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Abstract.We consider the spin response within the five-orbital model for iron-based superconductors
and study two cases: equal and unequal gaps in different bands. In the first case, the spin resonance
peak in the superconducting state appears below the characteristic energy scale determined by the gap
magnitude, 2∆L. In the second case, the energy scale corresponds to the sum of smaller and larger gap
magnitudes,∆L+∆S . Increasing the values of the Hubbard interaction and the Hund’s exchange, we
observe a shift of the spin resonance energy to lower frequencies.

Introduction

Origin of the unconventional superconducting state in iron pnictides and chalcogenides is still un-
der debate [1]. Fe-based superconductors (FeBS) have square lattice of iron as the basic element,
though with orthorhombic distortions in lightly doped materials. Iron is surrounded by As or P in pnic-
tides or Se, Te, or S in chalcogenides. Pnictides are represented by 1111 systems (LaFeAsO, LaFePO,
Sr2VO3FeAs, etc.), 111 systems (LiFeAs, LiFeP, and others), and 122 systems (BaFe2As2, KFe2As2,
and so on). Chalcogenides can be of 11 type (Fe1−δSe, Fe1+yTe1−xSex, monolayers of FeSe) and of
122 type (KFe2Se2). Fermi surface (FS) is formed by Fe d-orbitals. Conductivity is provided by the
iron layer, thus, the discussion of physics in terms of quasi two-dimensional system in most cases
gives reasonable results [2]. Excluding the cases of extreme hole and electron dopings, FS consists of
two hole sheets around the Γ = (0, 0) point and two electron sheets around the (π, 0) and (0, π) points
in the two-dimensional Brillouin zone (BZ) corresponding to one Fe per unit cell. Nesting between
these two groups of pockets leads to the enhanced antiferromagnetic fluctuations with the maximal
scattering near the wave vector Q = (π, 0) connecting hole and electron pockets.

Since different mechanisms of Cooper pairing result in different gap symmetries and structures [2],
one can elucidate the superconducting mechanism by determining the gap structure. For example, the
RPA-SF (random-phase approximation spin fluctuation) approach gives the extended s-wave gap that
changes sign between hole and electron FS sheets (s± state) as the main instability for the wide range
of dopings [3, 4, 5, 6, 7]. On the other hand, orbital fluctuations results in the order parameter with the
sign-preserving s++ symmetry [8].

One of the specific features of the s± state is the spin resonance peak in the dynamical spin sus-
ceptibility χ(Q, ω). Since Q connects Fermi sheets with different signs of s± gaps, the resonance
condition for the interband susceptibility is fulfilled and the spin resonance peak is formed at a fre-
quency ωR below 2∆ with ∆ being the gap size [9, 10, 11]. It was observed below Tc at or around
q = Q in inelastic neutron scattering experiments on 1111, 122, and 11 systems [12, 13, 14, 15, 16].

As is known from angle-resolved photoemission spectroscopy (ARPES) and recent measurements
of gaps via Andreev spectroscopy, there are at least two distinct gaps present in 11, 122, and 1111
systems [17, 18, 19, 20, 21] and even three gaps in LiFeAs [22, 23]. Larger gap (∆L) is located at
electron FS sheets and at the inner hole sheet, and the smaller gap (∆S) is located at the outer hole
FS [24, 25]. Previously, we have found that in the case of unequal gaps on hole and electron pockets,



the spin resonance frequency should appear below the characteristic energy scale,ωR ≤ ∆L+∆S [26].
Comparison of experimental data on the peak frequency and gaps magnitudes leads to conclusion that
in most cases the observed peak fulfills the condition and, therefore, indicates the s± gap structure [26,
27]. Here we study the how the changes in model parameters affect the spin resonance frequency ωR.
In particular, we show that the increase of local Coulomb interactions leads to the decrease of ωR.

Model and approach

To calculate spin susceptibility in normal and superconducting states, we use random phase approxi-
mation (RPA) with the local Coulomb interactions (Hubbard and Hund’s exchange). In the multiorbital
system, transverse dynamical spin susceptibility χ̂+−(q, ω) is the matrix in orbital indices. It can be
obtained in the RPA from the bare electron-hole matrix bubble χ̂(0)+−(q, ω) by summing up a series
of ladder diagrams,

χ̂+−(q, ω) =
[
Î − Ûsχ̂(0)+−(q, ω)

]−1

χ̂(0)+−(q, ω), (1)

whereq is themomentum,ω is the frequency, Ûs and Î are interaction and unitmatrices in orbital space,
respectively. Here we use the tight-binding model from Ref. [4] based on the fit to the DFT (density
functional theory) band structure for prototypical pnictide LaFeAsO [28]. The model includes all five
Fe d-orbitals and is given by

H0 =
∑
kσ

∑
ll′

[tll′(k) + ϵlδll′ ] d
†
lkσdl′kσ, (2)

where d†lkσ is the annihilation operator of a particle with momentum k, spin σ, and orbital index l ∈
(1, 2, . . . , 5) (dxz, dyz, dxy, dx2−y2 , d3z2−r2) . Later we use numerical values of hoppingmatrix elements
tll′(k) and one-electron energies ϵl from Ref. [4]. This model for the undoped and moderately electron
doped materials gives FS composed of two hole pockets, α1 and α2, around the (0, 0) point and two
electron pockets, β1 and β2, centered around (π, 0) and (0, π) points of the Brillouin zone. Total number
of electrons is given by n = n0 ± x, where electron filling n0 = 6 corresponds to the fully occupied
d6-orbital and x is the doping concentration. Similar model for iron pnictides was proposed in Ref. [5].

The general two-particle on-site Coulomb interaction is represented by the Hamiltonian [4, 5, 29,
30]:

Hint = U
∑
f,m

nfm↑nfm↓ + U ′
∑
f,m<l

nflnfm

+ J
∑
f,m<l

∑
σ,σ′

d†flσd
†
fmσ′dflσ′dfmσ + J ′

∑
f,m ̸=l

d†fl↑d
†
fl↓dfm↓dfm↑. (3)

where nfm = nfm↑+nfm↓, nfmσ = d†fmσdfmσ is the number of particles operator at the site f , U and
U ′ are the intra- and interorbital Hubbard repulsion, J is the Hund’s exchange, and J ′ is the so-called
pair hopping.

Green’s functions are diagonal in the band basis, Gµσ(k, iωn) = 1/ (iωn − εkµσ) with µ being
the band index, but not in the orbital basis. Transformation from the orbital to the band basis is done
via the matrix elements φµ

km: |σmk⟩ =
∑
µ

φµ
km |σµk⟩. Then dkmσ =

∑
µ

φµ
kmbkµσ, where bkµσ is the

annihilation operator of electron. Transverse component of the bare spin susceptibility that is a tensor
in orbital indices l, l′,m, andm′ takes the following form [7],

χll′,mm′

(0)+− (q, iΩ) = −T
∑

p,ωn,µ,ν

[
φµ
pmφ

∗µ
plGµ↑(p, iωn)Gν↓(p+ q, iΩ + iωn)φ

ν
p+ql′φ

∗ν
p+qm′

− φ∗µ
plφ

∗µ
−pm′F

†
µ↑(p,−iωn)Fν↓(p+ q, iΩ + iωn)φ

ν
p+ql′φ

ν
−p−qm

]
. (4)
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Fig. 1: Gaps at the Fermi surface for doping x = 0.05 in the s± state with ∆α1,2 = ∆β1 = ∆L and
∆β2 = ∆S , where ∆S = ∆L/3. Scattering wave vector Q entering the spin susceptibility is also
shown.

Here Gµ↑(p, iωn) and Fµ↑(p, iωn) are normal and anomalous (Gor’kov) Green’s functions, iΩ is the
Matsubara frequency.

Components of the physical spin susceptibility, χ+−(q, iΩ) = 1
2

∑
l,m χll,mm

+− (q, iΩ), are calculated
using Eq. (1) with the interaction matrix Us from Ref. [4]. To use matrix notations in Eq. (1), we
introduce the correspondence between matrix (ı, ȷ) and orbital indices: ı = l+l′nO and ȷ = m+m′nO,
where nO is the number of orbitals.

Since calculation of the Cooper pairing instability is not a topic of the present study, here we
assume that the superconductivity is coming from some other theory and study the s± state with∆kµ =
∆µ cos kx cos ky, where µ is the band index. Two cases are considered below: equal gaps with ∆µ′ =
∆µ and unequal gaps with the smaller gap ∆β2 = ∆S on the outer hole FS and larger gaps ∆α1,2 =
∆β1 = ∆L on inner hole and electron FSs. To be consistent with the experimental data, we choose
∆S = ∆L/3, see Fig. 1.

Results of calculations

In Figs. 2 and 3, we present results for susceptibilities at the wave vector q = Qwith doping x = 0.05
as functions of real frequency ω obtained via the analytical continuation from Matsubara frequen-
cies (iΩ → ω + iδ with δ → 0+). Since χ(0)+−(q, ω) describes particle-hole excitations and in
the superconducting state all excitations are gapped below approximately 2∆0 (at T = 0), then
Imχ(0)+−(q, ω) becomes finite only after that frequency. Due to the anomalous Green’s functions,
the anomalous coherence factors appear in (4), which are proportional to

[
1− ∆kµ∆k+qν

EkµEk+qν

]
with Ekµ ≡√

ε2kµ +∆2
kµ = |∆kµ| at the Fermi level. For the s± state,Q connects FSs with different signs of gaps,

sgn∆kµ = −sgn∆k+Qν , thus coherence factors are finite and the imaginary part of χ(0) possesses a
discontinuous jump at a finite frequency ωc. Due to the Kramers-Kronig relations, the real part exhibits
a logarithmic singularity. Within RPA, Eq. (1), this results in the spin resonance peak – divergence of
Imχ+−(Q, ω) at a frequency ωR < ωc. Frequency ωc is determined by the two gaps, ∆kµ and ∆k+Qν ,
‘connected’ by the wave vector Q. If the gaps are equal, say ∆L, then the resonance peak appears
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Fig. 2: Physical spin susceptibility Imχ+−(Q, ω) with Q = (π, 0) for the five-orbital model in the
normal (non-SC) and s± superconducting states. Two cases of superconducting states are shown: equal
gaps with ∆α1,2 = ∆β1,2 = ∆L, and unequal gaps with ∆α1,2 = ∆β1 = ∆L and ∆β2 = ∆S , where
∆S = ∆L/3. All results are shown for the three sets of interaction parameters shown in figure (all
values are in eV).

at frequencies below 2∆L. If gaps are different and equal to ∆L and ∆R, then the peak appears at
ωR ≤ ∆L +∆S . Both these cases are shown in Figs. 2 and 3.

To see the influence of the interaction parameters, we choose six sets of Hubbard U and Hund’s
J values. We also used the spin-rotational invariance constraint that minimizes the number of free
parameters by setting U ′ = U − 2J and J ′ = J . For the first three sets, the value of U is chosen
so that the system is near the magnetic instability; slight increase of U results in the divergency of
Imχ at the wave vector Q. Such choice is naturally related to the proximity of the system to the
antiferromagnetic state at zero doping [1]. The only parameter that we vary in this case is the Hund’s
exchange J . The other three sets are chosen to demonstrate what happens for smaller values of U and
the similar values of J .

In Figs. 2, results for J = 0eV, J = 0.1eV, and J = 0.15eVwith fixedU = 1.4eV are shown. Note
the increase of the spin response in all cases, both in normal and superconducting states. Spin resonance
peak is shifted to lower frequencies. The energy scale ωc stays the same because it is determined by the
bare susceptibility, but the frequency at which Imχ+−(Q, ω) diverge changes and becomes smaller.

Similar situation is observed for smaller values of interaction parameters, see Fig. 3 where results
for U = 1.2eV, J = 0eV, U = 1.3eV, J = 0eV, and U = 1.3eV, J = 0.1eV are shown. For the
smallest value of U , the resonance peak almost disappears, especially in the case of unequal gaps.
However, considering the fact that the slightly doped iron-based materials are antiferromagnets, the
spin susceptibility should diverge at the nesting wave vector Q in the itinerant scenario for the mag-
netism. Therefore, one should expect the sizeable values of interaction parameters.

Summary

We studied the spin susceptibility in FeBS in the superconducting state with equal and unequal gaps,
∆L and ∆S . Spin resonance appears in the s± state below the characteristic energy scale determined
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Fig. 3: The same, as in Fig. 2, but for different sets of interaction parameters.

by the sum of gaps on two different Fermi surface sheets connected by the scattering wave vector
Q. We varied the interaction parameters, in particular, Hubbard repulsion U and Hund’s exchange
J . With increase of interaction, we observe a total increase of the spin response both in normal and
superconducting states. At the same time, the spin resonance peak is shifted to lower frequencies
staying below the characteristic energy scale.
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