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Abstract: 

The range-wide genetic structure of the highly productive and valuable 
timber species Sequoia sempervirens (D. Don) Endl. is still insufficiently 
studied, although published data based on different genetic markers 
(nuclear and chloroplast microsatellites, AFLP, RFLP and isozymes) 
demonstrated relatively low population structure. However, more genetic 
markers are needed to increase the efficiency of population genetic studies 
in coast redwood. Therefore, we developed seven nuclear and five 
chloroplast microsatellite or simple sequence repeat (SSR) markers based 
on expressed sequence tags (ESTs) and complete chloroplast genome 
sequence, respectively. All selected markers were tested in a range-wide 
sample representing trees from 16 locations. They are highly polymorphic 
microsatellite loci with number of alleles ranging from 3 to 17, and number 
of effective alleles from 1.1 to 2.48. Coast redwood is a hexaploid species, 
and its chloroplasts are paternally inherited. Therefore, the chloroplast SSR 
(cpSSR) markers are especially useful for this species, because their 
genotyping is not affected by nuclear genome ploidy. Moreover, they 
showed high gene diversity for each locus within and across all populations 
and can be used to study range-wide population genetic structure, pollen 
based gene flow and long distance gene transfer. Coast redwood can 
propagate clonally, and nuclear polymorphic EST-SSRs can be used for 
clonal identification. They are linked with expressed genes and their 
variation can reflect variation in genes under selection, including those that 
could be potentially important for local adaptation of coast redwood 
considering the threat of climate change. 
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Abstract 20 

The range-wide genetic structure of the highly productive and valuable timber species 21 

Sequoia sempervirens (D. Don) Endl. is still insufficiently studied, although published data 22 

based on different genetic markers (nuclear and chloroplast microsatellites, AFLP, RFLP and 23 

isozymes) demonstrated relatively low population structure. However, more genetic 24 

markers are needed to increase the efficiency of population genetic studies in coast 25 

redwood. Therefore, we developed seven nuclear and five chloroplast microsatellite or 26 

simple sequence repeat (SSR) markers based on expressed sequence tags (ESTs) and 27 

complete chloroplast genome sequence, respectively. All selected markers were tested in a 28 

range-wide sample representing trees from 16 locations. They are highly polymorphic 29 

microsatellite loci with number of alleles ranging from 3 to 17, and number of effective 30 

alleles from 1.1 to 2.48. Coast redwood is a hexaploid species, and its chloroplasts are 31 

paternally inherited. Therefore, the chloroplast SSR (cpSSR) markers are especially useful for 32 

this species, because their genotyping is not affected by nuclear genome ploidy. Moreover, 33 
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they showed high gene diversity for each locus within and across all populations and can be 34 

used to study range-wide population genetic structure, pollen based gene flow and long 35 

distance gene transfer. Coast redwood can propagate clonally, and nuclear polymorphic EST-36 

SSRs can be used for clonal identification. They are linked with expressed genes and their 37 

variation can reflect variation in genes under selection, including those that could be 38 

potentially important for local adaptation of coast redwood considering the threat of climate 39 

change. 40 

 41 

Keywords: coast redwood, Sequoia sempervirens, cpSSR, EST-SSR, microsatellites 42 

 43 

Introduction 44 

The natural distribution of coast redwood (Sequoia sempervirens (D. Don) Endl.) extends 45 

along the pacific coast of northern California to southern Oregon (Roy, 1966). It is an 46 

important timber species, but there are only a few studies concerning its range-wide genetic 47 

variation and differentiation (Hall and Langenheim, 1987; Brinegar, 2011; Douhovnikoff and 48 

Dodd, 2011). All these studies found relatively low genetic differentiation among analysed 49 

populations. On the contrary, fine scale and individual clone differentiations were highly 50 

significant (Rogers, 2000; Douhovnikoff et al., 2004; Ibañez et al., 2009; Narayan et 51 

al., 2015). It seems that more genetic markers are needed to increase the efficiency of 52 

population genetic studies in coast redwood. We used publicly available expressed sequence 53 

tag (EST) and complete chloroplast genome sequence data to develop new microsatellite or 54 

simple sequence repeat (SSR) markers for coast redwood. 55 

 56 

Experimental 57 

Needles from 309 trees in 16 locations were collected within the natural distribution range 58 

of coast redwood in central and northern California (Online Supplementary 1). The collected 59 

needles were dried on silica gel. DNA was extracted from two needles per sample using the 60 

DNeasy 96 Plant Kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions. 61 

The extracted DNA was diluted in ddH2O 1:10 for PCR and stored at -20 °C. 62 

Possible microsatellite motifs were found by search for dinucleotide and trinucleotide 63 

SSR-motifs for EST-SSRs in the transcriptome data of Scott et al. (2016) and for all SSR-motifs 64 
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in the complete chloroplast genome sequence (NCBI GenBank accession number 65 

NC_030372.1) using the SciRoko program (Kofler et al., 2007). Primer3 0.4.0 (Untergasser et 66 

al., 2012) was used to design the PCR primer pairs and oligoCalc (Kibbe, 2007) to check for 67 

possible dimers and hairpins. In total, 57 primer pairs for different SSR-motifs were tested. 68 

The EST-SSR forward primers were labelled with either Hex or 6-FAM (Error! Reference 69 

source not found.). Following Schuelke (2000), PCRs for cpSSRs were performed with 5’ 70 

tailed 6-FAM dye-labelled M13 (5’-CACGACGTTGTAAACGAC-3’) forward and PIG-tailed (5’-71 

GTTTCTT-3’) reverse primers (Kubisiak et al., 2013). 72 

For all 12 primer pairs the following touch-down PCR program was used. First 73 

denaturation at 94 °C for 15 min, followed by 17 cycles with denaturation at 94 °C for 1 min, 74 

annealing at 67 °C for 1 min and elongation at 72 °C for 1 min, after each cycle the annealing 75 

temperature was decreased by 1 °C, followed by 18 cycles with the annealing temperature 76 

at 50 °C for 1 min. 77 

PCR products were separated using the ABI genetic analyser 3130xl with GENSCAN ROX 78 

500 as the internal size standard. GeneMapper 4.1. (Applied Biosystems) was used for 79 

visualization of the PCR products. 80 

We finally selected seven EST-SSRs that were genotyped following the procedure for 81 

selecting reliable and consistently reproducible alleles suggested in Pfeiffer et al. (2011). In 82 

total, 270 and 297 samples were genotyped for the EST-SSR and the cpSSR markers, 83 

respectively. For each locus number of alleles (Na), number of effective alleles (Ne), Shannon 84 

Index (I), Nei’s total gene diversity (Ht) and Nei’s within population gene diversity (Hs) was 85 

calculated. 86 

For the EST-SSR markers Na and I were calculated using the R-package “polysat” for 87 

polyploid species (Clark et al., 2011), and the converted binary input file was used to 88 

calculate Ht and Hs with the PopGene (Yeh et al., 1997) and Ne with the GenAlEx (Peakall and 89 

Smouse, 2006; Peakall and Smouse, 2012) programs. The cpSSRs were analysed using 90 

GenAlEx (Na, Ne and I) and the R-package “hierfstat” (Ht and Hs) (Goudet and Jombart, 2015). 91 

 92 

Discussion 93 

The program SciRoKo identified 76 microsatellites with dinucleotide motif, six with 94 

trinucleotide motif in ESTs, and six microsatellites with a dinucleotide motif in the 95 

chloroplast genome. From all EST-SSRs one with trinucleotide and six with dinucleotide 96 
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motifs and among six cpSSRs five dinucleotide motifs were reliable and polymorphic, and 97 

thus were selected for further analysis (Error! Reference source not found.). The number of 98 

alleles ranged from 5 to 17 for EST-SSRs and from 3 to 10 for cpSSRs, number of effective 99 

alleles from 1.02 to 1.25 for EST-SSRs) and from 1.14 to 2.48 for cpSSRs), Shannon index 100 

from 0.21 to 2.19 for EST-SSR and from 0.19 to 0.97 for cpSSRs, gene diversity from 0.02 to 101 

0.19 for EST-SSRs and from 0.10 to 0.65 for cpSSRs (Error! Reference source not found.). 102 

Due to the use of binary data to compute Ht and Hs for EST-SSRs, these parameters of gene 103 

diversity cannot be directly compared between EST-SSRs and cpSSRs (Nybom 2004). 104 

As expected, EST-SSRs showed lower number of alleles than the published random 105 

nuclear SSRs (nSSRs) (Douhovnikoff and Dodd, 2011; Narayan et al., 2015), which was 106 

observed also earlier in other plants including conifers (e.g., Euyal et al., 2001; Rungis et al., 107 

2004), supposedly because EST-SSRs are linked with expressed genes and can be under 108 

selection (Bouk and Vision, 2007). 109 

The already published cpSSR Seq21 marker (Brinegar, 2011) showed more alleles and a 110 

higher Shannon Index than the new cpSSRs, except for ss60974. Chloroplasts in coast 111 

redwood are inherited paternally (Neale et al., 1989), and their markers are excellent tools 112 

to study pollen based gene flow and its contribution to population similarity. CpSSRs are 113 

usually highly polymorphic in conifer species (Vendramin et al., 1999; Viard, 2001; Bucci et 114 

al., 2007), and we found similar results in coast redwood. 115 

Coast redwood is a hexaploid species (Stebbin, 1948), which complicates microsatellite 116 

genotyping (Douhovnikoff and Dodd, 2011; Narayan et al., 2015). The used microsatellite 117 

scoring routine based on the genotype verification using ramets of known clones (Pfeiffer et 118 

al., 2011), resulted in unambiguous and reliable multilocus genotypes. Due to the usually 119 

less polymorphic nature of EST-SSRs and the haploid nature of cpSSRs, both marker types 120 

might be less prone to genotyping errors than nSSRs, which frequently have many alleles of 121 

similar length (Hoffmann and Amos, 2005). Therefore, additional new EST-SSR and cpSSR 122 

might increase the resolution power of microsatellite markers to study population structure 123 

and local adaptation in coast redwoods. The highly polymorphic cpSSRs can be especially 124 

useful for genotyping of individuals and clone assignment based on the specific haplotypes. 125 

 126 

Acknowledgments 127 

Page 4 of 8

Cambridge University Press

Plant Genetic Resources



For Peer Review

We thank Alexandra Dolynska, Melanie Eckholdt and Babalola Jumoke for support during lab 128 

work. This project is funded by the „Fachagentur für nachhaltige Ressourcen (FNR) des 129 

Bundesministeriums für Ernährung und Landwirtschaft (BMEL)“. 130 

 131 

References 132 

Bouk A and Vision T (2007) The molecular ecologist’s guide to expressed sequence tags.  133 

Molecular Ecology 16: 907-924. 134 

Brinegar C (2011) Rangewide genetic variation in coast redwood populations at a chloroplast 135 

microsatellite locus. In R. B. Standiford, T. J. Weller, D. D. Piierto, and J. D. Stuart [eds.], 136 

Proceedings of the Coast Redwood Forests in a Changing California: A Symposium for 137 

Scientists and Managers, 241-249. USDA Forest Service General Technical Report PSW-138 

GTR-238. USDA Forest Service, Pacific Southwest Research Station, Albany, California, 139 

USA. 140 

Bucci G, Gonzalez-Martinez SC, Le Provost G, Plomion C, Ribeiro MM, Sebastiani F, Alía R and 141 

Vendramin GG (2007) Range-wide phylogeography and gene zones in Pinus pinaster Ait. 142 

Revealed by chloroplast microsatellite markers. Molecular Ecology 16: 2137-2153. 143 

Clark L and Jasieniuk M (2011) polysat: An R package for polyploid microsatellite analysis.  144 

Molecular Ecology Resources 11: 562-566. 145 

Douhovnikoff V, Cheng AM and Dodd RS (2004) Incidence, size and spatial structure of 146 

clones in second-growth stands of coast redwood, Sequoia sempervirens (Cupressaceae). 147 

American Journal of Botany 91: 1140-1146. 148 

Douhovnikoff V and Dodd RS (2011) Lineage divergence in coast redwood (Sequoia 149 

sempervirens), detected by a new set of nuclear microsatellite loci. The American Midland 150 

Naturalist 165: 22-37. 151 

Euyal I, Sorrells M, Baum M, Wolters P and Powell W (2001) Assessment of genotypic 152 

variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica 153 

119: 39-43. 154 

Goudet J and Jombart T (2015) hierfstat: Estimation and Tests of Hierarchical F-Statistics. R-155 

package version 0.04-22. https://CRAN.R-project.org/package=hierfstat. 156 

Page 5 of 8

Cambridge University Press

Plant Genetic Resources



For Peer Review

Hall GD and Langenheim JH (1987) Geographic variation in leaf monoterpenes of Sequoia 157 

sempervirens. Biochemical Systematics and Ecology 15: 31-43. 158 

Hoffmann JI and Amos W (2005) Microsatellite genotyping errors: detection approaches, 159 

common sources and consequences for paternal exclusion. Molecular Ecology 14: 599-160 

612. 161 

Ibañez MT, Caru M, Herrera MA, Gonzalez L, Martin LM, Miranda J and Navarro-Cerrillo RM 162 

(2009) Clones identification of Sequoia sempervirens (D.Don) Endl. In Chile by using PCR-163 

RAPDs technique. Journal of Zheijang University Science B 10: 112-119. 164 

Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids 165 

Research 35: W43-W46. 166 

Kofler R, Schlötterer C and Lelley T (2007) SciRoKo: a new tool for whole genome 167 

microsatellite search and investigation. Bioinformatics Application Notes 23: 1683-1685. 168 

Kubisiak TL, Nelson CD, Staton ME, Zhebentyayeva T, Smith C, Olukolu BA, Fang G-C, Hebard 169 

FV, Anagnostakis S, Wheeler N, Sisco PH, Abbott AG and Sederoff RR (2013) A 170 

transcriptome-based genetic map of Chinese chestnut (Castanea mollissima) and 171 

identification of regions of segmental homology with peach (Prunus persica). Tree 172 

Genetics & Genomes 9: 557-571. 173 

Narayan L, Dodd RS and O’Hara KL (2015) A genotyping protocol for multiple tissue types 174 

from the polyploidy tree species Sequoia sempervirens (Cupressaceae). Applications in 175 

Plant Science 3: 1400110. 176 

Neale D, Marshall K and Sederoff R (1989) Chloroplast and mitochondrial DNA are paternally 177 

inherited in Sequoia sempervirens D.Don.Endl. Proceedings of the National Academy of 178 

Science 86: 9347-9349. 179 

Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific 180 

genetic diversity in plants. Molecular Ecology 13: 1143-1155. 181 

Peakall, R. and Smouse P.E. (2006) GENALEX 6: genetic analysis in Excel. Population genetic 182 

software for teaching and research. Molecular Ecology Notes 6: 288-295. 183 

Peakall, R. and Smouse P.E. (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic 184 

software for teaching and research-an update. Bioinformatics 28: 2537-2539. 185 

Page 6 of 8

Cambridge University Press

Plant Genetic Resources



For Peer Review

Pfeiffer T, Roschanski AM, Pannell JR, Korbecka G and Schnittler M (2011) Characterization 186 

of microsatellite loci and reliable genotyping in a polyploidy plant Mercurialis perennis 187 

(Euphorbiaceae). Journal of Heredity 102: 479-488. 188 

Rogers DL (2000) Genotypic diversity and clone size in old-growth populations of coast 189 

redwood (Sequoia sempervirens). Canadian Journal of Botany 78: 1408-1419. 190 

Rungis D, Bérubé Y, Zhang J, Ralph S, Ritland CE, Ellis BE, Douglas C, Bohlmann J and Ritland K 191 

(2004) Robust single sequence repeat markers for spruce (Picea spp.) from expressed 192 

sequence tags. Theoretical and Applied Genetics 109: 1283-1294. 193 

Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. 194 

Nature Biotechnology 18: 233-234. 195 

Scott AD, Stenz NWM, Ingvarsson PK, Baum DA (2016) Whole genome duplication in coast 196 

redwood (Sequoia sempervirens) and its implications for explaining the rarity of 197 

polyploidy in conifers. New Phytologist 211: 186-193. 198 

Stebbin GL Jr (1948) The chromosomes and relationships of Metasequoia and Sequoia. 199 

Science 108: 95-98. 200 

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M and Rozen SG (2012) 201 

Primer3-new capabilities and interfaces. Nucleic Acids Research 40: e115. 202 

Vendramin GG, Degen B, Petit RJ, Anzidei M Madaghiele A and Ziegenhagen B (1999) High 203 

level of variation at Abies alba chloroplast microsatellite loci in Europe. Molecular Ecology 204 

8: 1117-1126. 205 

Viard F, El-Kassaby YA and Ritland K (2001) Diversity and genetic structure in populations of 206 

Pseudotsuga menziesii (Pinaceae) at chloroplast microsatellite loci. Genome 44: 336-344. 207 

Yeh FC, Yang R-C, Boyle T BJ (1997) POPGENE, the user-friendly shareware for population 208 

genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, 209 

Canada. 210 

Page 7 of 8

Cambridge University Press

Plant Genetic Resources



Fo
r P

ee
r R

ev
iew

Ta
bl

e 
1.

 N
ov

el
 E

ST
-S

SR
 a

nd
 c

pS
SR

 m
ar

ke
rs

 d
ev

el
op

ed
 in

 c
oa

st
 re

dw
oo

d 
1 

SS
R 

Fo
rw

ar
d 

(F
) a

nd
 re

ve
rs

e 
(R

) P
CR

 p
rim

er
 5

’-3
’ 

se
qu

en
ce

 w
ith

 fl
uo

re
sc

en
t d

ye
 6

-F
AM

 o
r H

EX
 a

nd
 

M
13

 o
r P

IG
-t

ai
l a

da
pt

er
s a

tt
ac

he
d 

Ty
pe

 
Re

pe
at

 
m

ot
if*

 
Al

le
le

 si
ze

 
ra

ng
e,

 b
p 

N
a 

N
e 

I 
H t

 
H s

 

ss
36

78
2 

F:
 [F

AM
]-T

CA
GG

G
CA

AA
G

CT
AA

AA
TC

G
 

ES
T-

SS
R 

(G
A)

10
 

17
3-

19
3 

5 
1.

02
  

0.
21

 
0.

02
 

0.
02

 
 

R:
 C

CA
GG

AA
AG

G
AA

AG
G

GA
G

AG
 

 
 

 
 

 
 

 
 

ss
74

80
0 

F:
 [H

EX
]-G

CA
TG

AC
TC

TG
G

TG
GT

GT
TG

 
ES

T-
SS

R 
(T

G
G)

8+
1 

20
5-

23
8 

12
 

1.
13

  
1.

48
 

0.
09

 
0.

08
 

 
R:

 G
CA

GC
AG

CC
AC

TG
TG

AA
TA

A 
 

 
 

 
 

 
 

 
ss

91
17

0 
F:

 [F
AM

]-T
CT

GA
AA

AA
TG

CC
AA

AT
CC

A 
ES

T-
SS

R 
(C

A)
10

+1
 

14
6-

20
2 

12
 

1.
25

  
1.

75
 

0.
16

 
0.

14
 

 
R:

 C
GT

GT
G

TC
CT

G
TA

AG
TG

CA
AA

 
 

 
 

 
 

 
 

 
ss

73
36

1 
F:

 [H
EX

]-A
GG

GT
AG

AT
GG

GC
GG

TA
G

TT
 

ES
T-

SS
R 

(T
C)

9+
1 

19
0-

21
6 

14
 

1.
24

  
2.

19
 

0.
16

 
0.

14
 

 
R:

 C
GT

CC
GA

CA
AG

TT
CA

G
TA

CG
 

 
 

 
 

 
 

 
 

ss
73

30
7 

F:
 [H

EX
]-G

AA
CT

G
TG

AA
AG

CC
CT

TG
G

T 
ES

T-
SS

R 
(C

A)
9 

20
8-

23
5 

17
 

1.
10

  
1.

59
 

0.
07

 
0.

06
 

 
R:

 G
GG

CG
TG

TT
CT

GT
TT

G
AA

CT
 

 
 

 
 

 
 

 
 

ss
73

97
8 

F:
 [H

EX
]-C

CT
GC

AA
AC

AA
TT

CC
AG

CT
T 

ES
T-

SS
R 

(T
C)

10
 

21
4-

22
0 

5 
1.

11
  

0.
66

 
0.

09
 

0.
08

 
 

R:
 A

GT
GG

GA
AT

TA
TG

GG
GT

TG
G

 
 

 
 

 
 

 
 

 
ss

11
44

81
 

F:
 [F

AM
]-G

GG
TC

AA
GC

GT
G

GT
TA

TT
GT

 
ES

T-
SS

R 
(T

A)
9 

18
4-

20
5 

10
 

1.
21

  
1.

71
 

0.
16

 
0.

13
 

 
R:

 T
CT

GG
CA

TG
AT

CC
AA

G
TG

TT
 

 
 

 
 

 
 

 
 

ss
40

58
5 

F:
 [M

13
]-T

CT
TT

TT
CT

TC
AA

GC
AC

TT
G

TT
TT

T 
cp

SS
R 

(A
T)

8 
26

9-
27

9 
6 

1.
15

  
0.

20
 

0.
11

 
0.

11
 

 
R:

 [P
IG

-T
AI

L]
-T

CA
AT

CT
AC

AC
G

GG
GA

TG
TT

T 
 

 
 

 
 

 
 

 
ss

49
83

6 
F:

 [M
13

]- 
TG

AA
AG

CT
CT

CG
TG

CG
TA

TT
 

cp
SS

R 
(A

T)
11

 
23

2-
25

0 
10

 
1.

76
  

0.
65

 
0.

40
 

0.
37

 
 

R:
 [P

IG
-T

AI
L]

-A
G

TT
GA

G
TT

CC
CG

G
TT

CT
CC

 
 

 
 

 
 

 
 

 
ss

60
97

4 
F:

 [M
13

]- 
G

CT
CC

GG
CG

TA
TA

G
AG

AG
G

 
cp

SS
R 

(A
T)

12
 

22
1-

23
7 

9 
2.

48
  

0.
97

 
0.

65
 

0.
53

 
 

R:
 [P

IG
-T

AI
L]

-G
AG

AT
TC

CA
AT

GG
CT

TT
TG

C 
 

 
 

 
 

 
 

 
ss

85
28

1 
F:

 [M
13

]- 
TG

AC
CA

TA
GG

TT
CC

TT
CC

TT
TT

T 
cp

SS
R 

(A
T)

8 
21

4-
22

2 
5 

1.
39

  
0.

40
 

0.
40

 
0.

23
 

 
R:

 [P
IG

-T
AI

L]
-T

TC
CG

TT
CC

TT
TC

CA
TT

TT
G 

 
 

 
 

 
 

 
 

ss
10

99
90

 
F:

 [M
13

]-A
AA

AA
TC

G
AC

CG
GA

TC
AC

AA
 

cp
SS

R 
(T

A)
11

 
22

4-
23

2 
3 

1.
14

  
0.

19
 

0.
10

 
0.

09
 

 
R:

 [P
IG

-T
AI

L]
-T

TC
AA

AT
AA

TA
GA

AT
G

G
AA

AA
AC

CA
A 

 
 

 
 

 
 

 
 

*N
um

be
r m

ea
ns

 n
um

be
r o

f r
ep

ea
t m

ot
ifs

 in
 th

e 
or

ig
in

al
 se

qu
en

ce
; N

a: 
nu

m
be

r o
f a

lle
le

s;
 N

e: 
nu

m
be

r o
f e

ffe
ct

iv
e 

al
le

le
s;

 I:
 S

ha
nn

on
 In

de
x;

 H
t: 

to
ta

l g
en

e 
2 

di
ve

rs
ity

; H
S: 

ge
ne

 d
iv

er
sit

y 
w

ith
in

 p
op

ul
at

io
n.

 
3 

Pa
ge

 8
 o

f 8

Ca
m

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

Pl
an

t G
en

et
ic

 R
es

ou
rc

es


