
Letter Optics Letters 1

Dual wavelengths Talbot self-imaging using facet
patterned nonlinear crystals
A.M. VYUNISHEV1,2,*, S.A. MYSLIVETS1,2, V.A. FOKIN1, M.N. VOLOCHAEV1, T.E. SMOLYAROVA1,
N.V. RADIONOV1, A.I. ZAITSEV1, V.G. ARKHIPKIN1,2, AND A.S. CHIRKIN3

1Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia
2Department of Photonics and Laser Technology, Siberian Federal University, Krasnoyarsk, 660079, Russia
3Faculty of Physics and International Laser Center, M. V. Lomonosov Moscow State University, Moscow, 119992, Russia
*Corresponding author: vyunishev@iph.krasn.ru

Compiled June 20, 2019

A method for functional patterning of facets of a nonlin-
ear crystal using focused ion beam milling has been de-
veloped. The near-field diffraction on periodic gratings
has been experimentally and theoretically studied. The
periodicity of the structure enables Talbot self-imaging
at the fundamental and second-harmonic frequencies
simultaneously. Spatial interference patterns for both
harmonic frequencies are individual ones, which can
enable the higher-accuracy optical testing, coupling the
radiation at both frequencies, and wavelength-division
demultiplexing. The impact of the aperture effect on a
Talbot carpet is discussed. © 2019 Optical Society of America

OCIS codes: (190.2620) Harmonic generation and mixing; (190.4223)
Nonlinear wave mixing.
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When a plane wave is incident upon a periodic structure,
the image of the structure is repeated at regular distances away
from the structure plane. This phenomenon is known as the
Talbot effect, or self-imaging, which leads to the diffraction self-
reproduction of the image of a structure in the near field [1, 2].
The distance ZT = 2Λ2/λ (here Λ is the grating period, λ is
the wavelength) between neighboring self-imaging planes is
called the Talbot lengths. Images are also formed at the distance
z = (p/q)ZT , where p and q are coprime integers, but the im-
age period is different from that of an object. This property is
referred to as the fractional Talbot effect [3]. The Talbot effect can
be used in photolithography [4, 5], optical testing and metrology
[6], imaging [7], spectrometry [8], etc. The recent progress in
studying the Talbot effect and its applications were reviewed in
[9]. Recently, the Talbot effect has been observed in nonlinear
photonic crystals (NPCs) –– a special kind of nonlinear media
with the periodic bipolar modulation of the second-order non-
linear susceptibility [10] and the theory of the nonlinear Talbot
effect has been developed [11].

At the same time, the nonlinear frequency conversion in
periodic NPCs results in the nonlinear far-field Raman-Nath
diffraction, which has been an object of many studies in the last
decade [12–14]. In [15], the near- and far-field appearances of

the nonlinear Raman-Nath diffraction in a periodically poled
nonlinear crystal were simultaneously investigated. The main
characteristic of the diffraction phenomena is the use of peri-
odic structures that scatter radiation in certain directions. The
simplest design of such a structure is a periodic phase grating,
which has been intensively studied in many fields of research,
except for the nonlinear frequency conversion. An exception is
the use of patterned facets of nonlinear crystals for shaping both
the fundamental and second-harmonic beams in the far-field,
which was lately described in [16]. At the same time, the study
of the near-field effects in facet patterned nonlinear crystals at
dual harmonic frequencies is of interest in view of the close
analogy between these effects in linear and nonlinear optics.

In this Letter, we investigate the Talbot effect using an opti-
cal grating on the exit facet of a nonlinear bulk medium. The
incident radiation is scattered at the fundamental and doubled
frequencies, so the Talbot self-imaging is reproduced at both
harmonic frequencies at specified distances. The interference
patterns for harmonic frequencies are individual ones, which can
be used in the high-accuracy optical testing of patterned facets
of nonlinear crystals and wavelength-division demultiplexing.

In the experiment, a strontium tetraborate (SrB4O7, SBO) crys-
tal plate 1 mm (a) × 3 mm (b) × 5 mm (c) in size was used. Two
periodic structures (gratings) with overall sizes of 100× 100 µm2

were formed on polished facet a using a Hitachi FB-2100 focused
ion beam system. The grating is a 1D structure of rectangular
grooves parallel to the c axis Fig. 1(a). The grating periods were
designed to be 5 and 10 µm, respectively, and the groove depth
was taken to be 1 µm. The fundamental frequency (FF) radiation
at a central wavelength of 800 nm from a femtosecond oscilla-
tor delivering 100-fs pulses at a repetition rate of 80 MHz was
focused by a 10-cm lens on a grating plane (facet a) placed on
the exit facet of the sample. The fundamental radiation was
polarized vertically (along the c axis) to employ the largest SBO
nonlinear coefficient d33. The Raman-Nath diffraction at the FF
and SH wavelengths were observed in the far-field (Figs. 1(b),
1(c)). One can see the first four diffraction orders of the fun-
damental beam and the 0,±1,±2,±4 orders of the SH beam.
An analysis of the angular positions of the FF and SH maxima
in the far-field pattern revealed the discrepancy between the
parameters of the fabricated structure and pre-designed ones.
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Therefore, the parameters were refined on a NanoInk atomic
force microscope. The measured periods were 4.56 and 9.0 µm,
which is consistent with the values obtained by analyzing the
diffraction.

The measured depth of the grooves was ∼ 0.45 µm. The duty
cycle of the examined grating D with a period of 4.56 µm was
about 0.25. Then, the FF radiation was collimated by an optical
telescope (Fig. 1(d)) to a slightly elliptic spot about 240× 295 µm2

in size (FWHM, xy plane) and launched upon the examined grat-
ing. A 100×microscope objective with 1.25 numerical aperture
was mounted on a translation stage to obtain the near-field FF
intensity distribution in the transverse plane at a specified coor-
dinate z. The intensity distribution was recorded by a Newport
LBP-1 beam profiler placed at a distance of 180 mm from the
sample. In the intensity distribution measurements at the SH
wavelength, a BG39 glass filter was mounted before the beam
profiler, while for measurements of FF intensity distribution
BG39 glass filter was replaced by a neutral density filter of the
laser beam profiler.
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Fig. 1. (a) FIB-image of the fabricated grating (Λ = 5 µm), (b)
FF and SH far-field patterns (Λ = 10 µm), (c) SH far-field pat-
tern (Λ = 10 µm), and (d) optical scheme of the Talbot effect
experiment (telescope T, phase grating sample S, 100×micro-
scope objective O mounted on the translation stage, optical
filter F, and beam profiler BP).

To analyze the spatial intensity distribution, the microscope
objective was translated along the coordinate z. The scanning
spatial step was 1.25 µm. At each step, the transverse intensity
profiles were imaged by the optical scheme and beam profiler
and recorded by a data acquisition system. Figure 2 demon-
strates sets of the FF and SH intensity profiles recorded at speci-
fied coordinates corresponding to fractions of the corresponding
Talbot lengths. The measured coordinates are given in Table 1.
It can be seen that the image at the distance ZT is a replica of the
image corresponding to the output plane. Other Talbot effect
features observed in our experiments are the half-period shift of
the image at 1/2ZT image planes relative to the planes at inte-
ger values of ZT and double spatial frequency appearing at the
1/4ZT and 3/4ZT image planes. However, it is well-established
that the transverse intensity distribution at the grating output
plane and at the corresponding distances multiple of the Talbot
length must be close uniformed for a pure phase grating [2].
Surprisingly, the intensity distributions at the output plane of

the investigated structure were nonuniform at both frequencies
(the upper row in Fig. 2). Therefore, the amplitude modulation
appears at the output plane, which can be attributed to the light
scattering by the rough groove surface and absorption of Ga ions
unintentionally implemented during the ion milling procedure.

Fig. 2. Transverse FF (left column) and SH (right column) in-
tensity distributions recorded by the beam profiler in the mi-
croscope objective positions of 0, 1/4ZT , 1/2ZT , 3/4ZT and
ZT positions at the corresponding wavelengths. The distances
corresponding to the fractional planes are given in Table 1.

All the intensity profiles in the entire scanning range were
averaged in the vertical direction (along the c axis) to obtain the
normalized intensity distribution in the transverse direction and,
then, aggregated to visualize the near-field intensity distribution
in two dimensions ({x, z}-coordinates), which is also known
as a Talbot carpet. In Fig. 3(a), one can clearly see a periodic
structure of the intensity distribution on the coordinates {x, z}.
The periodicity of the structure in the z direction was 50 µm
for the FF radiation, which represents the Talbot length. In
addition, it can be seen that the diffraction caused by a finite
grating size disturbs the regularity of this spatial distribution.
The similar results were obtained for the SH radiation (Fig. 3(c));
the measured Talbot length for the SH radiation was found to
be 102.5 µm, which is about twice as much as the Talbot length
at the FF wavelength.

A simple theoretical treatment might rely on the Green func-
tion formalism [17, 18]. In this case, the complex field amplitude
in the quasi-static approximation can be written as

A(r, z) =
∫
S

g(ρ)A(0)(ρ)G(r− ρ, z)d ρ. (1)

Here, G(r− ρ, z) is the Green’s function of the parabolic equa-
tion

G(r− ρ, z) = − ik
2πz

e−i k
2z (r−ρ)2

, (2)

k = 2π/λ is the wavevector of FF or SH wave, r ∈ (X, Y) is
the coordinate in the image plane, ρ ∈ (x, y) is the coordinate
in the object plane, z is the propagation coordinate, g(ρ) is the
periodic modulation function, A(0)(ρ) = A(0) exp

(
−ρ2/w2

0
)
,

A(0) is the amplitude in the beam axis, w0 is the beam radius,
and S is the integration area.

The surface grating results in the amplitude-phase modula-
tion at the crystal output plane, such that the periodic modula-
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tion function g(ρ) can be represented as

g(x) =

 e−iφ1,2 , if pΛ 6 x < pΛ + d

ξ1,2, if pΛ + d 6 x < (p + 1)Λ
, (3)

where p is the period number (e.g., p = 1), and φ1,2 =
2π(n1,2 − 1)hλ1,2 is the phase increment caused by the groove
depth h, n1,2 are the refractive indexes at the wavelengths λ1,2,
d = DΛ is the groove thickness, ξ1,2 are the transmission
(ξ1,2 ∈ [0, 1]). The surface phase gratings are defined by a set
of independent variable parameters (period, duty cycle, groove
depth, etc.), in contrast to the two parameters (period and duty
cycle) in a conventional nonlinear photonic crystal. This means
that, varying the groove depth, one can set a phase modulation
magnitude during fabrication.

It can be shown that the Talbot plane of the mth order under
focusing is

Z(m)
T =

mZ(0)
T

2γ2

[
1−

(
1− 4γ2

)1/2
]

. (4)

where γ = mZ(0)
T /ZR = mΛ2/πw2

0, Z(0)
T = 2Λ2/λ is the Talbot

length in the plane wave approximation [9], Λ is the grating
period, λ is the wavelength of the incident plane wave, and ZR =
πw2

0/λ is the diffraction length (also known as a Rayleigh length).

According to Eq. (4), we have ZR > 2Z(0)
T or w0 > Λ. Thus, the

Talbot effect can occur even though the beam illuminates few
grating periods. Making the assumption 4γ2 � 1 in Eq. (4), we
can simplify the latter to

Z(m)
T = mZ(0)

T

1 +

(
mΛ2

πw2
0

)2
 . (5)

Equation (5) ensures the high accuracy under the experimental
conditions and can be used instead of Eq. (4). According to
Eq. (5), the Talbot lengths at both frequencies are interrelated
as 2ZT(λ) ≈ ZT(λ/2). Therefore, the effect provided by the
facet patterned nonlinear crystals can be used for coupling the
radiation at both frequencies to multi-channel integrated optical
circuits. On the other hand, the self-images at both frequencies
are laterally shifted by half a period at the coordinates ZT(λ) ≈
1/2ZT(λ/2), allowing the spatial separation of harmonic waves.
The values for the entire and fractional Talbot lengths measured
and calculated using Eq. (5) are given in Table 1. These measured
and calculated data were found to be in satisfactory agreement.

Figure 3 (b) demonstrates the near-field intensity distribution
for the FF radiation obtained by the numerical integration of
Eq. (1) in a finite domain. In the calculations, the quasi-static
and paraxial approximations were used and the propagation
of a Gaussian beam at a single FF wavelength was considered.
It is worth noting that the pulse duration does not influence
the Talbot effect under the condition τ � t (here τ is the pulse
duration, t ∼ h/c and c is the speed of light) and Eq. (1) is valid.
The spatial increment in the calculations was taken to be 0.25 µm.
The calculated and measured intensity distributions agree well
at the following grating structure parameters: Λ = 4.53 µm, D =
0.25, a groove depth h = 0.52 µm, and a transmission of ξ1 = 0.8.
The groove depth affects the relative phases φ1,2 for the radiation,
while the necessity for introducing the amplitude ξ1 can be
explained by the light scattering by the rough groove surface.
In contrast to the results obtained at the FF wavelength, the
measured spatial SH intensity distribution contains noticeable

Table 1. Measured (from Fig. 3(a) and 3(c)), calculated by
Eq. (5) and numerically calculated (from Fig. 3(b) and 3(d))
Talbot lengths for FF and SH radiation

Z/ZT
FF (µm) SH (µm)

Exp. Eq.(5) Num. Exp. Eq.(5) Num.

1/4 12.50 13.00 12.75 25.50 26.00 26.75

1/2 25.00 26.00 25.75 51.25 51.98 51.50

3/4 37.50 39.00 37.50 77.50 77.98 78.25

1 50.00 51.98 51.75 102.50 103.97 102.80

3/2 73.75 77.98 76.75 152.50 155.95 153.80

2 98.75 103.97 102.50 200.00 207.94 204.80

peaks at the object plane, which are indicative of the amplitude
modulation at the grating (Fig. 2). For this reason, the amplitude
ξ2 in Eq. (3) was varied. As a result, good agreement between
the calculated and measured Talbot carpets is also observed
at ξ2 = 0.2 (Fig. 3 (b,d)). As was mentioned above, it may
appear due to the light scattering by the rough groove surface
and absorption of gallium ions in the short-wavelength range.
The latter factor seems to dominate for the SH radiation. The
optimization of the grating parameters allowed us to obtain
the better agreement between the numerically calculated and
measured Talbot lengths (in Table 1) as compared with the values
obtained using Eq. (4). Hence, the Talbot self-imaging at the FF
and SH frequencies can be used in the more accurate optical
testing of periodically patterned facets of nonlinear crystals.

The Talbot effect is usually observed when the grating is illu-
minated by a monochromatic (continuous) wave. In our experi-
ments, 100-fs pulses were used and no discrepancy between the
numerically calculated and measured data was observed, which
evidences for the validity of the monochromatic approximation.
This is consistent with the data reported in [19], where the Talbot
effect was shown to occur under the short-pulse illumination at
a pulse duration down to 30 fs.

Although the spatial period of the radiation at the SH fre-
quency is twice as much as at the FF frequency, only two Talbot
planes are observed in both cases. Then, the self-images experi-
ence certain distortions. This is proved to be caused mainly by a
finite area of the structure, i. e., a small number of the periods
illuminated by the FF radiation.

In summary, we studied the Talbot self-imaging at the har-
monic frequencies using facet patterned nonlinear crystals struc-
tured by focused ion beam milling. The near-field diffraction
at the periodic gratings was experimentally and theoretically
investigated. The periodicity of the structure enables the Tal-
bot self-imaging at the fundamental and second harmonic fre-
quencies simultaneously. Spatial interference patterns for both
harmonic frequencies are individual ones due to the different
phase increment and the presence of the spatial amplitude mod-
ulation in the case of SH. This opens new possibilities for the
high-accuracy optical testing, coupling the radiation at both
frequencies to multichannel optical circuits, and wavelength-
division demultiplexing. The influence of the aperture effect on
the Talbot carpet was discussed.



Letter Optics Letters 4

Fig. 3. Measured (a,c) and calculated (b,d) using Eq.(1) spatial FF (a,b) and SH (c,d) intensity distributions in the near-field, respec-
tively.
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