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Abstract 21 

In the Southern United States, the widely distributed loblolly pine contributes greatly to 22 

lumber and pulp production, as well as providing many important ecosystem services. 23 

Climate change may affect the productivity and range of loblolly pine. Nevertheless, we have 24 

insufficient knowledge of the adaptive potential and the genetics underlying the adaptability 25 

of loblolly pine. To address this, we tested the association of 2.8 million whole exome-based 26 

single nucleotide polymorphisms (SNPs) with climate and geographic variables, including 27 

temperature, precipitation, latitude, longitude and elevation data. Using an integrative 28 

landscape genomics approach by combining multiple environmental association and outlier 29 

detection analyses, we identified 611 SNPs associated with 56 climate and geographic 30 

variables. Longitude, maximum temperature of the warm months and monthly precipitation 31 

associated with most SNPs, indicating their importance and complexity in shaping the genetic 32 

variation in loblolly pine. Functions of candidate genes related to terpenoid synthesis, 33 

pathogen defense, transcription factors and abiotic stress response. We provided evidence that 34 

environment-associated SNPs also composed the genetic structure of adaptive phenotypic 35 

traits including height, diameter, metabolite levels and expression of genes. Our study 36 

promotes understanding of the genetic basis of local adaptation in loblolly pine, and provides 37 

promising tools for selecting genotypes adapted to local environments in a changing climate. 38 
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1 | INTRODUCTION 42 

Loblolly pine comprises 80% of the planted forestland and over one half of the standing 43 

volume in the Southern U.S. (Wear, Huggett, Li, Perryman, & Liu, 2013). The natural habitat 44 

of loblolly pine ranges from East Texas to central Florida and north to Southern New Jersey, 45 

demonstrating adaptability to various types of soil and growing conditions. Successful forest 46 

plantations rely on the selection of appropriate seed sources. The seed transfer guidelines for 47 

southern pines emphasize three key points: 1) low temperature to the north and low rainfall to 48 

the west limit the distribution of southern pines; 2) the annual average minimum temperature 49 

is the most important climate variable related to growth and survival; 3) for loblolly pine, 50 

seeds from east of the Mississippi River should not be used in the west because of the higher 51 

danger of losses due to droughts (Schmidtling, 2003). 52 

As the climate changes, traditional seed selection guidelines may need to be adjusted to 53 

select for robust genotypes adapted to a changing climate scenario. An altered temperature 54 

and precipitation pattern threatens forests with droughts, fires and pathogen outbreaks, 55 

eventually leading to damage to the quality and yield of wood produced (Allen et al., 2010). 56 

Landscape genomics methods have been applied to explore the genetic basis of local 57 

adaptation in loblolly pine. The main objectives of these studies were to identify the 58 

environmental factors that have shaped the adaptive genetic variation and the gene variants 59 

that drive local adaptation (Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 2015; Sork et 60 

al., 2013). Eckert et al. (2010a) found five loci correlated with aridity and identified 24 loci as 61 
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FST outliers in loblolly pine. Eckert et al. (2010b) also found several well-supported loblolly 62 

pine SNPs associated with principal components corresponding to geography, temperature, 63 

growing degree-days, precipitation and aridity. Chhatre, Byram, Neale, Wegrzyn and 64 

Krutovsky (2013) detected SNPs as candidates for diversifying and balancing selection in 65 

natural and breeding loblolly pine populations in East Texas. Despite of the application of 66 

multiple methods, the size and complexity of conifer genomes limit the progress to further 67 

dissect the genetic basis of local adaptation. 68 

In the current study, we aimed to discover more loci and genes with signatures of natural 69 

selection and incorporated phenotypic data into environmental adaption analyses to improve 70 

insight. We have discovered 2.8 million SNPs using whole exome sequencing from a clonally 71 

propagated association mapping loblolly pine population (Lu et al., 2016; Lu et al., 2017; Lu, 72 

Seeve, Loopstra, & Krutovsky, 2018). This population represented diverged ecophysiological 73 

regions across 12 states in the Southern U.S., extending from Texas to Virginia. Loblolly pine 74 

populations have shown adaptation to environment based on the geographic distributions of 75 

traits. For example, loblolly pines from west of the Mississippi River are slower growing, but 76 

more resistant to fusiform rust, drought and crowding than trees from east of the Mississippi 77 

River (Schmidtling, 1988; Schmidtling & Froelich, 1993; Wells, 1985). We examined 78 

associations of 2.8 million whole exome-based SNPs with climate and geographic variables in 79 

328 loblolly pine trees using a landscape genomics approach integrating multiple analysis 80 

methods. We detected SNPs associated with both adaptive phenotypic traits and 81 



 5 

climate/geographic variables, and identified candidate genes that contribute to local 82 

adaptation in loblolly pine. The results can help determine how selection affects the genetic 83 

architecture of adaptive traits. The identified loci and genes can contribute to rapid selection 84 

of genotypes with adaptive potential to climate change. 85 

2 | MATERIALS AND METHODS 86 

2.1 | Genotypic data 87 

The loblolly pine population used in this study and the process of obtaining genotyping data 88 

were previously described in Lu et al. (2017). Briefly, we analyzed 328 trees with a clearly 89 

known origin. They were divided into 3 regions as described by Schmidtling (2001): 1) 304 90 

trees representing the eastern region, including states east of the Mississippi River; 2) 13 trees 91 

representing the western region, including the states of Arkansas and Louisiana; 3) 11 trees 92 

representing the far west region, including the states of Texas and Oklahoma. 93 

2.2 | Climate and geographic data 94 

Climate and geographic data for each tree in the population were the same as in Eckert et al. 95 

(2010a). The data were originally gathered from the WORLDCLIM 2.5-min geographical 96 

information system (GIS) layer using Diva-GIS v.5.4 (Hijmans, Cameron, Parra, Jones, & 97 

Jarvis, 2005). The dataset contained a total of 58 variables, including latitude, longitude, 98 

elevation, average minimum and maximum temperature for each month, average precipitation 99 
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for each month, and 19 bioclimatic variables. The bioclimatic variables are summary statistics 100 

of precipitation and temperature. For example, BIO1 represents annual mean temperature, and 101 

BIO12 represents annual precipitation. Details of these 19 bioclimatic variables are presented 102 

in Table S1. The JMP Pro 12 statistical software (SAS Institute, Cary, NC) was used to 103 

display the variation of climate variables across the counties. A principle component analysis 104 

(PCA) of these variables was carried out using the prcomp function in R (R_Core_Team, 105 

2017). The PCA was visualized by the R package ggbiplot 106 

(https://github.com/vqv/ggbiplot/tree/experimental). 107 

2.3 | Environmental associations and outlier analyses 108 

Multiple approaches were employed to discover the loci associated with climate and 109 

geographic variables. The process is schematically summarized in Figure 1. Specifically, we 110 

studied association between 2.8 million SNPs and climate/geographic variables using 111 

TASSEL 5.0 (Bradbury et al., 2007). The procedure was the same as previously described in 112 

Lu et al. (2017). In addition, two outlier detection methods were employed to detect loci 113 

under selection and potentially involved in local adaption. One method is the spatial ancestry 114 

analysis (SPA), which identifies SNPs with significant gradients in allele frequency (Yang, 115 

Novembre, Eskin, & Halperin, 2012). The geographical location (longitude and latitude) 116 

information for each tree was supplied as the “--location-input”. SNPs with SPA scores above 117 

the 99.9% percentile were considered as outliers. Another outlier detection method was 118 

https://github.com/vqv/ggbiplot/tree/experimental
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implemented by the OutFLANK software (Whitlock & Lotterhos, 2015). It infers the FST 119 

distribution for a large set of loci and identifies the loci that may contribute to a significant 120 

local differentiation and potential adaptation. A Q-value of 0.05 was applied to detect outliers. 121 

Following the program recommendation, 1,323,910 SNPs with a minor allele frequency 122 

(MAF) >= 0.05 were used for the SPA and OutFLANK analyses. 123 

We used multivariate analysis to identify the significance of climate in structuring genetic 124 

diversity among the outlier SNPs. The multivariate relationships were examined using the 125 

redundancy analysis (RDA) implemented in the R package vegan (Oksanen et al., 2017; 126 

R_Core_Team, 2017). We estimated the proportion of SNP variation explained by only 127 

climate variables using a partial redundancy analysis (pRDA), in which the effects of climate 128 

variables were conditioned on the effects of geography. Statistical significance of the pRDA 129 

estimates was assessed using a permutation-based analysis of variance (ANOVA). 130 

Association of the outlier loci with climate and geographic variables was analyzed using 131 

the Samβada software (Stucki et al., 2017). This software is based on the logistic regression 132 

model and assesses whether the allelic variation correlates with specific environmental 133 

variables. Spatial association due to population structure is accounted for by measuring 134 

indices of spatial autocorrelation. In this study, the parameters for Samβada analysis were set 135 

up as: spatial autocorrelation was measured along longitude and latitude using spherical 136 

coordinate and 20 nearest neighbors; both global and local autocorrelation of loci were 137 

included, and the significance was assessed with 1,000 permutations. The detection of 138 
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selection signatures was based on univariate models and the threshold for screening 139 

significant models was set to 1%. 140 

We searched for SNPs associated with both adaptive phenotypic traits and 141 

climate/geographic variables to better understand how selection pressures shape the genetic 142 

structures underlying local adaptation. Using the same SNP set and population, we previously 143 

found SNP associations with such adaptive phenotypic traits as specific leaf area, branch 144 

angle, height, diameter, crown width, carbon isotope discrimination, and nitrogen content (Lu 145 

et al., 2017). We also found SNP associations with metabolite levels and expression of wood 146 

development- and stress resistance-related genes (Lu et al., 2018). In this study, we focused 147 

on SNPs that have associations with both climate/geographic variables and adaptive 148 

phenotypic traits. The JMP Pro 12 statistical software (SAS Institute, Cary, NC) was 149 

employed to display the variation of climate/geographic variables, genotypes, and phenotypic 150 

traits. 151 

The annotation for genes that contain identified SNPs was obtained from loblolly pine 152 

gene annotation files available on 153 

https://treegenesdb.org/FTP/Genomes/Pita/v1.01/annotation/ (Wegrzyn et al., 2014). The 154 

regulatory sequences including promoters, enhancers and silencers have not yet been 155 

identified. SNPs within 5000 bp downstream or upstream of a gene were considered to be 156 

within a putative regulatory sequence of the gene. If a SNP is located in a region without 157 

annotation, the flanking sequence 700 bp upstream and downstream of the SNP was used as a 158 



 9 

query to do a blastx search against the entire National Center for Biotechnology Information 159 

(NCBI) nonredundant (nr) protein database (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The 160 

VCFtools software (Danecek et al., 2011) was used to calculate the MAF. 161 

3 | RESULTS 162 

3.1 | Climate variation in the loblolly pine natural range 163 

Among the counties of origin for the studied trees, the annual mean temperature (BIO1) 164 

demonstrated a decreasing trend from South to North (Figure 2a). The annual precipitation 165 

(BIO12) was higher in Louisiana, Mississippi and Alabama than in other regions (Figure 2b). 166 

Maximum temperature of the warmest month (BIO5) and mean temperature of the driest 167 

quarter (BIO9) were higher in the western and far west regions (Figure S1). Mean 168 

temperature of the wettest quarter (BIO8), precipitation seasonality (BIO15), and precipitation 169 

of wettest and warmest quarter (BIO16 & BIO18) were higher in the eastern region. 170 

Precipitation of the coldest quarter (BIO19), driest month (BIO14), and driest quarter 171 

(BIO17) were higher in Louisiana, Mississippi and Alabama compared with other states. 172 

Along South to North, minimum temperature of the coldest month (BIO6) and mean 173 

temperatures of the warmest and coldest quarters (BIO10 & BIO11) decreased, while 174 

temperature seasonality (BIO4) and annual temperature range (BIO7) increased. The PCA of 175 

the climate variables showed different climate conditions among the counties of origin for the 176 

studied trees (Figure 3). The first PC was mainly correlated with temperature variables, 177 
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explaining 62.6% of the variation of the climate variables. The second PC was mainly 178 

correlated with precipitation variables, explaining 21.4% of the variation of the climate 179 

variables. 180 

3.2 | SNPs associated with climate and geographic variables 181 

We identified 503 associations, including 49 climate/geographic variables and 293 SNPs 182 

(Table S2). Among them, 297 associations involved temperature variables, 174 - precipitation 183 

variables, 21 - elevation, and 11 - latitude. The MAF of the identified SNPs were between 184 

0.01 and 0.5 with a median of 0.02. Among the 293 SNPs, 199 were in 195 annotated genes. 185 

Specifically, 3 SNPs (2%) were in 3’ regulatory sequences (3’ RS), 9 (4%) in 5’ RS, 118 186 

(59%) in coding sequences (CDS), 59 (29%) in introns, 5 (3%) in 5’ untranslated regions (5’ 187 

UTR), and 5 (3%) in 3’ UTR. The remaining SNPs were in unclassified or intergenic regions. 188 

Most identified SNPs were associated with multiple variables. For example, the SNP 189 

tscaffold3881_229913 was associated with latitude, 3 precipitation variables, and 25 190 

temperature variables. This SNP resides in the CDS of a gene encoding EARLY 191 

FLOWERING 3-like protein, which is a circadian clock protein playing key roles in 192 

adaptation of plants to diurnal environmental conditions. 193 

3.3 | Outlier SNPs 194 

We found that 1,324 SNPs showed large gradients in allele frequency based on the SPA 195 

analysis (Table S3). Among them, 1,099 SNPs resided in 381 annotated genes. Specifically, 196 
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43 SNPs (4%) resided in 3’ RS, 68 (6%) in 5’ RS, 548 (50%) in CDS, 380 (35%) in introns, 197 

14 (1%) in 5’ UTR, and 46 (4%) in 3’UTR. The other SNPs resided in unclassified or 198 

intergenic regions. The annotated genes PITA_000021128 and PITA_000021125 contained 199 

the most outlier SNPs, 38 and 27, respectively. These two genes encode the ent-copalyl 200 

diphosphate synthase, and the abietadienol/abietadienal oxidase-like protein, respectively. 201 

Both genes participate in terpenoid synthesis and contribute to conifer defense against 202 

herbivores and pathogens. 203 

We also identified 242 SNP outliers using the OutFLANK software (Table S4). Among 204 

them, 189 SNPs resided in 128 annotated genes. Specifically, 8 SNPs (4%) resided in 3’ RS, 205 

11 (6%) in 5’ RS, 120 (64%) in CDS, 44 (23%) in introns, 2 (1%) in 5’ UTR, and 4 (2%) in 206 

3’UTR. The remaining SNPs resided in unclassified or intergenic regions. The annotated 207 

genes PITA_000091177, PITA_000064023, and PITA_000040532 contained the most outlier 208 

SNPs. These three genes encode a LRR receptor-like serine/threonine-protein kinase, a bHLH 209 

transcription factor, and a protein of unknown function. 210 

We found 33 loci identified by both SPA and OutFLANK software (Table S5). The MAFs 211 

of these 33 loci ranged between 0.06 and 0.47 with a median of 0.21. These 33 loci resided in 212 

12 annotated genes encoding proteins that include the leucine-rich repeat receptor-like 213 

serine/threonine-protein kinase, the bHLH transcription factor, oxidoreductase, and an 214 

EARLY FLOWERING 3-like protein. 215 

3.4 | Multivariate analyses of the identified SNP outliers 216 
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The pRDA model confirmed that the outlier SNPs are significantly correlated (P < 0.001) 217 

with climate and geography. Climate and geography alone explained 50% and 1% of the SNP 218 

outliers’ variance, respectively. However, the remaining proportion of variance was rather 219 

large due to the joint effect of climate and geography demonstrating their interactive influence 220 

on the SNP variation. We plotted a pRDA biplot graph to visualize important climate and 221 

geographic variables shaping the genetic variation (Figure S2). In general, precipitation 222 

variables dominated the pRDA axis 1. The most important variables in explaining variation of 223 

SNP outliers along the pRDA axis 1 were average precipitation in January, February, March, 224 

April and December, precipitation of the driest quarter (BIO17), mean temperature of the 225 

wettest quarter (BIO8), mean diurnal range (BIO2), and precipitation of the driest month 226 

(BIO14). 227 

3.5 | Outlier SNPs associated with climate and geographic variables 228 

We identified 1,790 associations between 323 SNP outliers and 47 climate/geographic 229 

variables using the Samβada software (Table S6). Among them, 963 associations were related 230 

to temperature, 476 to precipitation, 41 to latitude and 310 to longitude. The outlier SNPs 231 

associated with environment had MAFs between 0.05 and 0.49 with a median of 0.21, 232 

residing in 250 annotated genes. 233 

Taken together, we identified 611 unique SNPs associated with 56 climate and geographic 234 

variables (“environmental SNPs” - envSNPs) using either the TASSEL or Samβada software. 235 
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Only two variables, precipitation seasonality (BIO15) and precipitation of the driest quarter 236 

(BIO17) were not found to be associated with any SNP. Of the other variables, longitude was 237 

associated with the most SNPs (310), followed by maximum temperature of August (206), 238 

precipitation of May (168), maximum temperature of July (159), maximum temperature of the 239 

warmest month (BIO5) (155), precipitation of November (107), maximum temperature of 240 

September (76), mean temperature of the driest quarter (BIO9) (76), precipitation of 241 

December (67), maximum temperature of June (59), and mean temperature of the warmest 242 

quarter (BIO10) (59) (Figure 4). 243 

We categorized genes containing the 611 envSNPs into four main functional groups: 1) 244 

terpenoid synthesis, 2) pathogen and disease defense, 3) transcription factors, and 4) abiotic 245 

stress response (Tables 1 and S7). Among the 611 envSNPs, five SNPs 246 

(scaffold10517.2_56785, scaffold674735_1427, scaffold721455_39357, 247 

tscaffold3881_229913, tscaffold551_336950) were detected by both software. They resided 248 

in the following four annotated genes: PITA_000048497, PITA_000060878, 249 

PITA_000004436, and PITAhm_001489, which encode an abietadienol/abietadienal oxidase-250 

like protein, a myrcene synthase or terpene synthase metal-binding domain protein, an 251 

EARLY FLOWERING 3-like protein, and a DEAD/DEAH box helicase domain protein. 252 

3.6 | SNPs associated with both climate/geographic variables and adaptive 253 

phenotypic traits 254 
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We identified five envSNPs associated with both height and diameter, 10 with height only, 255 

114 with 27 metabolite levels, and 242 with expression levels of 47 genes (Tables 2, S8 and 256 

S9). For example, 54 envSNPs associated with arachidic acid levels, and more than 60 257 

envSNPs associated with the expression levels of ANR and NCED genes. 258 

We combined genomic, phenotypic and climate/geographic data to analyze adaptive 259 

genetic variation. For example, we found the envSNP scaffold10517.2_56785 (identified by 260 

both association and outlier detection methods) correlated with expression levels of the ANR 261 

and NCED genes. The expression levels of these two genes also correlated with precipitation 262 

of May (Figure 5a). The ANR gene encodes an anthocyanidin reductase, which is important 263 

for the biosynthesis of condensed tannins (Xie, Sharma, Paiva, Ferreira, & Dixon, 2003). The 264 

NCED gene encodes a 9-cis epoxycarotenoid dioxygenase, which prepares precursors for 265 

synthesis of abscisic acid (ABA) (Tan et al., 2003). ABA is a key regulator of seed 266 

development, root growth, stomatal aperture and plant responses to water stress. The envSNP 267 

scaffold10517.2_56785 resided in a gene encoding an abietadienol/abietadienal oxidase-like 268 

protein, which is a multifunctional and multisubstrate cytochrome P450 monooxygenase that 269 

contributes to conifer defense by generating an enormous structural diversity of plant 270 

terpenoid secondary metabolites (Ro, Arimura, Lau, Piers, & Bohlmann, 2005). Individuals 271 

with the AA genotype tended to have low expression of the ANR gene and high expression of 272 

the NCED gene (Figure 5b). They were common in counties with low precipitation in May. 273 

On the contrary, individuals with the GG genotype had high expression of the ANR gene, and 274 
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low expression of the NCED gene. They were common in counties with high precipitation in 275 

May. Individuals with the AG genotype were common in counties with medium precipitation 276 

in May, and the expression of the ANR and NCED genes did not differ much from the 277 

individuals with the AA genotypes. Precipitation in May positively correlated with the ANR 278 

gene expression level (r = 0.4, P < 0.0001) and negatively correlated with the NCED gene 279 

expression level (r = -0.2, P=0.0005). 280 

4 | DISCUSSION 281 

We identified 611 envSNPs associated with 56 climate and geographic variables. Longitude, 282 

maximum temperature of the warm months and monthly precipitation associated with most 283 

envSNPs. The identified envSNPs resided in genes related to terpenoid synthesis, pathogen 284 

and disease defense, transcription factors and abiotic stress response. We also found that some 285 

envSNPs composed the genetic structure of adaptive phenotypic traits including height, 286 

diameter, metabolite levels and expression of genes. 287 

4.1 | Comparison of multiple analysis methods 288 

Combining environmental association analyses with outlier detection methods is a desirable 289 

way to reduce the rate of false positives and assess the relevance of findings in landscape 290 

genomic research (Le Corre & Kremer, 2012; Rellstab et al., 2015), but each method has its 291 

strengths and weaknesses. TASSEL exploits the genomic diversity at a very high resolution, 292 

hence it is sensitive for detecting associations even for SNPs with low MAFs. In this study, 293 
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among the 293 envSNPs that demonstrated significant associations with climate and 294 

geographic variables detected by TASSEL, 72% had a MAF less than 0.05. Associations 295 

could be due to linkage disequilibrium with the functional loci and hence not directly 296 

involved in environmental adaptation. The SPA and OutFLANK software detect SNPs under 297 

strong selection. To apply these two methods, loci with low MAFs (< 0.05) were removed 298 

due to a probable high sampling variance, which may negatively affect the power of models. 299 

This is especially critical for OutFLANK, because the distribution of FST for loci with low 300 

MAFs is very different from that for loci with more equal allele frequencies (Whitlock & 301 

Lotterhos, 2015). The MAFs of SNPs detected by SPA ranged from 0.06 to 0.5 with a median 302 

of 0.36. The MAFs of SNPs detected by OutFLANK ranged from 0.05 to 0.47 with a median 303 

of 0.07. Since most adaptation related traits are polygenic with small allele frequency changes 304 

at many loci (Le Corre & Kremer, 2012; Mackay, Stone, & Ayroles, 2009), SPA and 305 

OutFLANK would miss those loci under weak selection. Additionally, SPA and OutFLANK 306 

cannot identify the specific factors that drive selection. To further determine the selective 307 

factors, the Samβada software was applied to associate climate and geographic variables with 308 

SNP outliers while taking into account spatial autocorrelation. The Bonferroni correction 309 

implemented in the current Samβada software may be overly-conservative and may result in 310 

overlooking potentially adaptive loci (Stucki et al., 2017). We applied the multivariate 311 

approach RDA to examine the relationship between climate/geographic variables and genetic 312 

variation of the outlier SNPs. We identified precipitation factors as the important drivers for 313 
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local adaption. However, the joint effect of climate and geography due to collinearity 314 

comprises 49% of the SNP outlier variance. The strong pattern of collinearity could skew the 315 

results (Rellstab et al., 2015). 316 

The overlap rate among the SNPs detected by different software was relatively low. 317 

Among the 1324 and 242 SNP outliers detected by SPA and OutFLANK, respectively, only 318 

33 SNPs were the same. Among the 293 and 323 envSNPs identified by TASSEL and 319 

Samβada, respectively, only 5 envSNPs were the same. Different assumptions and models 320 

applied in different software cause the relatively low numbers of consensus envSNPs. The 321 

low consistency across different genome scan methods was also reported previously (de 322 

Villemereuil, Frichot, Bazin, François, & Gaggiotti, 2014). There is no single widely accepted 323 

statistical approach (Rellstab et al., 2015). Integrating multiple methods and compiling all 324 

possible results can provide more reliable information for downstream analyses. Follow-ups 325 

are needed to validate the detected adaptive loci and genes using independent populations, 326 

knockout mutants, common garden, and reciprocal transplant experiments (Rellstab et al., 327 

2015). 328 

4.2 | Evidence of selection by environment 329 

The identified SNP-environment associations helped us recognize the climate and geography 330 

variables that have shaped the genetic variation. We found that longitude, maximum 331 

temperature of the warm months and monthly precipitation were variables associated with the 332 
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most envSNPs (Figure 4). They acted as selective factors driving loblolly pine local 333 

adaptation. Although the seed transfer guidelines advised the yearly average minimum 334 

temperature as the most important climate variable for southern pines (Schmidtling, 2003), 335 

the current study highlights the importance and complexity of maximum temperature of the 336 

warm months and monthly precipitation in shaping the genetic variation underlying loblolly 337 

pine adaptability. A significant increase in the number of consecutive days exceeding 35°C (a 338 

metric used as a measure of heat waves) and a decline in the net water supply availability are 339 

expected over the next decades, particularly in the western part of the loblolly pine range 340 

(Kunkel et al., 2013; Sun et al., 2013). In a rapid climate change scenario, if adaptation of 341 

loblolly pine cannot match the increased heat and drought conditions, the productivity and 342 

thus the economic and ecological profits will be greatly damaged. Selecting and planting 343 

genotypes adapted to the changing climate may reduce losses in loblolly pine plantations. 344 

The identified candidate genes directly or indirectly related to abiotic or biotic stress 345 

response, including four functional groups: 1) terpenoid synthesis, 2) pathogen and disease 346 

defense, 3) transcription factors, and 4) abiotic stress response (Tables 1 and S7). For 347 

example, genes encoding the myrcene synthase and cytochrome P450 are in the terpenoid 348 

biosynthesis pathway. Terpenes offer chemical defense against herbivores and pathogens in 349 

conifers. The gene encoding a LRR receptor-like serine/threonine-protein kinase is related to 350 

pathogen and disease resistance. The transcription factors bHLH and MADS-box regulate 351 

downstream defensive and developmental reactions. Other genes are related to responses to 352 
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abiotic stresses, including stresses from UV, salt, drought, nitrogen, cold, heat, oxidation and 353 

wounding. These stress response genes contribute to the genetic structure of loblolly pine 354 

adaptability, conferring mitigation and adaptation potential in diverse environments. Five 355 

genes related to loblolly pine adaptability and detected in the current study were also reported 356 

earlier in Eckert et al. (2010a). These consistently detected genes encode the MATE efflux 357 

family protein, a methyltransferase, a translation initiation factor, an ubiquitin, and an auxin 358 

responsive protein. They are associated with multiple climate and geographic variables 359 

including longitude, monthly precipitation and average maximum monthly temperature. For 360 

example, the gene encoding the MATE efflux family protein was previously identified to 361 

correlate with aridity (Eckert et al., 2010a). In the current study, this gene was found to be 362 

associated with average maximum temperature in February and March, precipitation in 363 

January, February, April, June, November and December, mean temperature of the driest 364 

quarter (BIO9), annual precipitation (BIO12) and precipitation of the coldest quarter (BIO19). 365 

The MATE efflux family proteins play important roles in a wide range of biological 366 

processes, such as transporting secondary metabolites, regulating disease resistance and 367 

detoxifying toxic compounds (Liu, Li, Wang, Gai, & Li, 2016). These consistently detected 368 

genes are strong candidates underlying loblolly pine adaptability. 369 

Combining environmental association analyses with dissection of phenotypic traits can 370 

greatly improve our understanding of the genetic basis of local adaptation. Talbot et al. (2017) 371 

reported that loci with local adaptation signatures in loblolly pine were also linked to gene 372 
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expression traits for lignin development and whole-plant traits. In our study, more 373 

associations between loci with local adaption signatures and adaptive phenotypic traits were 374 

detected due to the application of 2.8 million SNPs. The loci with local adaption signatures 375 

correlated with height, diameter, metabolite levels, and expression of genes. These results 376 

indicate that genes underlying adaptive phenotypic traits are likely involved in adaptability to 377 

the environment. These candidate genes need to be further tested in validation populations 378 

located in different environments. 379 

5 | CONCLUSION 380 

We identified 611 SNPs associated with 56 climate and geographic variables using an 381 

integrative landscape genomics approach by combining association analyses with outlier 382 

detection analyses. Longitude, maximum temperature of the warm months and monthly 383 

precipitation associated with most SNPs, indicating their importance and complexity in 384 

shaping the genetic variation underlying loblolly pine adaptability. The identified SNPs 385 

resided in genes related to terpenoid synthesis, pathogen and disease defense, transcription 386 

factors and abiotic stress response. We provided evidence that environment-associated SNPs 387 

(envSNPs) also composed the genetic structure of adaptive phenotypic traits including height, 388 

diameter, metabolite levels and expression of genes. The climate trend in the loblolly pine 389 

range -- increasing heat and drought -- pose challenges for breeding loblolly pine adapted to 390 

the planting environment. Our study provides envSNPs and candidate genes to facilitate 391 
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elucidation of the genetic architecture of environmental adaptation in loblolly pine. The 392 

knowledge can be applied in breeding loblolly pine trees adapted to the future local 393 

environment. 394 
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