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Abstract

We study the problem of rationality of an infinite series of components,
the so-called Ein components, of the Gieseker-Maruyama moduli space
M(e, n) of rank 2 stable vector bundles with the first Chern class e = 0
or −1 and all possible values of the second Chern class n on the projective
space P3. We show that, in a wide range of cases, the Ein components are
rational, and in the remaining cases they are at least stably rational. As a
consequence, the union of the spaces M(e, n) over all n ≥ 1 contains new
series of rational components in the case e = 0, exteding and improving
previously known results of V.Vedernikov (1985) on series of rational fam-
ilies of bundles, and a first known infinite series of rational components in
the case e = −1. Explicit constructions of rationality (stable rationality) of
Ein components are given. Our approach is based on the study of a cor-
respondence between generalized null correlation bundles constituting open
subsets of Ein components and certain rank 2 reflexive sheaves on P3. This
correspondence is obtained via elementary transformations along surfaces.
We apply the technique of Quot-schemes and universal spaces of extensions
of sheaves to relate the parameter spaces of these two types of sheaves. In
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the case of rationality, we construct universal families of generalized null cor-
relation bundles over certain open subsets of Ein components showing that
these subsets are fine moduli spaces. As a by-product of our construction,
for c1 = 0 and n even, they provide, perhaps the first known, examples of
fine moduli spaces not satisfying the condition ”n is odd”, which is a usual
sufficient condition for fineness.
2010 MSC: 14D20, 14E08, 14J60
Keywords: rank 2 bundles, moduli of stable bundles, rational varieties

1 Introduction

For e ∈ {−1, 0} and n ∈ Z+, let M(e, n) be the Gieseker-Maruyama moduli space
of stable rank 2 algebraic vector bundles with Chern classes c1 = e, c2 = n on the
projective space P3. R. Hartshorne [12] showed that M(e, n) is a quasi-projective
scheme, nonempty for arbitrary n ≥ 1 in the case e = 0 and, respectively, for
even n ≥ 2 in the case e = −1, and the deformation theory predicts that each
irreducible component of M(e, n) has dimension at least 8n− 3 + 2e.

In this paper we study the problem of rationality of irreducible components
of M(e, n). Since 70ies not so much has been known about it. In particular, in
the case e = 0, it is known (see [12], [10], [5], [7], [24], [25]) that the scheme
M(0, n) contains an irreducible component In of the expected dimension 8n − 3,
and this component is the closure of the open subset of M(0, n) constituted by
the so-called mathematical instanton vector bundles. Furthermore, according to
the recent result of [26, Theorem 3], M(0, n) contains, besides In, at least one
more irreducible component for any n ≥ 146. Next, M(0, n) is irreducible (hence
coincides with In) and rational for n = 1, 2 [12]. The rationality of I3 and of I5
was proved in [10] and [18], respectively, and for n = 4 and n ≥ 6 the rationality
of In is still a challenging open question. Note that M(0, n) is reducible for n ≥ 3,
and the exact number of irreducible components of M(0, n) is nowadays known
only up to n = 5 [1]. We list these components in Section 9.

In the case e = −1, for each n ≥ 1, the space M(−1, 2n) contains at least one
irreducible component Y2n of the expected dimension 16n − 5 [12]. In particular,
M(−1, 2) = Y2 is a rational variety of the expected dimension 11 by [15]. The
space M(−1, 4) is also known – it contains, besides the rational component Y4

of the expected dimension 27, one more rational component of dimension 28. For
n ≥ 6 the exact number of irreducible components of M(0, n) is still unknown (see
details in Section 9).

In 1978 W. Barth and K. Hulek [6] found, for each integer k ≥ 1, a ratio-
nal (3k2 + 10k + 8)-dimensional family Q̃k of vector bundles from M(0, 2k + 1),
and G. Ellingsrud and S. A. Strømme in [10, (4.6)–(4.7)] showed that the image
of Q̃k under the modular morphism Q̃k → M(0, 2k + 1) is an open subset of an
irreducible component Qk distinct from the instanton component I2k+1. Besides,
from the definition of Qk, it follows that it is (at least) unirational. Later in 1984,
V. K. Vedernikov [28] constructed, for 1 ≤ l ≤ k, a family V1(k, l) of bundles
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from M(0, n1); for 1 ≤ 2l ≤ k, a family V2(k, l) of bundles from M(0, n2); for
1 ≤ 2l ≤ k + 2, a family V3(k, l) of bundles from M(−1, n3), where n1, n2, n3 are
certain polynomials on k, l. In his subsequent paper [29], one more family V4(k) of
bundles from M(0, (k + 1)2) was found for k ≥ 1. In [28], [29], the constructions
of stable rationality of V1(k, l) and of rationality of V2(k, l) and V4(k) were given,
respectively (see Remark 8.4 below for details). Besides, the author asserted that
these families are open subsets of irreducible components of M(e, n), though the
proofs for these statements were not given. A more general series of rank 2 bundles
depending on triples of integers a, b, c, appeared in 1984 in the paper of A. Prab-
hakar Rao [23] (cf. Remark 8.5). Soon after that, in 1988, L. Ein [9] independently
studied these bundles (called in his paper the generalized null correlation bundles)
and proved that they constitute open subsets of irreducible components of M(e, n)
(called below Ein components). Surprisingly, Ein components contain Vedernikov’s
families V1(k, l) and V4(k), respectively, V2(k, l) and V3(k, l) as their open subsets
in special cases when e = a = 0, respectively, a = b (see details in Remark 8.4).
Moreover, when e = a = 0, b = k ≥ 1, c = k + 1, the closure of Vedernikov’s
family V1(k, 1) coincides with the component Qk of Ellingsrud-Strømme, i. e. Qk
is also an Ein component.

The problem of rationality of Ein components is the main subject of this
paper. We will prove their rationality in a wide range of parameters a, b, c when
(e, a) 6= (0, 0), c > 2a+b−e, and their (at least) stable rationality in the remaining
cases. In particular, we show that our results cover Vedernikov’s results in the
case of e = 0, a = b > 0, c > 3a and improve them in the case of e = a =
0, b > 0 (see Remark 8.4). Together with the remaining Vedernikov’s results,
this gives a complete solution to the problem of rationality or, otherwise, (at
least) stable rationality of Ein components for all possible values of e, a, b, c. Before
proceeding to precise formulations, we recall briefly the definition of generalized
null correlation bundles.

For integers a, b, c with b ≥ a ≥ 0, c > a+ b, consider the monad

0→ OP3(−c+ e)→ H→ OP3(c)→ 0, (1.1)

where
H = OP3(a)⊕OP3(−a+ e)⊕OP3(b)⊕OP3(−b+ e), (1.2)

such that the cohomology sheaf E of this monad is locally free. According to [23,
Prop. 3.1] (see also [9, Prop. 1.2(a)]), such monads exist and their cohomology
rank 2 vector bundle E is stable. We call E a generalized null correlation bundle
and denote by Nnc the set of all generalized null correlation bundles for the above
integers e, a, b, c. Ein shows in [9] that Nnc is a dense Zariski open subset of an
irreducible component N(e, a, b, c) of the space M(e, n), where n = c2 − a2 −
b2 − e(c− a− b). We therefore call these moduli components N(e, a, b, c) the Ein
components of M(e, n).

We give now a sketch of the contents of the paper. In Section 2, we begin
the study of the Ein component N(e, a, b, c) for any admissible e, a, b, c. We first
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describe a certain dense open subset N specified by the behaviour of restrictions
of generalized null correlation bundles from N onto surfaces S of the linear series
P = |OP3(c − b)|. (The precise definition of N is given in (2.31)). Using Quot-
schemes, we then conststruct a certain principal PGL-bundle Y → N together
with a family of generalized null correlation bundles over Y , and, respectively, a
variety X with a surjection θ : X → N which is an open subfibration of some
explicitely described projective fibration over N . These data yield a family E of
generalized null correlation bundles over the variety X = X ×N Y induced by
the aforementioned family. In Section 3, we relate to E a family F of rank-2
reflexive sheaves. These sheaves F are obtained from bundles E of the family E
by elementary transformations E  F along specially chosen surfaces S of degree
c−b. This is an analogue of the so-called reduction step procedure of R. Hartshorne
(cf. Remark 3.2(i)).

In Section 4, we provide a detailed enough plan of the proof of the main
result of the paper — Theorem 8.1 which states that N(e, a, b, c) is at least a
stably rational variety for all admissible values of e, a, b, c, and, moreover, if c >
2a+ b− e, b > a, (e, a) 6= (0, 0), then N(e, a, b, c) is rational and its open subset
N is a fine moduli space. The idea is to construct and then relate two diagrams of
varieties and projections:

W
π−→ X

θ−→ N and V
λ−→ T

µ−→ R
r−→ P. (1.3)

In these diagrams all the projections are open subfibrations of some locally trivial
projective fibrations (see diagrams (4.2) and (4.13) for details). In particular, V is
rational and W is birational to N × Pk for certain k ≥ 0. We then relate the two
diagrams in (1.3) by constructing an isomorphism

f : W
∼−→ V (1.4)

and its inverse morphism h = f−1 : V
∼−→ W . On the level of sets the maps f

and h are given by explicit formulas (4.14) and (4.15). In a sense, these are just
the above mentioned elementary transformation E  F and its dual F  E.
The isomorphism (1.4) then immediately yields Theorem 8.1: the condition c >
2a+ b− e, b > a, (e, a) 6= (0, 0) by the dimension count leads to the isomorphism
θ ◦ π : W

∼−→ N , so that N ' V is rational; respectively, it is stably rational
otherwise.

Our plan described in Section 4 consists of four steps, which are developed
in full detail in the subsequent Sections 5–8. In steps 1–3 which are performed in
Sections 5, 6, and 7, we construct the varieties and the projections, respectively,

W
π−→ X, T , and V

λ−→ T
µ−→ R

r−→ P involved in (1.3). The key technical result
here is Theorem 6.4 stating the existence of the variety T , and the proof of this
Theorem is based on the use of one specific property of the H0

∗ (OP3)-module H1
∗ (E)

of a generalized null correlation bundle E. Besides, we build new families E and
F of generalized null correlation bundles and, respectively, reflexive sheaves. The
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interplay between the two pairs of families E, F and E, F leads to the final step 4
of the proof of Theorem 8.1 which is completed in Section 8. Thus, the union of the
spaces M(e, n) over all n ≥ 1 contains an infinite series of rational components (see
Corollary 8.2). As a by-product of Theorem 8.1, we show that, for c1 = 0 and n
even, the open subsets N of Ein components N(e, a, b, c) provide, perhaps, the first
known examples of fine moduli components of rank 2 stable bundles not satisfying
the condition “n is odd” – a usual sufficient condition for fineness (see Remark
8.3). As another application of Theorem 8.1, in Section 9 we give a list of known
irreducible components of M(e, n), including Ein components, for small values of
n, up to n = 20, specify those of Ein components which are rational, respectively,
stably rational, for both e = 0 and e = −1, and give their dimensions.

Conventions and notation.

• Everywhere in this paper we work over the base field k = k̄ of characteristic
0.

• P3 is the projective 3-space over k.

• Given a morphism of schemes f : X → Y and a coherent sheaf F on P3×Y ,
set

FX := (idP3 × f)∗F .

This notation will be systematically used throughout the paper.

• For any coherent sheaf G on a scheme X, we set P(G) := Proj(S·OX
G). Also,

OY (1) denotes the Grothendieck invertible sheaf on Y = P(G).

• Given m,n ∈ Z, P a projective space an arbitrary dimension, X a scheme,
and A a coherent sheaf on P× P3 ×X, set

A(m,n) := A⊗OP(n)�OP3(m)�OX , A(m) := A(m, 0). (1.5)

• M(e, n) is the Gieseker-Maruyama moduli space of stable rank 2 algebraic
vector bundles on P3, with Chern classes c1 = e ∈ {−1, 0}, c2 = n ∈ Z+ for
e = 0, respectively, ∈ 2Z+ for e = −1.

• N(e, a, b, c) is the Ein component of the moduli space M(e, n), b ≥ a ≥
0, c > a+ b, n = c2 − a2 − b2 − e(c− a− b).

• Nnc is the open dense subset of N(e, a, b, c) consisting of generalized null
correlation bundles.

• N is the open dense subset of Nnc defined in (2.31).

• For a stable rank 2 vector bundle E with c1(E) = e, c2(E) = n on P3, we
denote by [E] its isomorphism class in M(e, n).
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• For a projective Pm-fibration p : X → Y , by its open subfibration we mean
an open subset U of X, together with the projection p|U : U → Y .

Acknowledgements. AAK was supported by the grant of the President of the
Russian Federation for young scientists, project MD-197.2017.1. AST was sup-
ported by a subsidy to the HSE from the Government of the Russian Federation
for the implementation of Global Competitiveness Program. AST also acknowl-
edges the support from the Max Planck Institute for Mathematics in Bonn, where
this work was partially done during the winter of 2017.

2 Ein component N(e, a, b, c) and its dense open
subset N

In this Section, for an arbitrary Ein moduli component N(e, a, b, c) we introduce
a certain dense open subset N of N(e, a, b, c) which will be the main object of our
study. We then construct a family E of generalized null correlation bundles on
P3 with base X mapping surjectively onto N under the modular morphism X →
N, x 7→

[
E|P3×{x}

]
(see Theorem 2.2). This family E will be used in subsequent

sections.
Given integers e, a, b, c with e ∈ {−1, 0} and b ≥ a ≥ 0, c > a + b, consider

the Ein component N(e, a, b, c) of M(e, n), n = c2− a2− b2− e(c− a− b). As it is
known from [9, (2.2.B) and Section 3] (see also [4, Section 5]), dimN(e, a, b, c) =
h0(H(c− e))− h0(S2H(−e))− 1. Substituting here H from (1.2), we obtain:

dimN(e, a, b, c) =

(
c+ a− e+ 3

3

)
+

(
c+ b− e+ 3

3

)
+

(
c− a+ 3

3

)
+

(
c− b+ 3

3

)
−
(
a+ b− e+ 3

3

)
−
(
b− a+ 3

3

)
−
(

2a− e+ 3

3

)
−
(

2b− e+ 3

3

)
− 3− t(e, a, b),

(2.1)

where

t(0, a, b) =

 4, if a = b = 0,
1, if 0 = a < b or a = b > 0,
0, otherwise.

t(−1, a, b) =

{
1, if a = b,
0, otherwise.

(2.2)
Consider the open dense subset Nnc of N(e, a, b, c) consisting of generalized null
correlation bundles. From (1.1)–(1.2), we have

h1(E(m)) = h0(OP3(c+m))− h0(OP3(a+m))− h0(OP3(b+m)), m ≤ −1

6



for any bundle [E] ∈ Nnc. In particular,

h1(E(−c)) = 1, (2.3)

h1(E(−b)) =

(
c− b+ 3

3

)
− 1, b > 0. (2.4)

Consider more closely the monad (1.1) with cohomology bundle [E] ∈ Nnc:

0→ OP3(−c+ e)
λ−→ H µ−→ OP3(c)→ 0, where

λ = (f2,−f1, f4,−f3)t, µ = (f1, f2, f3, f4), µ ◦ λ = 0,
(2.5)

f1 ∈ V1 := H0(OP3(c− a)), f2 ∈ V2 := H0(OP3(c+ a− e)),
f3 ∈ V3 := H0(OP3(c− b)), f4 ∈ V4 := H0(OP3(c+ b− e)).

(2.6)

Moreover, since µ is surjective, it follows that the subset ∩4
i=1{fi(x) = 0} of

P3 is empty. In particular, polynomials f1 and f3 do not have common factors of
positive degree. This implies, in particular, that the surfaces

S := {f3(x) = 0} and S′ := {f1(x) = 0} (2.7)

intersect in a curve
C0 := S ∩ S′. (2.8)

Note that, for the surface S defined in (2.7), the equality

h0(E(−b)|S) > 0. (2.9)

holds. Indeed, the sheaf K := ker(µ)(−b)|S satisfies the exact triple

0→ OS(−c− b+ e)→ K → E|S → 0.

By the definition of S the composition OS
i
↪→ H µ(−b)|S−−−−−→ OS(c − b) is the zero

morphism. Hence i factors through a non-zero morphism OS → K, i. e. h0(K) 6=
0. Therefore, passing to sections in the above triple and using the vanishing of
h0(OS(−c− b+ e)), we obtain (2.9).

Now consider the space M = M(e, a, b, c) of monads (1.1):

M := {(f1, f2, f3, f4) ∈ Π4
i=1Vi | (2.5) is true and ∩4

i=1 {fi(x) = 0} = ∅}. (2.10)

There is a well-defined modular morphism

ρ : M � Nnc, (f1, f2, f3, f4) 7→ [ker(µ)/im(λ)].

Clearly, M is an open subset of the affine space Π4
i=1Vi, hence it is irreducible.

Consider its dense open subset

Ms = {(f1, . . . , f4) ∈M | surface S = {f3(x) = 0} in (2.7)

and curve C0 = {f1(x) = f3(x) = 0} in (2.8) are smooth}.
(2.11)

7



Since Nnc is irreducible, there exists a dense open subset Ns of Nnc contained in
ρ(Ms):

ρ(Ms)� q

##
Ns
� � dense open //
- 

;;

Nnc

(2.12)

Remark 2.1. The choice of the subset Ns satisfying (2.12) is not unique. From now
on we, therefore, assume that, for each collection of admissible values of e, a, b, c,
Ns is a maximal (with respect to inclusion) such subset.

Next, there exists a big enough positive integer m such that all bundles
from Nnc are m-regular in the sense of Mumford-Castelnuovo [17, Section 4.3].
Let P ∈ Q[x] be the Hilbert polynomial P(k) = χ(E(k)), [E] ∈ Nnc, and let
B := kNm ⊗ OP3(−m), where Nm := P(m). Consider the Quot-scheme Q :=
QuotP3(B,P), together with the universal quotient morphism B�OQ � E. Then,
the scheme

Y =
{
y ∈ Q |

[
E|P3×{y}

]
∈ Ns

}
is an open subscheme of Q, together with a family

EY = E|P3×Y

of generalized null correlation bundles over Y. Since all bundles from Ns are sta-
ble, then, according to the GIT-construction [17, Section 4.3] of Ns, the modular
morphism

ϕ : Y → Ns = Y//G, y 7→
[
EY |P3×{y}

]
, G = PGL(Nm), (2.13)

is a geometric G-quotient and a principal G-bundle.
Since by Serre duality, for any [E] ∈ Ns one has h2(E(c−e−4)) = h1(E(−c)),

h2(E(b − e − 4)) = h1(E(−b)), using (2.3), (2.4), and the base change we obtain
that the sheaves

L = R2p2∗EY(c− e− 4), L′ = R2p2∗EY(b− e− 4), (2.14)

where p2 : P3 × Y → Y is the projection, are locally free OY -sheaves of ranks

rkL = 1, r := rkL′ =

(
c− b+ 3

3

)
− 1. (2.15)

Consider the linear series

P := |OP3(c− b)| (2.16)

and its dense open subset

P := {S ∈ P | S is a smooth surface}. (2.17)

8



Let
Γ =

{
(S, x) ∈ P× P3 | x ∈ S

}
(2.18)

be the universal family of surfaces of degree c − b in P3. There is an exact triple
on P× P3 × Y:

0→ OP(−1)�OP3(b− c)�OY → OP �OP3 �OY → OΓ×Y → 0. (2.19)

Tensoring it with the sheaf EY(c− e−4)�OP and applying to the resulting exact
triple the functor Ri pr13∗, where pr13 : P × P3 × Y → P × Y is a projection, in
view of the base change and the equalities h3

(
E(b−e−4)

)
= 0 we obtain an exact

triple

OP(−1)� L′
ψ→ OP � L→ R2 pr13∗ (OP � EY(c− e− 4)|Γ×Y)→ 0. (2.20)

Now take an arbitrary point y ∈ Y and denote

[Ey] := ϕ(y).

Resricting the triple (2.20) onto P×{y} and using (2.15) and the base change, we
obtain an exact triple

rOP(−1)
ψ⊗k(y)−−−−−→ OP → coker

(
ψ ⊗ k(y)

)
→ 0, (2.21)

where by the base change we have for any surface S ∈ P:

coker
(
ψ ⊗ k(y)|{(S,y)}

)
= R2 pr23∗ (E(c− e− 4)�OP|Γ×Y ) |{(S,y)}

= H2
(
Ey(c− e− 4)|S

)
.

(2.22)

From the triple (2.21), it follows that

h2
(
Ey(c− e− 4)|S

)
≤ 1. (2.23)

On the other hand, the Grothendieck-Serre duality for a locally free OS-sheaf Ey|S
yields

h2
(
Ey(c− e− 4)|S

)
= h0

(
Ey(−b)|S

)
. (2.24)

Next, the triple (2.21) shows that

P(y) := Supp(coker(ψ ⊗ k(y))) (2.25)

is a linear subspace of codimension at most r = dim P in P. Hence this subspace
P(y) is always nonempty, (2.22)–(2.24) give the following explicit description of
P(y):

P(y) = {S ∈ P| h0(Ey(−b)|S) = 1}. (2.26)

Set τ(y) = dim P(y) and let
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τ := min
y∈Y

τ(y), Y := {y ∈ Y| τ(y) = τ}. (2.27)

Since Y is irreducible, the semicontinuity yields that Y is a dense open subset
of Y. Moreover, from (2.13) it follows that there exists a dense open subset N of
Ns, hence also of Nnc and of N(e, a, b, c):

N
� � dense open // Ns (2.28)

defined by the fact that

Y = ϕ−1
(
N
)

= Y ×Ns N and ϕ : Y → N is a principal G-bundle. (2.29)

The set N is explicitly described as follows. For any point [E] ∈ Nnc, consider the
exact triple

0→ E(b− c)�OP(−1)→ E �OP → E �OP|Γ → 0

and apply to it the functor Ri pr2∗, where pr2 : P3 × P → P is the projection.
Then, similar to (2.21), we obtain an exact triple

rOP(−1)
ψE→ OP → cokerψE → 0.

Similar to the above, set P
(
[E]
)

:= Supp(cokerψE), τE := dim P([E]). Then, as
in (2.26)–(2.27), we have

P
(
[E]
)

= {S ∈ P| h0(E(−b)|S) = 1}, min
[E]∈Ns

τE = τ, (2.30)

and
N = {[E] ∈ Ns | τE = τ}. (2.31)

Denote
P([E]) = P ∩P

(
[E]
)
, (2.32)

where P was defined in (2.17). From (2.9), (2.30), and the definition of Ns, it
follows that P([E]) is a nonempty, hence dense open subset of P

(
[E]
)
:

P([E]) �
� dense open // P

(
[E]
)
, [E] ∈ Ns. (2.33)

Now consider the subscheme X of P × Y together with the projection θ :
X → Y, defined as

X := {x = (S, y) ∈ P× Y | S ∈ P(y)}, θ : X → Y, (S, y) 7→ y. (2.34)

Remark that, as rkL = 1 by (2.15), the triple (2.20) twisted by OP(1) � L∨ can
be rewritten as

OP � (L′ ⊗ L∨)
ψ→ OP(1)�OY → B→ 0, (2.35)
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where
B := OP(1)�OY |X

is a line bundle on X . In view of (2.26) and (2.34) the fibre of B over an arbitrary
point x = (S, y) ∈ X has the description

B⊗ k(x) = H0(Ey(−b)|S). (2.36)

Applying to (2.35) the functor p2∗, where p2 : P × Y → Y is the projection, we
obtain an exact triple

L′ ⊗ L∨ f→ Sc−bV ⊗OY → U→ 0, U = p2∗B, (2.37)

where V = H0(OP3(1))∨, f = p2∗ψ and

X = P(U). (2.38)

In addition, B = OP(U)(1), and there is the canonical epimorphism

p∗2U� B. (2.39)

Remark that, since E has a natural GL(Nm)-linearization as a sheaf over Q, the
sheaf L′ ⊗ L∨ has an induced GL(Nm)-linearization, and the sheaf Sc−bV ⊗ OY
also has a (trivial) GL(Nm)-linearization. Hence by (2.37) the sheaf U also inherits
GL(Nm)-linearization. It follows that X inherits G-action such that θ : X → Y is
a G-equivariant morphism. Hence the geometric quotient

X := X//G

is well-defined, and the canonical projection

Φ : X → X

is a principal G-bundle.
Furthermore, comparing (2.26) with (2.30), we see that, for any [E] ∈ Nnc

and any y ∈ ϕ−1
(
[E]
)

the fibre θ−1(y) = P(y) as a subspace of P coincides with

a subspace P
(
[E]
)

of P, and hence depends only on [E]. This implies that: (i)
θ is a G-equivariant morphism and therefore induces a morphism of categorical
quotients θs : X → Ns; (ii) a fibre θ−1

s

(
[E]
)

is a subspace P
(
[E]
)

of P. Thus
θs : X → Ns is a Pτ -subfibration of the trivial fibration P×Ns → Ns. Hence it is
locally trivial.

Next, since f = p2∗ψ, we can rewrite (2.25) as

θ−1(y) = P(y) = P (coker(ψ ⊗ k(y))), y ∈ Y.

Set
X := θ−1

s (N) ∩ P ×N, θ := θs|X : X → N. (2.40)
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By definition, θ : X → N is a morphism with a fibre θ−1([E]) over an arbitrary
point [E] ∈ N being an open dense subset P([E]) of subspace P([E]) ' Pτ of
P (see (2.33)). Hence θ : X → N is an open subfibration of the locally trivial
Pτ -fibration θs : X → Ns. Hence θ is also locally trivial. Furthermore, since N is
irreducible, it follows that X is also irreducible.

We now arrive at the following result.

Theorem 2.2. (i) Let X be defined in (2.40). There is an open subfibration θ :
X → N of a locally trivial Pτ -fibration, and a fibre P([E]) = θ−1([E]) over an
arbitrary point [E] ∈ N is given by (2.32). In other words, the set of closed points
of the scheme X is described as

X = {(S, [E]) ∈ P×N | h0(E(−b)|S) = 1}. (2.41)

In particular,
dimX = dimN(e, a, b, c) + τ, (2.42)

where dimN(e, a, b, c) is given by formula (2.1).
(ii) Set Y = Y ×Ns

N . There are cartesian diagrams

X

θ

��

Φ // X

θs
��

Y
ϕ // Ns,

X

θ

��

Φ // X

θ

��
Y

ϕ // N,

(2.43)

in which horizontal maps are principal G-bundles. Here the second diagram is
obtained from the first via the commutative diagram

X

θs
��

X

θ

��

? _
dense openoo

Ns N.? _
dense openoo

(2.44)

Furthermore, vertical maps in the second diagram are open subfabrations of locally
trivial Pτ -fibrations.

(iii) The composition X
open
↪→ X θ→ Y ↪→ Q induces a family

E = EX (2.45)

of generalized null correlation bundles on P3 with base X, where E is the universal
quotient sheaf on P3 ×Q.
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3 Family E of generalized null correlation bundles
and related family of reflexive sheaves F on P3

In the first part of this section, we study more closely generalized null correlation
bundles E of the family E introduced in Theorem 2.2(iii). In the second part, we
associate to E a family F of reflexive rank 2 sheaves on P3. These two families will
play the main role in subsequent constructions.

Consider an arbitrary sheaf [E] ∈ N . By definition (see (1.1)–(1.2)), the
sheaf E is the cohomology sheaf of the monad (2.5) with the data (2.6). From the
definition of N (see (2.11)–(2.12) and (2.27)–(2.29)), it follows that the monad
(2.5) can be chosen in such a way that the related surface S and the curve C0

defined by (2.7) and (2.8) are both smooth (hence irreducible). In particular,
C0 is a smooth irreducible complete intersection curve with the conormal sheaf
N∨C0/P3 ' OC0

(a− c)⊕OC0
(b− c). Besides, (2.5)–(2.8) yield:

OS(C0) ' OP3(S′)|S ' OS(c− a). (3.1)

Furthermore, by [23, Example 3.3], there is a well defined quotient sheaf OC0
(a+

b− e) of N∨C0/P3 ,

N∨C0/P3 = OC0(a− c)⊕OC0(b− c)� OC0(a+ b− e), (3.2)

which determines a double scheme structure C0 on C0 with the following proper-
ties:

(i) the curve C0 is a locally complete intersection curve satisfying the exact
triple

0→ OC0(a+ b− e)→ OC0
→ OC0 → 0; (3.3)

(ii) C0 is the zero-scheme of some section of the sheaf E(c− a− b):

C0 = (s)0, 0 6= s ∈ H0(E(c− a− b)). (3.4)

Remark that (3.4) implies an exact triple

0→ OP3(a+ b− c) s→ E
α→ IC0

(c− a− b+ e)→ 0. (3.5)

Note first that, since c − a − e > 0, it follows that, in (3.2), the quotient sheaf
OC0

(a+b−e) does not coincide with the direct summandOC0
(b−c) of the conormal

sheaf N∨C0/P3 , so that the curve C0 defined in (3.2)–(3.4) is not a subscheme of

the surface S. Therefore, the sheaf κ = ker(OC′0 � OC0), where the scheme C ′0 is

defined as the scheme-theoretic intersection C ′0 = C0 ∩ S, has dimension at most
zero:

0→ κ→ OC′0 → OC0
→ 0, dimκ ≤ 0. (3.6)
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(Here, the inequality dimκ ≤ 0 is provided by smoothness and irreducibility of
the curve C0.) This together with (3.1) implies an exact triple

0→ IZ,S(e− b)→ OS(c− a− b+ e)→ OC′0(c− a− b+ e)→ 0 (3.7)

and a relation κ ' OZ for some subscheme Z of S of dimension at most zero:

dimZ ≤ 0. (3.8)

The exact triples

0→ OP3(e− a)
·S→ OP3(c− a− b+ e)→ OS(c− a− b+ e)→ 0,

0→ IC0
(c− a− b+ e)→ OP3(c− a− b+ e)→ OC0

(c− a− b+ e)→ 0

together with (3.7) extend to a commutative diagram

0

��

0

��

0

��
0 // IC0(e− a)

��

// IC0
(c− a− b+ e)

��

β // IZ,S(e− b)

��

// 0

0 // OP3(e− a)

��

·S // OP3(c− a− b+ e)

��

// OS(c− a− b+ e)

��

// 0

0 // OC0
(e− a)

��

// OC0
(c− a− b+ e)

��

// OC′0(c− a− b+ e) //

��

0.

0 0 0

(3.9)

Now, the composition of morphisms β ◦ α, where α is taken from (3.5) and β is
defined in this diagram, decomposes as

β ◦ α : E
⊗OS

� E|S
γ
� IZ,S(e− b) (3.10)

for some epimorphism γ : E|S
γ
� IZ,S(e− b).

Note that (3.8) implies the equalities ExtiOP3
(OZ ,OP3) = 0, i = 1, 2, which

together with the exact sequence

Ext1OP3
(OZ ,OP3)→ Ext1OP3

(OZ ,OS)→ Ext2OP3
(OZ ,OP3(b− c))

obtained from the exact triple 0→ OP3(b− c) ·S→ OP3 → OS → 0 yield

Ext1OS
(OZ ,OS) = Ext1OP3

(OZ ,OS) = 0. (3.11)
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Applying the functor Ext·OS
(−,OS) to the exact triple 0→ IZ,S → OS → OZ → 0

and using (3.11), we obtain
I∨Z,S ' OS . (3.12)

Dualizing the morphism γ in (3.10) and using (3.12) and the isomorphism (E|S)∨ '
(E|S)(−e), after twisting it by OS(e−b), we obtain the morphism s = (γ)∨(e−b) :
OS → E(−b)|S , i. e., a section 0 6= s ∈ H0(E(−b)|S). This section is a subbundle
morphism on S \ Z, hence, in view of (3.8), it extends to the Koszul exact triple

0→ OS
s→ E(−b)|S

s∨⊗∧2s−−−−−→ IZ,S(e− 2b)→ 0.

This triple shows that
γ = s∨ and Z = (s)0. (3.13)

A standard computation using (3.8) and (3.13) shows that

l(Z) = c2(E(−b)|S) = (c− a)(c− b)(c+ a− e) > 0, (3.14)

hence (3.8) yields
dimZ = dim(s)0 = 0. (3.15)

Besides, the equality
h0(E(−b)|S) = 1 (3.16)

follows from (2.23) and (2.24) (or, equivalently, from (2.41), since by assumption
(S, [E]) ∈ X). Hence, H0(E(−b)|S) is spanned by s.

From (3.15)–(3.16), it follows

Theorem 3.1. For any point (S, [E]) ∈ X, the equality h0(E(−b)|S) = 1 holds,
and dim(s)0 = 0 for any 0 6= s ∈ H0(E(−b)|S).

Consider the incidence variety Γ introduced in (2.18). Using the embedding
X ↪→ P × Y (cf. Theorem 2.2), set

Γ = (Γ× Y )×P×Y X

and let ρ : Γ→ X be the natural projection. Set

L = LX,

where the invertible OY -sheaf L was defined in (2.14). Consider the family of gen-
eralized null correlation bundles E defined in Theorem 2.2(iii). The first equality
in (2.14) and the base change imply

L = R2ρ∗(E|Γ(c− e− 4))

(here and below we use the convention (1.5) on notation), so that the relative Serre
duality for the projection ρ yields

L∨ ' ρ∗(E|Γ(−b)). (3.17)
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Respectively, for an arbitrary point x ∈ X and a surface Sx := Γ ×X {x} ⊂ P3,
we have

L∨ ⊗OX
k(x) = H0(E(−b)|Sx). (3.18)

Following our convention on notation, denote LΓ = (idP3×ρ)∗L, EΓ = (idP3×ρ)∗E.
The isomorphism (3.17) induces a section sΓ ∈ H0(EΓ(−b)⊗ LΓ) defined as

sΓ : OΓ = ρ∗ρ∗(EΓ(−b))⊗ LΓ
ev→ EΓ(−b)⊗ LΓ. (3.19)

Let
Z = (sΓ)0

be the zero scheme of this section. By the base change for any x ∈ X the scheme

Zx = Z ∩ Sx (3.20)

is the zero set of the section sΓ|Sx ∈ H0(E(−b)|Sx), hence from Theorem 3.1 and
the definition of X we have 2 = codimSx Zx = codimΓZ, so that

codimP3×XZ = codimP3×{x} Zx = 3. (3.21)

Use (3.19) and the relation
E∨ ' E(−e), (3.22)

and consider the composition ε : E
⊗OΓ

� E|Γ
s∨Γ
� IZ,Γ(e− b)⊗ LΓ. Setting

F := ker ε, (3.23)

we obtain an exact triple

0→ F→ E
ε→ IZ,Γ(e− b)⊗ LΓ → 0. (3.24)

Remark 3.2. (i) Take any point x ∈ X and restrict the last triple onto P3 × {x}.
We will obtain the triple

0→ F → E
ε→ IZ,S(e− b)→ 0, (3.25)

where E = E|P3×{x} is a generalized null correlation bundle, S = Sx is a smooth
surface from the linear series P defined by the point x (namely, (S, [E]) = Φ(x)),
Z = Zx, IZ,S is the ideal sheaf of Z in S, and F = ker ε. This triple is an analogue
of the so-called reduction step in the sense of Hartshorne [13, Prop. 9.1], hence F ,
and therefore also F, is a reflexive sheaf.
(ii) In (3.25), Z is the zero-set of the section s = ε∨ of the bundle E(−b)|S .
Therefore, a standard computation using (3.14) and the relations

c1(E) = e, c2(E) = c2 − a2 − b2 − e(a− b− c), degS = c− b,
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shows that

c1(F ) = e+ b− c,
c2(F ) = c2 − a2 − bc− e(c− a− b),
c3(F ) = l(Z) = c2(E(−b)|S) = (c− a)(c− b)(c+ a− e).

(3.26)

Since the sheaf F is determined uniquely up to an isomorphism by the pair x =
([E], S) ∈ X as the kernel of an epimorphism ε in (3.25), we will also use the
following notation for F :

F = F (x) = F (E,S). (3.27)

(iii) From (3.24) it follows that the sheaf F is determined by the sheaf E uniquely
up to an isomorphism. Hence, since E inherits a GL(Nm)-linearization as a quo-
tient sheaf over (an open subset of) the Quot-scheme, the sheaf F also inherits a
GL(Nm)-linearization.

Since by construction

F = F|P3×{x}, x ∈ X, (3.28)

and det E ' OP3×X(e), it follows from (3.26) that

det F ' OP3×X(e+ b− c). (3.29)

As F is a rank 2 reflexive sheaf on P3 ×X by Remark 3.2(i), (3.29) implies

F∨ = F(c− e− b). (3.30)

Next, from (2.19) follows the relation NΓ/P3×X ' OΓ(c − b, 1), and (3.21)
implies

Ext1(IZ,Γ(e− b)⊗ LΓ,OP3×X) = Ext1(LΓ(e− b),OP3×X) = L∨Γ(c− e, 1).

Thus, dualizing the triple (3.24) and using (3.22) and (3.30) we obtain an exact
triple

0→ E(b− c)→ F
ψ−→ L∨Γ(b, 1)→ 0. (3.31)

Note that the restriction of (3.31) onto P3 × {x} for any x ∈ X yields an exact
triple

0→ E(b− c)→ F
ψ→ OS(b)→ 0, E = E|P3×{x}, F = F|P3×{x}. (3.32)

17



4 Outline of the proof of the main result

In this section we will give the plan for the proof of the main result of the paper
— Theorem 8.1. It consists of four steps.

Step 1. This step is described in detail in Section 5. We consider the set

W = {([E], S, C) | ([E], S) ∈ X, C = (s)0 is a smooth curve,

where 0 6= s ∈ H0(F (E,S)(c− a− b))}.
(4.1)

(Remind that here we use the notation F (E,S) introduced in (3.27) for a reflexive
sheaf F determined by the point x = ([E], S) ∈ X, see Remark 3.2(i-ii).) It
is proved in Corollary 5.3 that this set underlies a variety W with a projection
π : W → X which is an open subfibration of a locally trivial Pm-fibration over X,
where m is given by (5.13). We thus have a diagram of cartesian squares extending
the right diagram (2.43):

EW,FW W

π

��

Φ̃ // W 3 ([E, ]S,C)

π

��
E,F X

θ

��

Φ // X

θ

��
Y

ϕ // N,

(4.2)

in which horizontal maps are principal G-bundles. Here E and F are the families
of OP3-sheaves with the base X introduced in (2.45) and (3.23), and EW and FW

are their lifts onto P3 ×W.

Step 2. At this step, which is descibed in detail in Section 6, we construct a
new family F of reflexive sheaves on P3, of the type described in Remark 3.2, and
with a rational base T. These data T and F are explicitely described in (4.7) and
(4.9) below. We then restrict our consideration to a certain dense open subset T
of T which will be essential for our subsequent arguments.

We start with the linear series P = |OP3(c − b)| introduced in (2.16) and
consider its dense open subset P of smooth surfaces - see (2.17). Set

R := {(S,C) ∈ P×HilbP3 | C ∈ |OS(c− a)| is a smooth curve}, (4.3)

together with a natural projection r : R→ P, (S,C) 7→ S.

Remark 4.1. Since any S ∈ P is a smooth (hence irreducible) surface, it follows
from the cohomology of the exact triple

0→ OP3(b− a)→ OP3(c− a)→ OS(c− a)→ 0
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that
(i) the fibre r−1(S) is an open dense subset of the linear series |OS(c−a)| consisting
of smooth curves and

dim r−1(S) =

(
c− a+ 3

3

)
−
(
b− a+ 3

3

)
− 1,

and all the curves of this linear series are complete intersections of the form

C = S ∩ S′, S′ ∈ |OP3(c− a)|; (4.4)

(ii) the projection r : R→ P is an open subfibration of a locally trivial projective
fibration with fibre |OS(c− a)| over a point S ∈ P; hence, since P is rational, R is
rational as well; moreover,

dim R = dim P + dim r−1(S)

=

(
c− b+ 3

3

)
+

(
c− a+ 3

3

)
−
(
b− a+ 3

3

)
− 2.

(4.5)

Take an arbiitrary point (S,C) ∈ R and consider the group

Exti(x) := Exti(IC(c− 2a− b+ e),OP3). (4.6)

In Section 6 we prove that the dimension of this group does not depend on the
point x and is given by the formula (6.6). This implies that the set

T = {t = (x, ξ) | x = (S,C) ∈ R, ξ ∈ P (Ext1(x))} (4.7)

is the set of closed points of the variety (denoted below by the same letter T) of
dimension given by the formula (6.8), and the projection

µ : T→ R, (x, ξ) 7→ x (4.8)

is a locally trivial projective fibration. In particular, since R is rational, T is also
rational.

Furthermore, in Theorem 6.3 we state that on P3 × T there is a sheaf F
defined as the universal extension sheaf

0→ OP3(a+ b− c)�OT(1)→ F→ IΣ,P3×T(e− a),→ 0, Σ = Σ×R T, (4.9)

where Σ is the incidence subvariety of P3 × R defined as

Σ := {(x, S,C) ∈ P3 × R | x ∈ C}. (4.10)

Here F may be considered as a family of reflexive OP3-sheaves with base T and
with Chern classes given by (3.26), see Remark 6.2.

In the last part of Section 6, we prove one technical result about reflexive
sheaves of the family F with base T. It shows that, if for t = (S,C, ξ), a sheaf Ft
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of the family F has an epimorphism onto an invertible OS-sheaf OS(b), then the
kernel of this morphism is a generalized null correlation bundle twisted by OP3(b−
c), just as in the exact triple (3.32) in which we put F = Ft. It is proved in Theorem
6.4. A principal technical point used in the proof is the following specific property of
any generalized null correlation bundle E: it has the cohomology H0

∗ (OP3)-module
H1
∗ (E) with one generator. This theorem is crucial for further constructions.

Step 3. At this step which is worked out in detail in Section 7, we use the
above family of reflexive sheaves F to construct a family E of generalized null
correlation bundles with rational base V . For this, we first construct a locally
trivial projective bundle λ : U → T with fibre λ−1(t) over an arbitrary point
t = (S,C, ξ) ∈ T equal to the projectivized vector space Hom(Ft,OS(b)). The local
triviality of this projective fibration is a consequence of Theorem (7.1) which, in
particular, states that the dimension of the above space Hom(Ft,OS(b)) does not
depend on t. As a corollary of Theorems 6.4 and 7.1 we then find dense open
subsets T of T and V of U such that (i) λ = λ|V : V → T is a surjection and, for
(t,kψ) ∈ V , and (ii) the morphism ψ : Ft → OS(b) is surjective. More precisely,
V is set-theoretically defined as the set of data

V = {(S,C, ξ,kψ) | (S,C, ξ,kψ) satisfies the above conditions (i)-(ii)

and the open condition [ker(ψ)(c− b)] ∈ N}
(4.11)

(the precice definition of V is given in (7.15)). As a consequence, we obtain a
family E of generalized null correlation bundles related to the family F via the
exact triple

0→ E(b− c)→ FV
Ψ→ OΓV

(b)⊗OP3 �OV (1)→ 0 (4.12)

(see Remark 7.2). Here ΓV ⊂ P3 × V is the graph of the family of surfaces S
and OV (1) is the restricted onto V Grothendieck sheaf of the above mentioned
projective fibration - see (7.11). This triple is the relativized over V version of the
exact triple (3.32). As a result of the constructions of Steps 2 and 3, we obtain the
following diagram of morphisms:

FV , E V

λ

��

� � open // U

λ

��
T

µ

��

� � open // T
µ

}}

Σoo

~~
R

r

��

Σoo

P,

(4.13)
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together with the family of OP3-sheaves F with base T and the induced families of
OP3 -sheaves FV , E with base V . Remind that, in this diagram, varieties R, T, Σ
and Σ were defined in (4.3), (4.7), (4.10) and (4.9), respectively.

Step 4. At this final step performed in Section 8, we show that there is an

isomorphism f : W
'→ V. Set-theoretically the map f : W → V on closed points

is given as follows.
For any ([E], S, C) ∈ W consider the exact triple (3.25). Dualizing it, we

obtain a) the exact triple (3.32) with F = F (E,S) and an epimorphism ψ : F →
OS(b), and b) an extension class ξ ∈ P (Ext1(IC(c − 2a − b + e),OP3)) given by
the exact triple (5.3) with F = F (E,S). Then, we define f as

f([E], S, C) := (S,C, ξ,kψ). (4.14)

From the description of V given in Step 3, it follows that the point f([E], S, C)
belongs to V .

Respectively, the inverse h = f−1 : V →W of f is set-theoretically described
as

h(S,C, ξ,kψ) := ([E], S, C), where E = ker(ψ)(c− b). (4.15)

In Theorem 8.1(i), we prove that the map f , respectively, its inverse h is the
underlying map of an isomorphism between W and V . The idea is to relate the
diagrams (4.2) and (4.13). We first construct a G-invariant morphism fV : W →
V which descends to the desired morphism f : W → V satisfying the relation
fV = f ◦ Φ̃ since Φ̃ : W→W is categorical quotient.

Next, we construct a principal PGL(Nm)-bundle Φ : V → V and a mor-
phism f : W→ V making the diagram

W

Φ̃
��

f // V

Φ
��

W
f // V

(4.16)

commutative (see (8.7)-(8.8) and (8.12)-(8.13) for details).
Last, we construct the morphisms h : V →W and h : V → W making the

diagram

W

Φ
��

V
hoo

Φ
��

W V
hoo

commutative and show that h and h are inverse, respectively, to f and f (see
(8.18)–(8.24) for details).

Technical aspects of the proof are based on the universal properties of Quot-
schemes, Hilbert schemes and projectivized spaces of extensions involved in the
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constructions of the families EW,FW in diagram (4.2) and the families FV , E in
diagram (4.13).

In Theorem 8.1(ii)–(iii), we obtain the main result of the paper, the stable
rationality of the space N(e, a, b, c) and, respectively, its rationality for (e, a) 6=
(0, 0), c > 2a + b − e, and b > a, as a quick consequence of the statement (i) of
this Theorem.

5 Properties of reflexive sheaves of the family F

In this section, we study more closely reflexive sheaves F of the family F – see
(3.28). Note that an arbitrary sheaf F is obtained from a generalized null correla-
tion bundle [E] ∈ N by the triple (3.25).

This consideration leads to the following theorem.

Theorem 5.1. For any [E] ∈ N the following statements hold.
(i) There exists a surface S ∈ θ−1

(
[E]
)

such that the reflexive sheaf F defined by

the pair
(
S, [E]

)
as in Remark 3.2 satisfies the conditions

h0(F (c− a− b)) =

{
1, if (e, a) 6= (0, 0),
2, if e = a = 0, b > 0,
3, if e = a = b = 0,

(5.1)

h1(F (c− a− b)) = 0. (5.2)

(ii) For any 0 6= s ∈ H0(F (c− a− b)) there an exact triple

0→ OP3
s→ F (c− a− b)→ IC(c− 2a− b+ e)→ 0, (5.3)

where C = (s)0 is a complete intersection curve C = S ∩ S′, where S′ is certain
surface of degree c − a in P3. In addition, C = (s)0 is smooth for a general s ∈
H0(F (c− a− b)).
(iii) In the case h0(F (c− a− b)) ≤ 2, the space P (H0(F (c− a− b))) is naturally
identified with a linear subspace of the linear series |OS(C)| = |OS(c− a)|. In the
case h0(F (c− a− b)) = 3, the space P (H0(F (c− a− b))∨) is naturally identified
with a linear subspace of the linear series |OP3(c− b)|.

Proof. (i) Consider the generalized null correlation bundle [E] ∈ N and the corre-
sponding monad (1.1) with the cohomology sheaf E. From the description (2.5)–
(2.8) of this monad it follows that there is a smooth complete intersection curve C0

defined in (2.8) having the properties (3.1)–(3.2). Besides, there is a well-defined
double scheme structure C0 on C0 satisfying the exact triple (3.5), and another
nonreduced scheme structure C ′0 on C0 together with a zero-dimensional sub-
scheme Z of C0, and these schemes fit in the commutative diagram (3.9). By (3.5),
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the composition β ◦α◦s is zero, where β is defined in (3.9). Hence, the triple (3.5)
and the upper horizontal triple of the diagram (3.9) extend to the commutative
diagram

0

��

0

��
OP3(a+ b− c)

��

OP3(a+ b− c)

s

��
0 // F

��

// E

α

��

β◦α // IZ,S(e− b) // 0

0 // IC0(e− a)

��

// IC0
(c− a− b+ e)

��

β // IZ,S(e− b) // 0

0 0.

The leftmost vertical triple of this diagram twisted by OP3(c − b − a) coincides
with (5.3) for C = C0:

0→ OP3 → F (c− a− b)→ IC0
(c− 2a− b+ e)→ 0. (5.4)

Since C0 is a complete intersection (2.8), it follows that the sheaf IC0
(c−2a−b+e)

has the following locally free OP3-resolution:

0→ OP3(e−c−a)→ OP3(e−2a)⊕OP3(e−a−b)→ IC0
(c−2a−b+e)→ 0. (5.5)

Passing to sections in the triple (5.5) and (5.4), we obtain (5.1) and (5.2).
(ii) Note that, since by (5.1) h0(F (c− a− b)) ≤ 3, it clearly follows that the

zero-scheme C = (s)0 of any non-zero section s ∈ H0(F (c−a−b)) has dimension 1.
(Indeed, a standard argument in case dimC = 2 shows that there exists a positive
integer d and nonzero section s′ ∈ H0(F (c− a− b− d)) with dim(s′)0 = 1, so that
ks′ ⊗H0(OP3(d)) is a subspace of dimension ≥ 4 of H0(F (c − a − b)) which is a
contradiction.) We thus have to treat three cases corresponding to three possible
values of h0(F (c− a− b)).

(ii.1) h0(F (c − a − b)) = 1. Since by (5.4) C0 = (s)0 for some 0 6= s ∈
H0(F (c−a− b)), it follows that, in (5.3), C = C0 which is a complete intersection
of the desired form (2.8).

(ii.2) h0(F (c − a − b)) = 2. In this case e = a = 0, b > 0, and for any
0 6= t ∈ H0(F (c− b)), the triple (5.3) becomes:

0→ OP3
t→ F (c− b)→ ICt(c− b)→ 0, Ct = (t)0. (5.6)
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It follows that h0(ICt(c−b)) = 1, i. e. there exists a unique surface St ∈ |OP3(c−b)|
containing Ct. By construction, the cokernel Q of the evaluation morphism

0→ H0(F (c− b))⊗OP3
ev−→ F (c− b)

is a sheaf supported on the divisor St for any 0 6= t ∈ H0(F (c−b)). Thus, from the
above uniqueness, we have St = S, where S ∈ |OP3(c− b)| is a surface containing
the curve C0.

Besides, passing to cohomology in the triples (5.4) and (5.5) twisted by
OP3(b), we obtain that h0(F (c)) = 1 + 2h0(OP3(b)) for e = a = 0. This together
with the triple (5.6) twisted by OP3(b) implies that h0(ICt

(c)) = 1 + h0(OP3(b)).
Therefore in view of the exact triple

0→ OP3(b)
·S−→ ICt

(c)→ OS(−Ct)(c)→ 0, (5.7)

where S is any surface of the linear series |OP3(c − b)| containing the curve Ct,
we obtain h0(OS(−Ct)(c)) = 1. From this equality and the fact that the sheaf
OS(−Ct)(c) has degree 0 with respect to OS(1) we deduce that OS(Ct) = OS(c).
Since S ∈ |OP3(c− b)|, it follows that Ct is a complete intersection of the desired
form (2.8).

(ii.3) h0(F (c− a− b)) = 3. In this case, e = a = b = 0 and, arguing as in the
case (ii.2) above, we obtain for any 0 6= t ∈ H0(F (c)) that h0(ICt(c)) = 2. Besides,
for any surface S ∈ |OP3(c− b)| passing through Ct, there is an exact triple (5.7)
with b = 0. This together with the last equality implies that h0(OS(−Ct)(c)) = 1,
and, as above, we obtain that Ct is a complete intersection curve of the form (2.8).

Last, note that C = (s)0 is smooth for a general s ∈ H0(F (c− a− b)), since
C0 is smooth.

(iii) In the case h0(F (c−a− b)) ≤ 2, the assertion directly follows from (ii.1-
2). Consider the case h0(F (c− a− b)) = 3. Note that, in this case, a = b = e = 0.
The exact triples

0→ OP3 → F (c)→ IC0
(c)→ 0 and 0→ OP3(−c)→ 2OP3 → IC0

(c)→ 0

by push-out yield a resolution for F (c) of the form

0→ OP3(−c)→ 3OP3 → F (c)→ 0.

This resolution shows that, for any 2-dimensional subspace V of H0(F (c)) the

cokernel of the evaluation morphism 0 → V ⊗ OP3
ev−→ F (c) is isomorphic to

the sheaf OSt
for some surface St ∈ |OP3(c)|. These surfaces St constitute a 2-

dimensional linear subseries parametrized by P (H0(F (c− a− b))∨).

Let p : P3 ×X→ X be the projection, and set

W := P((p∗F(c− a− b))∨)
π−→ X. (5.8)
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Note that, by (5.1), (5.2) and the base change, p∗F(c−a− b) is a locally free sheaf
of rank

rk(p∗F(c− a− b)) = h0(F (c− a− b)), (5.9)

where h0(F (c − a − b)) is given in (5.1). Hence π : W → X is a locally trivial
projective bundle, and there is a canonical epimorphism of vector bundles on W

ε : π∗((p∗F(c− a− b))∨)� OW(1). (5.10)

Consider the G-action on X turning the projection Φ : X→ X into a princi-
pal G-bundle (see Theorem 2.2(ii)). From the definition of W and Remark 3.2(iii),
it follows that this action lifts to a G-action on W such that π is a G-invariant
morphism. We thus obtain a cartesian diagram of principal G-bundles

W

π

��

Φ̃ // W

π

��
X

Φ // X,

(5.11)

where W = W//G is a geometric factor, Φ̃ : W → W is a canonical projection,
and π :W → X is the induced morphism.

Let W p̃←− P3 ×W π̃−→ P3 ×W be the induced projections. The canonical
epimorphism ε from (5.10) induces a morphism

s̃ : OP3 �OW(−1)
p̃∗(ε∨)−−−−→ p̃∗π∗p∗F(c− a− b)

= π̃∗p∗p∗F(c− a− b) π̃∗ev−−−→ FW(c− a− b).
(5.12)

(Note that, here, FW = π̃∗F, according to our agreement on notation.)

Theorem 5.2. (i) The variety W is described as W = {(x,C) | x = (S, [E]) ∈ X,
and C = (s)0 for some 0 6= s ∈ H0(F (c−a−b)), where F is determined by the pair
x = (S, [E]) via the reduction step (3.25)}. In addition, the morphism π :W → X
is given by (x,C) 7→ x, and π−1(x) = P (H0(F (c− a− b))).

(ii) The vertical maps π : W → X and π : W → X in (5.11) are locally
trivial Pm-fibrations, where

m = m(e, a, b, c) := h0(F (c− a− b))− 1, (5.13)

and h0(F (c− a− b)) is given by (5.1). Therefore, dimW = dimX +m(e, a, b, c).

In particular, if (e, a) 6= (0, 0), then there is an isomorphism π :W '−→ X.
(iii) There is an exact OP3×W -triple

0→ OP3 �OW(−1)
s̃−→ FW(c− a− b)→ IC̃,P3×W(c− 2a− b+ e)→ 0,

where s̃ is defined in (5.12) and C̃ = (s)0 is a codimension 2 subscheme of P3×W.
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Proof. Statement (i) follows from the base change and the definition of W andW.
In (ii), the local triviality of the fibration π is clear, and Theorem 5.1(iii) yields the
local triviality of the fibration π. The isomorphism (5.16) is a corollary of (5.1).
Statement (iii) follows from the definition of the morphism s in (5.12).

Now consider the dense open subset W of W defined in (4.1):

W = {([E], S, C) ∈ W | C is smooth} �
� dense open // W , (5.14)

and set

W := W ×W W
π−→ X, FW := FW |P3×W, C := C̃ ×W W.

In view of Theorem 5.1(ii), the morphisms W
π−→ X and W

π−→ X are surjective.
Thus from Theorem 5.2 we obtain

Corollary 5.3. (i) W
π−→ X and W

π−→ X are open subfibrations of locally trivial
Pm-fibrations, where m = m(e, a, b, c) is defined in (5.13), and

dimW = dimX +m(e, a, b, c). (5.15)

In particular, if (e, a) 6= (0, 0), then there is an isomorphism

π : W
'−→ X. (5.16)

(ii) There is an exact OP3×W-triple

0→ OP3 �OW(−1)
s−→ FW(c− a− b)→ IC,P3×W(c− 2a− b+ e)→ 0, (5.17)

where s = s̃|P3×W. This triple being restricted onto P3 × {w}, for an arbitrary
point w ∈ W, coincides with the triple (5.3), in which we set s = s ⊗ k(w),
F = FW|P3×{w}, and C = C ∩ P3 × {w}.

Remark 5.4. According to Theorem 2.2(ii) and the above Corollary,

W
π−→ X

θ−→ Y
ϕ−→ N

is a composition of two open subfibrations of projective fibrations and of a principal
bundle. Hence, since N is a reduced scheme by [9], it follows that W is a reduced
scheme.
(ii) Applying the functor π̃∗ to the epimorphism ψ in (3.31) we obtain an epimor-
phism ψW : FW � (L∨Γ(b, 1))W, hence also an epimorphism

ψW : FW � (L∨Γ(b, 1))W. (5.18)
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6 A new family F of reflexive sheaves

In this section, we construct a new family F of reflexive sheaves with Chern classes
(3.26) and with the same properties as that of the sheaves of the family F –
see Theorem 6.3. As above, we fix the numbers e, a, b, c which determine an Ein
component N(e, a, b, c) of M(e, n), where n = c2 − a2 − b2 − e(c − a − b). Take
an arbitrary point (S,C) ∈ R and compute the number h0(OC(c+ a− e)). Since
C is a complete intersection curve C = S ∩ S′ (see Remark 4.4(i)), we obtain the
equality

detNC/P3 = OC(2c− a− b) (6.1)

and the exact triples

0→ IC(c+ a− e)→ OP3(c+ a− e)→ OC(c+ a− e)→ 0,

0→ OP3(2a+ b− c− e)→ OP3(a+ b− e)⊕OP3(2a− e)→ IC(c+ a− e)→ 0.

These triples yield

h0(OC(c+ a− e))

=

(
c+ a− e+ 3

3

)
−
(
a+ b− e+ 3

3

)
−
(

2a− e+ 3

3

)
+ δ(e, a, b, c),

(6.2)

where

δ(e, a, b, c) =


(

2a+b−c−e+3
3

)
, if c ≤ 2a+ b− e,

0, if c > 2a+ b− e.
(6.3)

For an arbitrary point x = (S,C) ∈ R, consider the groups

Exti(x) := Exti(IC(c− 2a− b+ e),OP3), i = 0, 1.

From (6.1) it follows that

Ext1(IC(c− 2a− b+ e),OP3) = Ext2(OC(c− 2a− b+ e),OP3) =

detNC/P3(2a+ b− c− e) ' OC(c+ a− e).
(6.4)

Since

hi(Hom(IC(c− 2a− b+ e),OP3)) = hi(OP3(2a+ b− c− e)) = 0, i = 0, 1, 2,

from (6.2), (6.4), and the spectral sequence of local-to-global Ext’s, we obtain

dim Ext0(x) = h0(OP3(2a+ b− c− e)), (6.5)

dim Ext1(x) = h0(OC(c+ a− e)) =(
c+ a− e+ 3

3

)
−
(
a+ b− e+ 3

3

)
−
(

2a− e+ 3

3

)
+ δ(e, a, b, c).

(6.6)
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Remark 6.1. Consider the incidence subvariety Σ of P3 × R defined in (4.10). In
view of (6.5)–(6.6), the dimensions of the groups Ext1(x) do not depend on the
point x = (S,C) ∈ R, so that the sheaves

Ei := Extip2(IΣ,P3×R(c− 2a− b+ e),OP3×R), i = 0, 1,

by [3] commute with the base change in the sense of [20, Remark 1.5]. In particular,
the sheaf E1 is a locally free OR-sheaf of rank

rk E1 = h0(OC(c+ a− e))

and for any x = (S,C) ∈ R one has the base change isomorphism E1 ⊗ k(x)
'→

Ext1(x).

Consider the rational variety

T := P(E∨1 ) (6.7)

with its structure morphism µ : T→ R which is a locally trivial projective fibra-
tion with fibre of dimension h0(OC(c+ a− e))− 1. We thus obtain from (4.5) and
(6.6) the formula for the dimension of T:

dim T =

(
c− b+ 3

3

)
+

(
c− a+ 3

3

)
−
(
b− a+ 3

3

)
+

(
c+ a− e+ 3

3

)
−
(
a+ b− e+ 3

3

)
−
(

2a− e+ 3

3

)
+ δ(e, a, b, c)− 3.

(6.8)

By construction, T has a set-theoretical description (4.7), and the structure mor-
phism µ coincides with (4.8). In addition, each point t = (S,C, ξ) ∈ T defines a
non-trivial (class of proportionality of an) extension of OP3-sheaves

ξ : 0→ OP3(a+ b− c)→ Ft → IC(e− a)→ 0. (6.9)

Remark 6.2. This is the well-known Serre construction (cf. [12], [13], [22]). In
particular, Ft is a reflexive sheaf with Chern classes given by (3.26).

Globalizing over T the triple (6.9), we arrive at the following result.

Theorem 6.3. On P3 ×T, there is a sheaf F defined as the universal extension
sheaf (4.9). The sheaf F is a family of reflexive sheaves (6.9) on P3 with the base
T.

In the remaining part of this section, we study the question of producing a
generalized null correlation bundle E from an arbitrary reflexive sheaf F of the
family F. A hint for this is given by the triple (3.32). In this triple, a generalized null
correlation bundle E is obtained from F by an analogue of the “inverse reduction
step” (cf. Remark 3.2(i)) as a kernel of an epimorphism F � OS(b). In fact, the
following theorem which will be used in the next section is true.
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Theorem 6.4. Consider a subset T of T consisting of those points t = (S,C, ξ) ∈
T for which there exists an epimorphism ψ : Ft � OS(b), with Ft given by an
extension (6.9), such that E = kerψ is locally free. Then T is nonempty and E is
a generalized null correlation bundle, [E] ∈ Nnc.

Proof. Clearly, T is nonempty: it is enough to take a point x = (S, y) ∈ X and
set [E] = ϕ(y), so that the data (F,C, ξ) are determined by the pair

(
S, [E]

)
as in

Theorem 5.1; in particular, ξ is defined as the extension class of the triple (5.3).
Then for the point t = (S,C, ξ) by (5.3) the sheaf Ft = F coincides with the sheaf
Fx in the triple (3.32), and this triple shows that t ∈ T .

Now take t = (S,C, ξ) ∈ T and consider the triple (3.32) twisted by OP3(c−
b+m):

0→ E(m)→ F (c− b+m)
ψ→ OS(c+m)→ 0, m ∈ Z. (6.10)

Respectively, the triple (6.9) twisted by OP3(c− b+m) yields

0→ OP3(a+m)
i→ F (c− b+m)

θ→ IC(m+ c− a− b+ e)→ 0. (6.11)

Besides we have a standard exact triple

0→ OP3(−c+ e+m)→ OP3(−b+ e+m)⊕OP3(−a+ e+m)→
IC(m+ c− a− b+ e)→ 0.

(6.12)

Substituting m ≤ b − c into (6.11) and (6.12) and using the inequalities c >
a+ b, e ≤ 0, we obtain h0(F (m)) ≤ 0, m ≤ 0. Besides, since Z 6= ∅ and e− b ≤ 0,
h0(IZ,S(e− b+m)) = 0, m ≤ 0. Hence the triple (3.25) twisted by OP3(m) yields

h0(E(m)) = 0, m ≤ 0. (6.13)

In particular, h0(E) = 0, i. e. E is stable.
Now consider the triples (6.10) and (6.11) and the morphisms ψ and i therein.

If the composition ψ ◦ i vanishes, then i is a section of E(−a) which contradicts
(6.13) since a ≥ 0. Hence, the composition ψ ◦ i factors as

ψ ◦ i : OP3(a+m)
ψ′

� OS(a+m)
i′→ OS(c+m).

Denote U = P3 \ SingF . Since by (6.11) the morphism i|U : OU (a+m)→ F (c−
b + m)|U is a section of the locally free sheaf F (c − b + m)|U vanishing at the
curve C ∩ U , it follows that i′ : OS(a + m) → OS(c + m) is a multiplication by
the equation of the divisor C in S. Hence coker i′ = OC(c+m), and we obtain the
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commutative diagram

0

��

0

��

0

��
0 // OP3(a+ b− c+m)

��

·S // OP3(a+m)

i

��

ψ′ // OS(a+m)

i′

��

// 0

0 // E(m)

��

// F (c− b+m)

θ

��

ψ // OS(c+m)

��

// 0

0 // IC̃(c− a− b+ e+m)

��

// IC(c− a− b+ e+m)

��

ψ′′ // OC(c+m) //

��

0

0 0 0,

in which ψ′′ is induced by the morphisms ψ and ψ′, and C̃ is a certain double
scheme structure on the curve C. Consider the bottom horizontal and left vertical
triples in this diagram:

0→ IC̃(c− a− b+ e+m)→ IC(c− a− b+ e+m)
ψ′′→ OC(c+m)→ 0, (6.14)

0→ OP3(a+ b− c+m)→ E(m)→ IC̃(m+ c− a− b+ e)→ 0. (6.15)

By [23, Example 3.3], from the triple (6.14) one obtains that the cohomology
H0
∗ (OP3)-module H1

∗ (IC̃) (as a graded module over the graded ring H0
∗ (OP3) '

k[x0, x1, x2, x3]) has one generator. Hence, the triple (6.15) yields that the coho-
mology H0

∗ (OP3)-module H1
∗ (E) also has one generator. This together with [9,

Prop. 1.3] shows that E is a generalized null correlation bundle.

7 Family of generalized null correlation bundles
E associated to F

In this section, starting with the family F with rational base T, we produce a family
E of generalized null correlation bundles with certain rational base V . For this,
we first prove Theorem 7.1 in which we state certain properties of the restriction
of a reflexive sheaf Ft of the family F onto a surface S, where t = (S,C, ξ) ∈ T.
From these properties, it follows that the set T from Theorem 6.4 is a dense open
subset T of T. Theorem 7.1 then also leads to a construction of a desired rational
family V as of a dense open subset of a locally trivial projective fibration over T .
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Theorem 7.1. In conditions and notation of Theorem 6.4, let t = (S,C, ξ) ∈ T
and F = Ft. Then, the following statements hold

(i) dim Hom(F,OS(b)) =
(
b+c−e+3

3

)
−
(

2b−e+3
3

)
+ 1.

(ii) the set P (Hom(F,OS(b)))∗ = {kψ ∈ P (Hom(F,OS(b))) | ψ : F → OS(b)
is surjective and kerψ is locally free} is nonempty, hence dense open in
P (Hom(F,OS(b))).

(iii) For any point kψ ∈ P (Hom(F,OS(b)))∗, the sheaf

Eψ := (ker(F � OS(b)))(c− b)

is a generalized null correlation bundle, [Eψ] ∈ Nnc.

Proof. (i) Note that the natural epimorphism ρ : IC(e − a) � IC,S(e − a) '
OS(−C)(e− a) ' OS(e− c) composed with the epimorphism θ : F � IC(e− a)
from the triple (6.11) for m = b− c gives an epimorphism

ρ ◦ θ : F � OS(e− c).

Restricting it onto S yields an exact triple: 0→ IZ,S(b)→ F |S → OS(e− c)→ 0.
This triple together with the triple 0→ IZ,S(b)→ OS(b)→ OZ → 0 by push-out
yield the following exact triples:

0→ OS(b)
u→ (F |S)∨∨ → OS(e− c)→ 0, (7.1)

0→ F |S → (F |S)∨∨ → OZ → 0, (7.2)

where (F |S)∨∨ = HomOS
(HomOS

(F |S ,OS),OS). On the other hand, restricting
onto S the epimorphism ψ : F � OS(b) from the triple (6.10) with m = b − c,
we obtain an exact triple 0 → IZ,S(e − c) → F |S → OS(b) → 0. As above, by
push-out this triple yields the exact triple

0→ OS(e− c)→ (F |S)∨∨
v→ OS(b)→ 0. (7.3)

Now, consider the morphisms u and v in the triples (7.1) and (7.3). If their com-
position v ◦ u : OS(b) → OS(b) iz zero, this implies that there exists a nonzero
morphism OS(b)→ OS(e− c), contrary to the condition that e− c− b < 0. Hence
v ◦ u : OS(b)→ OS(b) is an isomorphism. This means that both triples (7.1) and
(7.3) split. Thus

(F |S)∨∨ ' OS(b)⊕OS(e− c). (7.4)

Remark that, since dimZ = 0, it follows that

Hom(OZ ,OS(b)) = Ext1(OZ ,OS(b)) = 0,

the triple (7.2) yields the isomorphisms

Hom(F,OS(b)) ' Hom(F |S ,OS(b)) ' Hom((F |S)∨∨,OS(b)).
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This together with (7.4) shows that

Hom(F,OS(b)) = H0(OS)⊕H0(OS(b+ c− e)).

Whence, (i) follows.
Statements (ii) and (iii) are immediate consequences of Theorem 6.4.

Now, return to the family F of reflexive sheaves on P3×T, and recall that T is
a rational variety (see (6.7)) with the projection r ◦µ : T→ P. Let Γ := Γ×P T ⊂
P3 × T be the family of surfaces in P3 with base T, together with the natural
projection Γ → T, the fibre of which over an arbitrary point t = (S,C, ξ) ∈ T is
a surface S. Consider an OT-sheaf

A = Ext0pr2(F,OΓ(b)),

where pr2 : P3 × T → T is the projection. The base change and Theorem 7.1(i)
show that

A⊗ k(t) = Hom(Ft,OS(b)), Ft = F|P3×{t}, (7.5)

and A is a locally free OT-sheaf of rank

rkA =

(
b+ c− e+ 3

3

)
−
(

2b− e+ 3

3

)
+ 1. (7.6)

Since T is a rational variety, the scheme

U := P(A∨)
λ−→ T (7.7)

is a rational variety and its structure morphism λ : U → T is a locally trivial
projective fibration with fibre of dimension rkA− 1. Thus by (6.8) and (7.6):

dim U =

(
c− b+ 3

3

)
+

(
c− a+ 3

3

)
−
(
b− a+ 3

3

)
+

(
c+ a− e+ 3

3

)
−
(
a+ b− e+ 3

3

)
−
(

2a− e+ 3

3

)
+

(
b+ c− e+ 3

3

)
−
(

2b− e+ 3

3

)
+ δ(e, a, b, c)− 3.

(7.8)

In view of (7.5), we have the set-theoretic description of U as:

U = {(t,kψ) | t = (S,C, ξ) ∈ T, kψ ∈ P (Hom(Ft,OS(b)))}. (7.9)

On U there is a tautological subbundle morphism

j : OU → A⊗OU(1),
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where OU(1) is the Grothendieck sheaf and A := λ∗A. From Theorem 7.1(ii), it
follows that

U = {(t,kψ) ∈ U | kψ ∈ P (Hom(Ft,OS(b)))∗} (7.10)

is a nonempty open (hence dense) subset of U. Since λ : U → T is a projective
fibration, it is flat. Hence by the openness of flat morphisms (see, e. g., [11, Ch.
III, Exc. 9.1]) the set T = λ(U) is a nonempty open (hence dense) subset of T.
We now set

ΓU := Γ×T U, ΓU := ΓU ×U U = Γ×T U,
A := AU , OB(1) := (OU(1))U , λ := λ|U ,

(7.11)

and let
can : FU ⊗OP3 �A→ OΓU

(b)

be the canonical evaluation morphism. Consider the universal morphism

Ψ : FU → OΓU
(b)⊗OP3 �OU(1) (7.12)

defined as the composition

Ψ : FU
id⊗j−−−→ FU ⊗OP3 � (A⊗OU(1))

can⊗id−−−−→ OΓU
(b)⊗OP3 �OU(1).

By Theorem 7.1(iii),

U = {u = (t,kψ) ∈ U | t = (S,C, ξ) ∈ T, Ψ|P3×{u} : F⊗ k(t)→ OS(b)

is surjective and [ker Ψ(c− b)|P3×{u}] ∈ Nnc}
(7.13)

is a dense open subset of U, and we obtain a well-defined morphism

q : U → Nnc, u 7→ [ker Ψ(c− b)|P3×{u}]. (7.14)

Set
V := q−1(N), E := (ker Ψ)(c− b)|P3 × V. (7.15)

Remark 7.2. (i) Note that V is nonempty. Indeed, for any ([E], S, C) ∈ W , the
point f([E], S, C) defined in (4.14) belongs to V .
(ii) Since N is a dense open subset of Nnc, it follows that V is a dense open subset
of U , hence also of U, i. e. V is a rational variety of dimension given by formula
(7.8). In addition, comparing (7.8) with (2.1), we obtain

dimV = dimN + δ(e, a, b, c) + t(e, a, b), (7.16)

and from (2.42) and (7.16) it follows that

dimX − dimV = τ − δ(e, a, b, c)− t(e, a, b). (7.17)

(iii) Clearly, from (7.15) follows the exact triple (4.12).
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8 Relation between E and E. Proof of the main
theorem

We are now ready to prove the main result of the paper, Theorem 8.1, which
follows from the relation between the families E and E. (The exact form of this
relation is the isomorphism (8.4).)

Theorem 8.1. (i) There is an isomorphism of varieties

f : W
'→ V. (8.1)

(ii) For e, a, b, c with e ∈ {−1, 0} and b ≥ a ≥ 0, c > a + b, the variety
N , hence also the variety N(e, a, b, c) is at least stably rational. Furthermore, on
P3 ×W there exists a family of generalized null correlation bundles EW for which
the corresponding modular morphism W → N coincides with θ ◦ π in the diagram
(4.2).

(iii) Assume (e, a) 6= (0, 0), c > 2a+b−e, and b > a. Then τ = 0, N(e, a, b, c)
is a rational variety, and its open dense subset N ' X ' W is a fine moduli
space, i.e. the OP3×N -sheaf EW is a universal family of generalized null correlation
bundles over N .

Proof. (i) The desired map f : W → V was set-theoretically defined in (4.14).
We have to show that this is the underlying map of a certain morphism. We first
construct a PGL(Nm)-invariant morphism

fV : W→ V. (8.2)

For this, consider the triple (5.17) and remark that the subscheme C in this
triple is a family with base W of complete intersection curves from R (see (4.3)).
Thus, by the universality of the Hilbert scheme, there exists a morphism f0 : W→
R such that C = Σ×R W. Hence,

IC,P3×W(c− 2a− b+ e) ' (idP3 × f0)∗IΣ,P3×R(c− 2a− b+ e).

Now, consider the triples (5.17) and (4.9) as families of extensions of OP3-sheaves
with bases W and T, respectively. Use Remark 6.1 and the fact that W is reduced
(see Remark 5.4) to apply the universal property of the scheme T (see [20, Cor.
4.4]). By this universal property there is a uniquely defined morphism f1 : W→ T
such that f0 = µ ◦ f1 and such that the triple (5.17) is obtained by applying the
functor (idP3 × f1)∗ to the triple (4.9). In particular,

FW ' FW. (8.3)

By (8.3) and the universal property of the scheme U over T, there is a unique
morphism fV : W → V such that f1 = λ ◦ fV and such that the epimorhism
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ψW : FW � (L∨ρ (b, 1))W in (5.18) is obtained from the universal morphism
Ψ in (7.12) by aplying the functor (idP3 × fV )∗. As ψW is surjective, from the
description (7.15) of V it follows that

fV (W) ⊂ V

and EW = kerψW is a family of locally free sheaves on P3. Moreover, (3.31),
(7.15), and (8.3) yield

EW ' EW. (8.4)

Furthermore, as the PGL(Nm)-principal bundle Φ̃ : W → W is a categorical
factor, and the morphism fV : W → V by construction is PGL(Nm)-invariant, it
follows that there exists a morphism

f : W → V

such that fV = f◦Φ̃. Clearly, f is pointwise just the map ([E], S, C) 7→ (S,C, ξ,kψ)
given in (4.14).

We have to show that f is an isomorphism. For this, remark that the sheaf
D = pr2∗E(m), where pr2 : P3×V → V is the projection, is a locally free OV -sheaf
of rank Nm, and the evaluation morphism ev : pr∗2 D → E(m) is surjective (see
Section 2). Now consider a locally free OV -sheaf K = Hom(kNm⊗OV ,D) and the
corresponding scheme V(K∨) = Spec(Sym·K∨). There is an open dense subset Y =
Isom(kNm ⊗OV ,D) of V(K∨) consisting of (fibrewise) invertible homomorphisms
from kNm ⊗OV to D, together with the projection v : Y → V and the canonical

isomorphism can : kNm⊗OP3×Y
'→ (idP3×v)∗D. This isomorphism, being twisted

by OP3(−m)�OY, together with the above epimorphism ev yields an epimorphism

B �OY
can→ (idP3 × v)∗D(−m)

ev
� EY,

where B = kNm ⊗ OP3(−m) (see Section 2). Thus, by the universal property of
the open subset Y of the Quot-scheme Q = QuotP3(B, P ) introduced in Theo-
rem 2.2(ii), there exists a uniquely defined morphism q̃ : Y → Q such that

EY ' EY, (8.5)

where E is the universal quotient sheaf on P3 ×Q. Note that, by (7.14),

ϕ ◦ q̃ = q ◦ v, (8.6)

where ϕ : Y → N is a principal PGL(Nm)-bundle (2.13). In particular,

q̃(V) ⊂ Y.

Next, the group k∗ naturally acts on V by homotheties, so that

V := Y//k∗ (8.7)
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is a categorical quotient. Therefore, v as a principal GL(Nm)-bundle decomposes
as v = Φ ◦ ν, where ν : Y → V is a principal k∗-bundle and

Φ : V→ V (8.8)

is a principal PGL(Nm)-bundle. Since the morphism q̃ is k∗-invariant, it decom-
poses as

q̃ = q ◦ ν,
where

q : V→ Y (8.9)

is a PGL(Nm)-equivarint morphism. Thus, as the principal PGL(Nm)-bundles
Φ : V → V and ϕ : Y → N are categorical quotients, there exists a morphism
q : V → N making the diagram

Y

ϕ

��

V
qoo

Φ
��

N V
qoo

(8.10)

cartesian. In addition, similar to (8.5) we see that the sheaf EV satisfies the relation

EV ' EV. (8.11)

Note that since V is irreducible, so is V.
We now construct the morphism

f : W→ V (8.12)

making the square in the diagram

W

Φ̃
��

f //

fB

  

V

Φ
��

W
f // V

(8.13)

cartesian. For this, note that by the universal property of the Quot-scheme Q the
family of generalized null correlation bundles EW on P3 ×W defines a morphism

η : W→ Q (8.14)

such that, by definition,
η(W) ⊂ Y,

and the diagram

W

Φ̃
��

η // Y

ϕ

��
W

q◦f // N

(8.15)
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is cartesian. From the cartesian diagrams (8.10) and (8.15) by transitivity of fibred
products follows the existence of the desired morphism f satisfying (8.13).

Now consider the composition V
λ→ T

µ→ R
r→ P of natural morphisms in

diagram (4.13), and the induced graph of incidence ΓB (see (7.11)). Let γ : ΓV :=
ΓU ×U V → V be the projection and the set

B := (R2γ∗(E(c− e− 4)|ΓV
))∨.

A standard base change and the Serre duality (cf. (2.24)) imply that B is a line
bundle on V with a fibre over an arbitrary point u = (S,C, ξ,kψ) ∈ V (we use
the notaion from (7.13)) given by

B⊗ k(u) = H0(E(−b)|S),

where E = E|P3×{u}. Comparing this with (2.36) and (2.39) and using (8.11), we

obtain an epimorphism q∗U� B. Now, by the universal property of X = P(U)
θ→

Y defined in (2.38) (see, e. g., [11, Ch. II, Prop. 7.12]), there is a morphism

g : Y → X

such that q = θ ◦ g and B ' g∗OP(U)(1). Therefore, in view of (8.11), we have

EV ' (idP3 × g)∗E = EV. (8.16)

In addition, since q(V) ⊂ Y by (8.9), it follows from diagram (2.43) that

g(Y) ⊂ X.

Futhermore, the morphism g : Y → X is an equivariant morphism of principal
PGL(Nm)-bundles Φ : Y → V and Φ : X→ X. Hence there exists a morphism

g : V → X

making the diagram

X

Φ
��

V
goo

Φ
��

X V
goo

(8.17)

cartesian.
We now proceed to constructing the morphism

h : V →W, (8.18)

inverse to f . For this, we first construct the morphism

h : V→W
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such that
π ◦ h = g, π ◦ h = g, and Φ̃ ◦ h = h ◦ Φ, (8.19)

where Φ̃ : W → W is a principal PGL(Nm)-bundle in the diagram (5.11), and
π, respectively, π are the projections given in that diagram. Remark that, since
the sheaf FV (respectively, the sheaf FV) is determined by the sheaf EV (respec-
tively, by the sheaf EV) uniquely up to an isomorphism (see Remark 3.2(iii)), the
isomorphism (8.16) implies an isomorphism

FV ' FV.

Using this isomorphism, rewrite the left morphism in the exact triple (4.9) twisted
by OP3(c− a− b)�OT and lifted onto P3 ×V as

i : (OP3 �OT(1))V → FV(c− a− b) ' FV(c− a− b).

Consider the diagram of natural projections

P3 ×X

p

��

P3 ×V
idP3×goo

p

��
X V

goo

and apply the functor p∗ to the monomorphism i. We obtain a subbundle mor-
phism

ι : Θ∗OT(1)→ p∗FV(c− a− b), Θ := λ ◦Φ.

Note that p∗FV(c − a − b) is a locally free sheaf (cf. (5.9)) for which the base
change yields an isomorphism

p∗FY(c− a− b) ' g∗p∗F(c− a− b),

hence an epimorphism of locally free sheaves

g∗(p∗F(c− a− b))∨ � Θ∗OT(−1)

defined as the composition

εV : g∗(p∗F(c−a−b))∨ ' (g∗p∗F(c−a−b))∨ ' (p∗FV(c−a−b))∨ ι∨−→ Θ∗OT(−1).

Comparing εY with the canonical epimorphism ε in (5.10), we obtain by the
universal property of the projective bundle π : W → X in (5.8) that there
exists a morphism h : V → W satisfying the first relation (8.19) and such
that h∗ε = εV, h∗OW(1) ' Θ∗OT(−1). By construction, the morphism h is
PGL(Nm)-equivariant, so that it descends to the morphism h : V →W satisfying
the last two relations in (8.19).
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Remark that, by (8.13), fV = Φ ◦ f . Therefore, from (8.4) we obtain EW '
(EV)W = (idP3 × f)∗EV. This together with (8.16) yields:

EW ' (idP3 × (h ◦ f))∗EW. (8.20)

Now a standard argument shows that

h ◦ f = idW. (8.21)

Indeed, consider the Quot-scheme

QW := QuotP3×W/W(B �OW, P ) 'W ×Q (8.22)

and the embedding

∆ = (id, η) : W→ QW, w 7→ (w, η(w)),

where the morphism η is defined in (8.14). Then in view of the universal property of

QW the relation (8.20) shows that the composition W
h◦f−−→W

∆−→ QW coincides
with ∆. Hence, since ∆ is an embedding, (8.21) follows.

Similar to (8.21) one shows that

f ◦ h = idV. (8.23)

(For this, use (8.4) to obtain, similar to (8.20), an isomorphism EV ' (idP3 ×
(f ◦ h))∗EV, and then argue as in (8.22), with QW substituted by QV, to achieve
(8.23).) From (8.21) and (8.23) it follows that h = f−1. In particular, h is a
PGL(Nm)-equivariant isomorphism, and we obtain a cartesian diagram of princi-
pal PGL(Nm)-bundles

W

Φ
��

Y
h

'
oo

Φ
��

W B.
hoo

(8.24)

Whence, since h is an inverse to f , the morphism h is an isomorphism inverse to
f . Note that h is pointwise just the map (S,C, ξ,kψ) 7→ ([E], S, C) given in (4.15).

(ii) Since W ' V , the stable rationality of N now outcomes from the rational-
ity of V (see Remark 7.2(ii)) and the local triviality of the Pm-fibration π : W → X
(Theorem 5.2(ii)) and of the Pτ -fibration θ : X → N (Theorem 2.2(i)). In addition,

the isomorphism f : W
'−→ V yields the desired family EW = (idP3 × f)∗EV of

generalized null correlation bundles on P3 ×W for which in view of the relation
(8.4) the corresponding modular morphism W → N is just the composition of
locally trivial projective bundles π : W → X and θ : X → N .

(iii) From statement (i) and formulas (5.15) and (7.17) it follows that

τ = δ(e, a, b, c) + t(e, a, b)−m(e, a, b, c). (8.25)

39



This together with (2.2), (5.13), (5.1) and (6.3) shows that, under the conditions
(e, a) 6= (0, 0), c > 2a+ b− e and b > a, one has

τ = 0.

Therefore, by Theorem 5.2(ii) (see (5.16)) and Theorem 2.2(i),

W
π−→
'
X

θ−→ N(e, a, b, c)

is a P0-fibration, hence an isomorphism. Therefore, by the rationality of V ' W ,
N(e, a, b, c) = V is rational.

In addition, EW ' E is a universal family of generalized null correlation
bundles over N . This yields that the scheme N together with the universal family
E over it is a fine moduli space in the sense that it represents the functor F :
(Schemes)0 → Sets defined in the following usual way. For a given scheme X,
F (X) is the set of equivalence classes of flat families with base X of generalized
null correlation bundles on P3 belonging to N . Recall that, by definition, the two
families E and E ′ over X are equivalent if they are isomorphic up to a twist by a
pullback of a line bundle from X. Thus, to the equivalence class {E} ∈ F (X) of a
family E there corresponds a morhism X → N such that {E} = {EX}.

From Theorem 8.1 and the result of L. Ein [9] now immediately follows

Corollary 8.2. For both e = 0 and e = −1, the union of the spaces M(e, n) over
all n ≥ 1 contains an infinite series of rational components.

The following remarks are in order.

Remark 8.3. Fine moduli for n even. There is a well-known sufficient condition
for the (given component of the) Gieseker-Maruyama moduli space to be fine –
see [17, Cor. 4.6.6]. In case of M(0, n) with n even this condition fails, and there
were no known examples of components of M(0, n) when these moduli components
were fine moduli spaces. (On the contrary, there are known certain components of
M(0, n) for n even, e. g., the instanton components which are not fine – see [16].)
Theorem 8.1(ii) provides a series of fine (open dense subsets of) moduli components
N(e, a, b, c) for c > 2a + b − e, b > a, (e, a) 6= (0, 0), and n = c2 − a2 − b2 even,
this series clearly being infinite – see [19].

Remark 8.4. In 1984 V. K. Vedernikov [28] constructed, for 1 ≤ l ≤ k, a family
V1(k, l) ⊂ M(0, 2kl + 2l − l2); for 1 ≤ 2l ≤ k, a family V2(k, l) ⊂ M(0, k2 +
2k + 1 − l2); for 1 ≤ 2l ≤ k + 2, a family V3(k, l)k2 + 3k + 2 + 2l − 2l2). Later
in 1987 (see [29]), he constructed one more family, V4(k) ⊂ M(0, (k + 1)2) for
k ≥ 1. From the results of L. Ein, 1988, see [9], it follows that Ein components
N(e, a, b, c) with approriate a, b, c contain these Vedernikov’s families V1(k, l) and
V4(k), respectively, V2(k, l) and V3(k, l), as their open dense subsets in special cases
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when e = a = 0, respectively, a = b. More precisely, the closures Vi(k, l) of the
families Vi(k, l) in M(e, n) are:

V1(k, l) = N(0, a, b, c) for a = 0, b = k + 1− l, c = k + 1,

V2(k, l) = N(0, a, b, c) for a = b = l, c = k + 1,

V3(k, l) = N(−1, a, b, c) for a = b = l − 1, c = k + 1,

V4(k) = N(0, a, b, c) for a = b = 0, c = k + 1.

(8.26)

In [28], it is asserted that V1(k, l) is rational. However, the construction of ra-
tionality of V1(k, l) presented in [28, Section 3] coincides with ours and thus, by
Theorem 8.1, yields only stable rationality of V1(k, l). Indeed, in this case, τ = 0
by (8.25), but m = m(0, 0, k + 1 − l, k + 1) = 1 by (5.13) and (5.1), so that,
π : Bτ → V1(k, l) is a locally trivial P1-bundle with Bτ rational. So the problem
of rationality of V1(k, l) remains open.

The construction of rationality of V2(k, l) provided in [28, Sections 5-6] differs
from ours. According to Theorem 8.1, the rationality of V2(k, l) is covered by
our result in the range k ≥ 3l ≥ 3 and, respectively, not covered in the range
2 ≤ 2l ≤ k ≤ 3l − 1.

In [28, Section 7], the rationality of V3(k, l) is asserted without proof. On the
other hand, in this case the rationality (respectively, stable rationality) of V3(k, l)
follows from Theorem 8.1 for k ≥ 3l − 2 (respectively, for 2l − 2 ≤ k ≤ 3l − 3).

Last, the rationality of V4(k) is proved in [29]. It is not covered by Theorem
8.1. Indeed, in this case we obtain from (5.13) and (5.1) that m = 2, and Theorem
8.1 yields stable rationality of V4(k).

Summarizing the above and using (8.26), we conclude that the result of The-
orem 8.1 covers Vedernikov’s (proven) results in case e = 0, a = b > 0, c > 3a
and improves them in case e = a = 0, b > 0.

Remark 8.5. As it is known (see [23, Prop. 3.1], [9]), the cohomology module
H1
∗ (E) of a generalized null correlation bundle [E] ∈ Nnc has one generator as

a graded module over k[x0, x1, x2, x3]. Using this, A. P. Rao in [23, Prop. 3.1
and Remark 3.2] constructed big enough rational families B of generalized null
correlation bundles from Nnc with a given cohomology module H1

∗ (E). It follows
that Nnc can be filled by unirational varieties Φ(B) of dimension big enough, where
Φ : B → Nnc is the modular morphism. This shows that Nnc is at least rationally
connected (which also follows from their stable rationality), and it possibly might
give an alternative approach to the problem of rationality of Ein components.

9 Components of M(e, n) for small n

In this section, we enumerate the known components (including the Ein com-
ponents) of the Gieseker-Maruyama moduli space M(e, n) for small values of n,
namely, for n ≤ 20 in both cases (i) e = 0 and (ii) e = −1. We specify those of these
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components which are rational, respectively, stably rational. Their dimensions are
also given.

(i) e = 0. The complete description of all the components of M(0, n) is
currently known only for n ≤ 5.

(i.1) M(0, 1) is irreducible: M(0, 1) ' P5 \G, where G is the Grassmannian
Gr(2, 4) embedded in P5 by Plücker – see, e.g., [12] or [22]. Here M(0, 1) is an Ein
component with a = b = 0, c = 1.

(i.2) M(0, 2) is an irreducible 13-dimensional rational variety, and any sheaf
in M(0, 2) is an instanton bundle – see [12, Section 9]. Note that M(0, 2) is not
an Ein component.

(i.3) M(0, 3) consists of two rational irreducible 21-dimensional components:
the instanton component I3 any sheaf of which is an instanton bundle, and the Ein
component N(0, 0, 1, 2) any sheaf of which is a generalized null correlation bundle,
i. e. N(0, 0, 1, 2) = N(0, 0, 1, 2)nc – see [10].

(i.4) M(0, 4) consists of two irreducible 29-dimensional components: the in-
stanton component I4 any sheaf of which is a mathematical instanton bundle with
spectrum (0, 0, 0, 0), and the Ein component N(0, 0, 0, 2) – see [4], [5], [8], [14]. The
rationality of N(0, 0, 0, 2) is proved in [8] and reproved in [29] by another method.
It is also shown in [8] that N(0, 0, 0, 2) \Nnc 6= ∅.

(i.5) M(0, 5) has three irreducible components, according to a recent result
of C. Almeida, M. Jardim, A. Tikhomirov and S. Tikhomirov [1]. The first one is
the 37-dimensional rational instanton component I5 [7], [24], [18], a general sheaf
of which is a mathematical instanton bundle. The next one is the 40-dimensional
Ein component N(0, 0, 2, 3) – see [9], [10, Theorem 4.7], [14], and it coincides
with the component Q2 of M(0, 5) introduced by Ellingsrud and Strømme (we
use the notation from Section 1). This component is stably rational by Theorem
8.1. (A weaker statement about unirationality of N(0, 0, 2, 3) = Q2 was mentioned
in Section 1.) The third one is a 37-dimensional component Mb described as the
closure in M(0, 5) of the set {[E] ∈M(0, 5) | E is a cohomology bundle of a monad
of the type 0→ OP3(−2)⊕OP3(−1)→ 6OP3 → OP3(1)⊕OP3(2)→ 0}.

(i.6) M(0, 6) contains the instanton component I6 of dimension 45 (see [25])
and at least one more component of dimension ≥ 45 which contains a (possibly
open) locally closed subset M6 = {[E] ∈ M(0, 6) | E is the cohomology bundle
of a monad 0 → 2OP3(−1) ⊕ OP3(−2) → 8OP3 → 2OP3(1) ⊕ OP3(2) → 0} – see
[14, Table 5.3, c2 = 6, (2,i)], where dimM6 = 45 by Barth’s formula [4, p. 216].
However, M(0, 6) does not contain Ein components, since there are no integer
solutions for a, b, c satisfying the conditions b ≥ a ≥ 0, c > a+ b, c2 − a2 − b2 = 6
– see [19, Section 2].

(i.7) M(0, 7) contains at least four irreducible components. They are: the in-
stanton component I7 of dimension 53 [24], the two Ein components N(0, 0, 3, 4)
and N(0, 1, 1, 3) of dimensions 65 and 55, respectively, and a component of dimen-
sion ≥ 53 which contains a locally closed subset M7 = {[E] ∈ M(0, 7) | E is the
cohomology bundle of a monad 0→ 3OP3(−1)⊕OP3(−2)→ 10OP3 → 3OP3(1)⊕
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OP3(2)→ 0} – see [14, Table 5.3, case c2 = 7, (2,i)], where dimM7 = 52 by Barth’s
formula [loc. cit.]. Here the Ein components N(0, 0, 3, 4) and N(0, 1, 1, 3) are sta-
bly rational by Theorem 8.1, and there are no other Ein components in M(0, 7)
by [19, Section 2].

(i.8) M(0, 8) contains at least three irreducible components. They are: the
instanton component I8 of dimension 61 [25], the Ein component N(0, 0, 1, 3) of
dimension 62, and a component of dimension ≥ 61 which contains a (possibly
open) locally closed subset M8 = {[E] ∈M(0, 8) | E is the cohomology bundle of
a monad 0→ 4OP3(−1)⊕OP3(−2)→ 12OP3 → 4OP3(1)⊕OP3(2)→ 0} – see [14,
Table 5.3, case c2 = 8, (2,i)], where dimM8 = 61 by Barth’s formula. Here the Ein
component N(0, 0, 1, 3) is stably rational by Theorem 8.1, and there are no other
Ein components in M(0, 8) by [19, Section 2].

We complete, using [1, Main Theorem 1], [19, Section 2] and [26, Theorem 3],
the list of all currently known irreducible components of M(0, n) for 9 ≤ n ≤ 20.
For these values of n, besides the Ein components and the instanton components
In of dimension 8n− 3, 9 ≤ n ≤ 20, (the rationality or stable rationality of these
In’s is unknown), the known irreducible components are 6 more components. They
are: 1) component of dimension 69 of M(0, 9), 2) component of dimension 77 of
M(0, 10), 3) component of dimension 85 of M(0, 11), 4) component of dimension
93 of M(0, 12), 5) component of dimension 135 of M(0, 17), 6) component of
dimension 141 of M(0, 18).

Below we list the Ein components of M(0, n) for 9 ≤ n ≤ 20. Their ratio-
nality or stable rationality follows from Theorem 8.1 and Remark 8.4, and their
dimensions are given by (2.1).
n = 9 : N(0, 0, 0, 3) rational of dimension 69, N(0, 0, 4, 5) stably rational of dimen-
sion 96;
n = 10 : no Ein components;
n = 11 : N(0, 0, 5, 6) stably rational of dimension 133, N(0, 1, 2, 4) stably rational
of dimension 98;
n = 12 : N(0, 0, 2, 4) stably rational of dimension 104;
n = 13 : N(0, 0, 6, 7) stably rational of dimension 176;
n = 14 : N(0, 1, 1, 4) rational of dimension 117;
n = 15 : N(0, 0, 1, 4) stably rational of dimension 123, N(0, 0, 7, 8) stably rational
of dimension 225, N(0, 1, 3, 5) stably rational of dimension 152;
n = 16 : N(0, 0, 0, 4) rational of dimension 129, N(0, 0, 3, 5) stably rational of di-
mension 158;
n = 17 : N(0, 0, 8, 9) stably rational of dimension 280, N(0, 2, 2, 5) stably rational
of dimension 170;
n = 18 : no Ein components;
n = 19 : N(0, 0, 9, 10) stably rational of dimension 341, N(0, 1, 4, 6) stably rational
of dimension 218;
n = 20 : N(0, 0, 4, 6) stably rational of dimension 224, N(0, 1, 2, 5) rational of
dimension 187.
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(ii) e = −1. The scheme M(−1, n) is known to be nonempty only for n =
2m, m ≥ 1 [13]. Moreover, Hartshorne in [13] produced a family Hm of bundles
with minimal spectrum from M(−1, 2m), using the Serre construction similar to
that of ’tHooft instanton bundles from Im. (For the notion of spectrum see [13,
Section 7].) Hartshorne showed that, for each m, the family Hm is contained in
a unique irreducible (16m − 5)-dimensional component of M(−1, 2m) which is
smooth along Hm. Denote this component by Y2m.

Now observe the spaces M(−1, 2m) for m = 1, 2, 3.
(ii.1) M(−1, 2) = Y2 is an irreducible rational variety of dimension 11 [15].
(ii.2) M(−1, 4) has two irreducible components: the rational component Y4

of dimension 27, and the rational component M of dimension 28 which consists of
bundles with maximal spectrum [2].

(ii.3) M(−1, 6) has at least three irreducible components: the component
Y3 of the expected dimension 43; the Ein component N(−1, 0, 0, 2) which, by
Theorem 8.1, is a rational variety of the expected dimension 43; the Ein component
N(−1, 0, 2, 3) which, by Theorem 8.1, is a stably rational variety of dimension
50. Note that these two Ein components differ by the spectra of bundles therein
(see [27]). Besides, as it follows from [19], there are no other Ein components in
M(−1, 6).

We complete the list of all known irreducible components of M(−1, n) for
8 ≤ n ≤ 20, n even. Besides the components Yn of dimension 8n − 5, the ra-
tionality or stable rationality of which is unknown, these are Ein components of
M(−1, n). (As above, here [19, Section 2], Theorem 8.1, Remark 8.4, and (2.1) are
used.)
n = 8 : N(−1, 0, 3, 4) stably rational of dimension 78, N(−1, 1, 1, 3) stably rational
of dimension 67;
n = 10 : N(−1, 0, 1, 3) rational of dimension 80, N(−1, 0, 4, 5) stably rational of
dimension 112;
n = 12 : N(−1, 0, 0, 3) rational of dimension 93, N(−1, 0, 5, 6) stably rational of
dimension 152, N(−1, 1, 2, 4) stably rational of dimension 116;
n = 14 : N(−1, 0, 2, 4) rational of dimension 128, N(−1, 0, 6, 7) stably rational of
dimension 198;
n = 16 : N(−1, 0, 7, 8) stably rational of dimension 250, N(−1, 1, 1, 4) stably ra-
tional of dimension 143, N(−1, 1, 3, 5) stably rational of dimension 176;
n = 18 : N(−1, 0, 1, 4) rational of dimension 154, N(−1, 0, 3, 5) rational of di-
mension 188, N(−1, 0, 8, 9) stably rational of dimension 308, N(−1, 2, 2, 5) stably
rational of dimension 197;
n = 20 : N(−1, 0, 0, 4) rational of dimension 165, N(−1, 0, 9, 10) stably rational of
dimension 372, N(−1, 1, 4, 6) stably rational of dimension 248.
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