in Fig. 3. When the analyzer is parallel to

E, the film area between electrodes looks as a dark rectangle due to the strong

scattering of the light polarized along the analyzer because the bipolar droplet’s

axes are oriented along the electric field (Fig. 3a). Conversely, the same area of100

the film is a bright rectangle if the analyzer is orthogonal to E (Fig. 3b). Here.

this occurs because the refractive indices of both film components are matched,

and consequently the light polarized perpendicularly to E does not scatter.

The dependences of PDNLC cells transmittances T‖,⊥ on the applied voltage

are given in Fig. 4a. The transmittances were determined as T‖,⊥= I‖,⊥ /I0,105

respectively, where I0 is light intensity after the Glan polarizer without the

sample, I‖,⊥ are the light intensities after the sample and Glan polarizer for

the parallel (‖) or perpendicular (⊥) orientation of the polarizer to the applied

electric field. AC voltage varies the transmittance of polarized light components.

The optical response of PDNLC cells is not threshold. The 15 µm-thick PDNLC110

film shows considerable changes of light transmission in the range of the applied
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voltage up to 100 V (E ∼= 0.15 V/µm), when T⊥ increases to 80% and T‖

decreases to 0,5%, at that the extinction ratio ER = T⊥/T‖ = 160 : 1 (Fig.

4b). Further voltage increase leads to the smooth growing of T⊥ to 89% and

ER to 590:1 at 220 V (E ∼= 0.34 V/µm). The transmittances of both polarized115

components are less than 1% in the initial state for the cell with PDNLC film of

25 µm thickness. The maximum variation is observed in the 100-200 V range,

in which T⊥ increases from 7% to 62%, at that the extinction ratio ER grows

up to 2581:1. Further increase of voltage results in the growth of T⊥ up to 67%

and the slight decrease of ER to 2300:1 at 260 V (E ∼= 0.4 V/µm).120
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Figure 4: Transmittances of the polarized light components T‖,⊥ (a) and their extinction

ratio ER = T⊥/T‖ (b) depending on the applied voltage U for two cells with PDNLC films

of 15 and 25 µm thickness. The gap between electrodes is 650 µm.

4. Conclusion

The polarization-dependent light transmission of PDNLC cells with the

axial-bipolar director configuration in LC droplets caused by the in-plane ap-

plied voltage has been studied. The electric field decreases the transmittance T‖

of light polarized parallel to its direction and simultaneously increases T⊥ com-125

ponent as the voltage rises. The cells exhibit the high extinction ratio ER and

perpendicular component of transmittance at low values of the control electric

field (less than 0.4 V/µm). For instance, the transmittance 89% for the perpen-

dicular polarized light and high extinction ratio 590:1 have been obtained for the
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15 µm-thick PDNLC film at the electric field 0.34 V/µm. These are record val-130

ues for the electrically controllable linear polarizers based on the light scattering

anisotropy. It should be noted that ER value can be significantly increased if

the thicker films to be used, but then the transmittance T⊥ be reduced.

Thus, PDNLC films with the conical boundary conditions can be effectively

used for the low-voltage controlled linear polarizers and polarization-sensitive135

optical switches.
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